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Abstract: A unified approach to obtain multiple, partial, canonical and some generalized canonical cor- 

relation is presented. These may all be obtained as roots of a certain determinantal equation involving 

a transformation of the original dispersion matrix specific to the generalized correlation under considera- 

tion. We extend this representation to the singular case using generalized inverses. The numbers of 

critical correlations are also obtained. 
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1. Introduction 

The concept of canonical correlations for two sets of random variables is well 

known. There exist various generalizations of canonical correlations to more than 

two sets of random variables. Here we first present a unified representation, using 

the original covariance matrix, of the defining equations for various generalizations 

of canonical correlations. This representation is then extended to cover the cases of 

the corresponding appropriate singular covariance matrices, thereby generalizing 

the previous results, e.g. Rao (1981), on multiple, partial and canonical correlations 

for two sets of variables in the singular case. The numbers of various critical 

generalized correlations are also derived for the general case. 

2. Multiple, partial and canonical correlations: singular case 

Let R=(R,:...: RJ be the correlation matrix of p variables. Further, let 

R- = (r’j) = (T, : . . . : T,) by any g-inverse of R. Define RR- = Q = (Q, : . . . : Q,,). Let IP 

have the unit vector ej as its i-th column, i= 1, . . ..p. 

Result 1. The squared multiple correlation of X1 on X2, . . . , XP is 
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R:. (Z...p) = (I 1 if Q~fe~, 

1-(r”))’ if Q1 =e,. 

Result 2. The partial correlation between X, and X, eliminating X,, X4, . . . , XP is 

I 

0 if Ql#e, and Q2=ez or if Q,=e, and Q2#e2, 

r12.(34...p) = 1 if Qlfe, and Q2fe2, 
_r12/(rllr22)l/2 if Q1 = el and Q2 = e2. 

Let Xi and X2 be two sets of variables with the joint dispersion matrix Disper- 

sion(X;, Xi)‘= Dispersion(X) = C, partitioned accordingly. 

Result 3. The squared canonical correlations are the non-zero roots of the deter- 
minantal equation IZ,; Z,2Z2;Z221 - e21 / = 0 where Z,; and & are any g-inverses of 
Cl, and Z22 respectively. 

For proofs and discussions see Rao (1981). 

3. Generalized canonical correlations 

3.1. A general representation 

Several generalizations of canonical correlations for the case of k > 2 sets have 

been proposed. Edgerton and Kolbe (1936), Horst (1961), Lord (1958), Wilks (1938) 

- all with one observation per set - and McKeon (1965), in the general situation, 

used generalizations of some association measures. Extensions of tests of in- 

dependence for two sets led to partial, part and bipartial (Timm and Carlson, 1976) 

and gi-, g,-bipartial (Lee, 1978, 1979) canonical correlations. SenGupta (1983) 

chose the criterion of minimum generalized variance. For a review, see SenGupta 

(1983). 

Let X= (Xi, . . . . Xi)‘, x;: p;x 1, p, + ... +pk =p, Dispersion(X) = $ > 0, Co- 

variance(X;, X,) =Z,-. Let ,Z*> 0 be a modification of ,J, modified by a par- 

ticular generalization under consideration, and &$ be the diagonal (C,*, . . . ,Z,*,), 

a diagonal super matrix with elements &F, i= 1, . . . , k. Also let Q * be an eigen value 

of ,J* in the metric of JT. Starting with the defining equations, we see that a 

general representation can be given to cover all the above cases. The generalized 

canonical correlations, non-zero e-values, are then given by 

(k-l)@+1 =Q* where Q * satisfies lkE*- Q *&$I = 0. (3.1) 

Specifically, in the notation of Lee, k Z*, with k=2, is the dispersion matrix of the 

residual vectors, ,?? = (Pi, 34, 6;. 35)’ and E = (e;. 34, e;.35)’ for the gi- and g,-bipartial 

canonical correlations, respectively. In the notation of Timm and Carlson, 
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kz*=z.3,z:,(2.3) and z(l.3)(2.4) with k=2 for partial, part and bipartial canonical 

correlations respectively. Also for McKeon’s and SenGupta’s generalized canonical 

correlations, &* = kc. 

3.2. The singular case 

Consider the case when $$ is singular. In practice, with a large number of 

variables, this singularity may arise, e.g., when one (or more) of the variables is (are) 

linear functions of the other variables. Let &; be a g-inverse (Rao, 1981, p. 1) of 

J$. Let Q* be a proper value (Mitra and Rao, 1968, p. 317; see also Puntanen, 

1987 and Scott and Styan, 1985) of kz:* with respect to $2, i.e. k~*~=@*&~Cc) 

with cu such that, ,&:o#O. Thus, 

(3.2) 

Theorem. The generalized canonical correlations, for all the methods quoted 
above, are given by Q = (Q * - l)/(k - l), where Q * is a non-zero proper value of kz * 
with respect to k&*. 

Proof. Consider the following lemma which is a direct consequence of Theorem 3.1 

of Mitra and Rao (1968, p. 315). 

Lemma. Let A be a symmetric matrix of order n and rank s, and B be a symmetric, 
non-negative definite matrix of order n and rank r such that S(A) c S(B), where 
S(M) represents the vector space spanned by the column vectors of M. Then: 

(i) There exists a matrix L of order n x r such that L’AL = A, L’BL = I, where A 
is a diagonal matrix with s non-zero elements, some of which may be repeated, and 
I, is the identity matrix of order r. 

(ii) The non-zero elements of A are the same as the roots of the determinantal 
equation lAB_ -111 = 0 with repetitions allowed, for any g-inverse B- of B. 

By (ii), Q * is a non-zero proper value of (3.1) iff (3.2) holds, provided 

S(,Z*)CS(&‘,*). This follows from the identity AB-B=A. But it is well known, 

e.g. from properties of Schur complements of partitioned matrices, that S(_Zii)C 

S(C,;) which implies that the above-mentioned required condition is satisfied. 

Note. For k= 2, if pI = 1, p2> 1 and if p1 > 1, p2> 1 then we have the cases of 

multiple and canonical correlations respectively. Further, with k = 2, consideration 

of residual variables leads to partial, part and various bipartial canonical correla- 

tions. Thus, the above theorem unifies the Results 1 through 3, considers simple, 

and not squared, multiple, partial and canonical correlations and uses the represen- 

tation in terms of the original dispersion matrix. The theorem now, for k>2, also 

extends the above results for the singular case to various part, bipartial, McKeon’s, 

and SenGupta’s generalized canonical correlations. 
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4. Numbers of critical generalized correlations 

In the context of Lemma 1, the elements of il are called the proper values and 

the corresponding columns of L, the proper vectors of A with respect to B. For the 

generalized correlations, we consider from (3.1) only the proper values of $‘* with 

respect to ,J$. Note that for k2 2, 1 and - l/(k - 1) are the maximum and 

minimum possible values, respectively, for the generalized correlations. Let kZos be 

the off-diagonal super matrix such that &* = ,J$ + ,J$. Also let R(M) denote the 

rank of the matrix M. 

Result. The numbers of zero, unit and -l/(k- 1) -valued generalized correlations 
are given by r-R&2$), r- R[kZ~d-(k- l)&Y$] and r-R&E*) respectively, 
where r = R(kEz). 

Proof. The proof follows by rewriting (3.1) as I$~-~& =0 where (&:,A) = 

&Z&(k-I)@), (kZ~-(k-l)kZ~,(k-l)(~-l)) and (&*,(k-l)~+l) for the zero, 

unit and - l/(k- 1) -valued generalized correlations respectively, and noting the 

one-one relationship between I and Q. 
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