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a b s t r a c t

The problem of determining the values of the independent variable given a value of the de-
pendent variable is commonly referred to as the inverse regression problem. This problem
is also encountered in real life with circular data and we refer to it in that context as the
inverse circular regression problem. For such a problem, we develop distance-basedmeth-
ods, and parametric methods, where we use the von Mises (vM) error distribution and the
asymmetric generalized vonMises (AGvM) error distribution. We then present a goodness
of fit comparison among distance-based and parametric methods, utilizing a new criterion
called the relative circular prediction bias (RCPB) criterion, with real and simulated exam-
ples. Real data applications are given from the biological and environmental sciences.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Inverse regression refers to (inversely) predicting the corresponding value of an independent variable when one only
observes the value(s) of the corresponding dependent variable, using a model that has already been established for the
dependence between the two variables. In all of our methods, therefore, we use a model established after having observed
a number (we used n for this number) of paired data points before observing a new value (or new values) of the dependent
variable. Inverse (linear) regression is typically applied in calibration settings; see [2,13,18]. For example, suppose aweighing
machine is calibrated using fixed known weights. Then, later, by reading the scale, one tries to predict the unknown true
weight. This corresponds to usual practice in calibration. In this paper, we illustrate our newmethods in the inverse circular
regression problemusing twowell-knownbivariate circular data sets from the biological and environmental sciences,where
the new inverse regression methods can be useful.

Although a number of papers on direct and inverse regression for linear variables and on direct circular regression are
available, no work has previously been done on the inverse regression problem for circular variables, the inverse circular
regression problem. In view of the fact that circular variables arise in many areas of investigation, a need for inverse circular
regression is apparent. For inverse regression, reference can be made to [2,13,18]. For circular regression, key references
are [4,6–9,16,1].

First, we present themodel thatwill be used in this paper for circular inverse regression problems. Consider the following
mapping:

tan


Θ − µΘ

2


= a + b tan


Φ − µΦ

2


, (1.1)
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which has the unique solution (inverse mapping)

Θ = µΘ + 2 arctan

a + b tan


Φ − µΦ

2


. (1.2)

Note that the arctangent has double solutions in [0, 2/pi), but by restricting to half-angles


Θ

2 or Φ

2


, we have made the

solution unique. This defines a one-to-onemapping betweenΘ andΦ provided that b is not equal to zero. Using themapping
in (1.2), we present a new circular–circular regression model, where Θ is treated as the dependent circular variable and Φ

is treated as the fixed (controlled) independent variable. Specifically we assume that

Θi = µθ + 2 arctan

a + b tan


φi − µφ

2


+ εi, i = 1, . . . , n, (1.3)

where the εis follow a circular distribution with 0 mean direction, and where a and b can be viewed as intercept and slope
parameters appearing in (1.1), and µΘ and µφ are the mean directions of Θ and φ. Our model (1.3) is a generalization of
the model introduced by Downs and Mardia [4], which excludes a from (1.3). Using the link function without the intercept
parameter, it is assumed that the conditional mean direction value of the dependent circular variable is its unconditional
mean direction µθ , i.e. µθi|φi = µθ , when the value of the independent circular variable is its unconditional mean direction
µφ . However, this is not always obviously appropriate and, therefore, need not be generally assumed. The interpretation of
a in the new link function is the rotation from µθ , by the amount of 2 arctan(a), when conditioning on Φi = µφ .

Two inverse (linear) regressionmethods, called the classical and the inversemethods, have been present in the literature
formore than four centuries. The calibration problemhas been under debate from as early as the paper by Eisenhart [5], who
advocates use of the classical estimator as the only correct estimator for the corresponding value of the independent variable.
On the other hand, Tallis [17] proposes a different approach to a problem of calibration in the bivariate setting when addi-
tional information in connection with the distribution of Y is available, such that the bivariate distribution is determined.
Then, he shows that it estimates X for an observed ywith theminimumMSE, hence providing amore suitable estimator than
the classical estimator. On the other hand, inference is relatively straightforward for the classical estimator if the errors are
assumed to follow a normal distribution. Then, the parameter estimators will also be normally distributed conditionally on
the values of the independent variables regardless of the sample size, and they are also the maximum likelihood estimators.
Our readers are referred to [15] for a comprehensive reviewondebates between the classical and the inversemethods. Eisen-
hart [5] argues that the inverse estimator violating the original assumption should not be used or preferred to the classical
estimator; Kim [11,12] proposes that the inverse estimator is also justifiablewhen viewed in terms ofminimizing prediction
errors in X , i.e. the squared horizontal distances, just as the classical estimator is obtained by minimizing prediction errors
in Y , i.e. the squared vertical distances. These estimators are called the distance-based methods. The difference between
the inverse estimator examined in [11,12] and the one in the literature is that in [11,12], X is not treated as the dependent
variable in (1.3), and Y in the right side of the equation is still treated as the variable observedwith errors. In this way, we use
the estimated regression of Y on X , not the estimated regression of X on Y , in both the classical and the inverse approaches,
hence not violating the original postulate of y being measurement with error and x being controlled measurement.

Two of our three distance-basedmethods are derived as analogs to these linearmethods in view of [11,12]. The other new
distance-basedmethod is influenced bymethods known as the orthogonal distance or the total distance in linear regression.

Next, we introduce a new asymmetric circular distribution called the asymmetric generalized von Mises (AGvM) distri-
bution in Section 3.2. Some of its properties are found in Section 3.3. Our new parametric methods are applied to models
involving the von Mises (vM) and the AGvM error distributions. In these methods, maximum likelihood estimation is used
in determining appropriate values for prediction of the independent variable. A new comparison criterion, called the rela-
tive circular prediction bias (RCPB), is introduced in Section 4.1. It is motivated by consideration of the problems associated
with the use of mean square error in the inverse linear regression setting [18]. The RCPB criterion is used to compare all
distance-based and parametric methods proposed in this paper. The results of these comparisons may be found in the con-
clusion section. All the numerical optimizations were carried out by using the ‘‘optim’’ function from R, where we used
the ‘‘Nelder–Mead’’ method, which is a version of the Newton–Raphson method. In the next section, we first present the
two new methods analogous to the existing two linear inverse regression methods, and then we present the other new
distance-based inverse circular regression method.

Throughout this paper all circular random variables are assumed to take on values in the interval (−π, π], and as a con-
sequence, the corresponding densities are positive in this interval and zero elsewhere. Density functions in this paper will
not include explicit reference to the support of the corresponding densities.

2. Three new distance-based inverse prediction methods

The circular distance between two angles α and β is given by 1 − cos(α − β). The usual measure of distance between α
and β yields two distances, namely, α−β and 2π −(α−β), depending on the sense of direction for a fixed origin. Themore
appropriate uniquemeasure of distance between two angles, 1−cos(α−β), is required for a circular statistical analysis [9].
In the following, we suppose that Θ1, . . . , Θn are n independent circular variables observed for n fixed values φ1, . . . , φn of
the controlled variable Φ .



202 A. SenGupta et al. / Journal of Multivariate Analysis 119 (2013) 200–208

2.1. The distance-based method analogous to the classical method

We estimate the parameters in the model (1.3) by minimizing the sum of circular distances between observed values
θ1, . . . , θn and the associated predicted values θ̂1, . . . , θ̂n. That is, the objective function to be minimized is given by

Q (a, b, µΘ , µφ) =

n
i=1


1 − cos


θi − µθ − 2 arctan


a + b tan


φi − µφ

2


.

Then, the estimates â, b̂, µ̂θ and µ̂φ obtained are used as shown below, in order to predict the corresponding unknown value
of Φ after observing one or more values of Θ:

φ̂ = µ̂φ + 2 arctan

 tan


θ−µ̂θ

2


− â

b̂

 .

Here and in the rest of this paper, in cases inwhichmore than one value ofΘ is observed,we replace θ by θ̄ , which represents
the mean direction of the θs. In the example section and the following discussion of the results, this method will be called
the ‘‘classical’’ method.

2.2. The distance-based method analogous to the inverse method

First of all, we rewrite (1.2) as shown below, in which it was solved for φ:

φ = µφ + 2 arctan

c + d tan


Θ − µθ

2


, (2.1)

where c and d are reparameterizations of −
a
b and 1

b , respectively. We estimate the parameters in (2.1) by minimizing the
sum of circular distances between the original values φ1, . . . , φn and the associated predicted values φ̂1, . . . , φ̂n. This means
that the objective function to be minimized is given by

Q (c, d, µΘ , µφ) =

n
i=1


1 − cos


φi − µφ − 2 arctan


c + d tan


Θi − µθ

2


.

Then, the estimates obtained, i.e. ĉ , d̂, µ̂θ and µ̂φ , are used as shown below, to predict the unknown corresponding value of
Φ after observing one or more values of Θ:

φ̂ = µ̂φ + 2 arctan

ĉ + d̂ tan


θ − µ̂θ

2


.

In the example section and the following discussion of the results, this method will be called the ‘‘inverse’’ method.

2.3. The distance-based method enhanced by a new total regression method

We estimate the parameters in the model (1.3) by minimizing the sum of circular distances between observed values
θ1, . . . , θn and the associated predicted values θ̂1, . . . , θ̂n, together with the sum of circular distances between the original
φ1, . . . , φn and the associated predicted φ̂1, . . . , φ̂n. The objective function to be minimized is shown below:

Q (a, b, µΘ , µφ) =

n
i=1


1 − cos


θi − µθ − 2 arctan


a + b tan


φi − µφ

2



+

n
i=1

1 − cos

φi − µφ − 2 arctan

 tan


θi−µθ

2


− a

b


 .

Then, the estimates obtained, i.e. â, b̂, µ̂θ and µ̂φ , are used as shown below, to predict the unknown corresponding value of
Φ after observing one or more values of Θ:

φ̂ = µ̂φ + 2 arctan

 tan


θ−µ̂θ

2


− â

b̂

 .

In the example section and the following discussion of the results, this method will be called the ‘‘3rd distance-based’’
method.
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2.4. Asymptotic properties of LCD estimators of linear parameters

The estimation methods used in our distance-based predictors are called the least circular distance estimation (LCDE)
methods. Asymptotic normality of the LCDE for linear parameters is established in the following theorem.

Theorem 2.1 (Distribution of LCD Estimators of Linear Parameters). Make the following assumptions:
(i) The model is given, letting ζ denote the vector of linear parameters, i.e. (a, b)′, by

θi = mi(ζ
′) + εi = mi(a, b) + εi = µθ + 2 arctan


a + b tan


φi − µφ

2


+ εi,

where mi(·) is a continuous function of θ and ζ .
(ii) The conditional mean directions of circular errors are zeros, and the circular errors can be heteroscedastic and correlated over

i.
(iii) The mean function mi(ζ ) satisfies mi(ζ1) = mi(ζ2) iff ζ1 = ζ2.
(iv) The matrix

A0 = plim
1
n

n
i=1

∂mi

∂ζ

∂mi

∂ζ ′
cos(θi − mi)|ζ+ = lim

1
n

n
i=1

∂mi

∂ζ

∂mi

∂ζ ′
E{cos(θi − mi)}|ζ+

=
∂mi

∂ζ

∂mi

∂ζ ′
E{cos(θi − mi)}|ζ+

exists and is finite and nonsingular.
(v) 1

√
n

n
i=1

∂mi
∂ζ

sin(θi − mi)|ζ0
d

−→N(0, B0), where

B0 =
∂mi

∂ζ

∂mi

∂ζ ′
var{sin(θi − mi)}|ζ0 =

∂mi

∂ζ

∂mi

∂ζ ′
E{sin2(θi − mi)}|ζ0 .

(vi) ζ0 is an interior point in the set of its possible values.

Then the LCD estimator ζ̂ of linear parameters, defined to be a root of the first-order conditions ∂
∂ζ

n
i=1 cos(θi − mi) = 0 is

consistent for ζ and

ζ̂
a
∼N(ζ0, n−1A−1

0 B0A−1
0 ).

Proof. A proof of the theorem may be found in the Appendix. �

Remark 1. The assumption that the conditional means of errors are zeros in the least square estimation is replaced by the
assumption that the conditional mean directions of circular errors are zeros.

Remark 2. The conditions (i)–(iii) imply that the regression function is correctly specified.

Remark 3. The probability limits in (iv) and (v) become regular limits if Φ is nonstochastic.

3. New likelihood-based inverse prediction methods

We present two new likelihood-based inverse circular regression methods, one which has the von Mises error distribu-
tion and one having the asymmetric generalized von Mises error distribution. Since the vM and AGvM distributions meet
the usual regularity conditions, the MLEs of the parameters are asymptotically normally distributed. In the following, we
suppose that Θ1, . . . , Θn are n independent circular variables observed for n fixed φ1, . . . , φn.

3.1. The likelihood-based method using the von Mises (vM) error distribution

We establish the regression using (1.3) with the vM error distribution as

Θi = µθ + 2 arctan

a + b tan


φi − µφ

2


+ εi, i = 1, . . . , n,

where the εis follow vM(0, 1). In this model, there are four parameters, a, b, µθ , and µφ . We use the MLE method to fit the
model. The log likelihood function is

L(a, b, µθ , µφ) =

n
i=1

cos

θi − µθ − 2 arctan


a + b tan


φi − µφ

2


− n log

 π

−π

exp

cos


θ − µθ − 2 arctan


a + b tan


φi − µφ

2


dθ


.
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3.2. The asymmetric generalized von Mises (AGvM) distribution

In this section, we present a new asymmetric circular distribution called the asymmetric generalized von Mises (AGvM)
distribution. The distribution can be used to model asymmetric or bimodal data, and furthermore, it can still be asymmetric
when the location parameters are zero, which is not the case in the generalized von Mises (GvM) distribution [19].

Definition 1. Θ is an AGvM random variable if its density has the following form:

fΘ(θ) =
exp [κ1 cos(θ − µ) + κ2 sin 2{θ − (µ − δ)}] π

−π
exp [κ1 cos(θ − µ) + κ2 sin 2{θ − (µ − δ)}] dθ

, (3.1)

where µ ∈ [0.2π) is a location parameter, δ ∈ [0, 2π), κ1 ∈ R1 and κ2 ∈ R1 are shape parameters.

Though δ can be different from 0 in the AGvM, we restrict our discussion of the AGvM distribution to the case in which
δ = 0. Themean direction of the AGvMdistribution is given byµ = arctan


b1
a1


,where a1 and b1 are the first Fourier cosine

and sine coefficients of (3.1), namely, E(cos θ) and E(sin θ), respectively. The parameter µ qualifies as being a location pa-
rameter because shifting the density, which has µ = 0, i.e. AGvM(0, δ, κ1, κ2), by µ leads to an AGvM(µ, δ, κ1, κ2) density.
The restricted model, in which µ = 0 and δ = 0, is particularly useful in the next section when we discuss regression with
AGvM errors. However, the mean direction of the AGvM distribution is non-zero for the choice of µ = δ = 0. Hence, a bias
correction is needed in order to achieve a zero conditional mean direction of errors. The density is asymmetric; however,
it reduces to being symmetric when κ2 = 0. One way to see that it is asymmetric is that it becomes an asymmetric normal
distribution when cos θ and sin θ are approximated for small θ using 1 −

θ2

2 and θ , respectively. Then, assuming δ = 0 for
simplicity, we get

κ1 cos(θ − µ) + κ2 sin 2(θ − µ) = κ1 cos(θ − µ) + 2κ2 cos(θ − µ) sin(θ − µ)

= cos(θ − µ) {κ1 + 2κ2 sin(θ − µ)} ≃


1 −

(θ − µ)2

2


{κ1 + 2κ2(θ − µ)}

= −
κ1

2


θ −


µ + 2

κ2

κ1

2

− κ2(θ − µ)3 + 2κ2


κ2

κ1
−

3
4
µ


. (3.2)

Here, the term −κ2(θ − µ)3 is shown to be responsible for the asymmetry in (3.2).
All of our computations in the example section are performed using the R function called ‘optim’, where the ‘Nelder–

Mead’ optimization technique is employed. Although the normalizing constant can bewritten in an infinite series form [11],
the numerical calculation using the R function had no difficulty in producing theMLE estimates of the parameters. For more
detailed study on the AGvMmodel, our readers can refer to the previous work of one of the authors found in [11].

3.3. The likelihood-based method using the AGvM circular error distribution

We establish the regression using (1.3) with the AGvM error distribution as

Θi = µθ + 2 arctan

a + b tan


φi − µφ

2


+ εi, i = 1, . . . , n,

where the εis are i.i.d. AGvMdistributed variableswith their location parameters equal to zero, i.e.µ = δ = 0. Having AGvM
errors, ourmodel estimates the conditional mean direction of θ givenΦ = φ with an added bias, which is equal to themean
direction of the errors. Therefore, in order to have zeromean direction errors, wewould shift the AGvM error distribution by
an amount equal to its mean direction, i.e. we would use ε′

= ε − µε rather than ε in our regression, where µε is the mean
direction of ε, whichwas estimated to be 0.4383, by using the rejectionmethodof simulation, as shown in the formula below:

µ̂ε = arctan


m
i=1

sin εj

m
i=1

cos εj

 ,

where m denotes the number of simulated values from AGvM(0, 0, 1, 1), where we used n = 2733. Uniqueness of arctan-
gent mapping modulo 2π follows as illustrated in [9, p. 13]. Our modified model becomes

Θ = µ(φ) + µε + ε − µε = µθ + µε + 2 arctan

a + b tan

1
2
(φ − µφ)


+ ε′

= νθ + 2 arctan

a + b tan

1
2
(φ − µφ)


+ ε′,
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Table 1
Symmetric data simulation.

Inverse circular predictors
Classic Inverse 3rd distance-based vM errors AGvM errors

OERCPB −0.5417 0.6146 −0.7356 −0.3970 −0.0734

Table 2
Asymmetric data simulation.

Inverse circular predictors
Classic Inverse 3rd distance-based vM errors AGvM errors

OERCPB 0.3595 1.7490 −0.3312 0.3924 0.0961

where νθ = µθ + µε , and ε′ has an AGvM(0, 0, 1, 1) distribution. The estimate µ̂θ of µθ will then be obtained by first
estimating νθ by ν̂θ and then setting µ̂θ = ν̂θ − µε . In this model, the number of parameters is 4, appearing as a, b, νθ , µφ .
We use the MLE method to fit the model. The log-likelihood function is

L(a, b, νθ , µφ) =

n
i=1

cos

θi − νθ − 2 arctan


a + b tan

1
2
(φ − µφ)


+

n
i=1

sin 2

θi − νθ − 2 arctan


a + b tan

1
2
(φ − µφ)


−

n
i=1

log
 2π

0
exp


cos


θi − νθ − 2 arctan


a + b tan

1
2
(φ − µφ)


× exp


sin 2


θi − νθ − 2 arctan


a + b tan

1
2
(φ − µφ)


dθ.

4. Examples

4.1. Comparison of the performances of the proposed prediction methods

In this section, we compare all five predictors presented in this paper using the relative circular prediction bias (RCPB)
criterion. Using the RCPB criterion, we need to average estimates of prediction errors for each predictor, and use the average,
called the overall estimated circular prediction bias (OERCPB), as a criterion for comparing different predictors. The OERCPB
when using a simulation is given by

1
n

n
i=1


1
N

N
j=1

sin(φi − φ̂ij)

sinφi

 ,

where φ̂ij is the estimate of φi based on the jth simulated group of data, using the cross-validation method, and N and n are
the number of simulations and the size of the sample, respectively.

4.2. Simulations

We present two simulation examples, one for symmetric data and the other for asymmetric data, where in both
simulations, N and n are 500 and 40, respectively. For each of 500 samples, we simulated 40 observations from vM(1.1, 2)
for a symmetric data set, and 40 observations from AGvM(1, 2, 1.3, 2.1) for an asymmetric data set, conditionally on 40
randomly generated independent angles from Uniform(0, 2π ]. The results are shown in Tables 1 and 2. The discussion of
the results is found in the next section.

4.3. Real data sets

In this subsection,we used two real data sets,which are the noisy scrub bird nest data [6] and thewind direction data [10].
The bird’s nest data contain two circular variables, namely, 56 pairs of the orientation of each bird’s nest and the orientation
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Table 3
Bird’s nest data.

Inverse circular predictors
Classic Inverse 3rd distance-based vM errors AGvM errors

OERCPB −0.5611 −0.8052 −0.1469 0.9854 0.8362

Table 4
Wind direction data.

Inverse circular predictors
Classic Inverse 3rd distance-based vM errors AGvM errors

OERCPB −0.9706 −0.7256 −0.7788 −2.3622 −0.4710

of the nearby creek flow. Our aim is to inversely predict the orientation of creek flow after observing an orientation of a bird
nest. On the other hand, the wind direction data contain 21 pairs of two wind directions, at 6 am and 12 pm in a Milwaukee
observatory. Suppose one day the wind direction at 6 am was not recorded; our aim is to inversely predict the 6 am wind
direction of the same day after observing that of the wind at 12 pm. Using the formula of OERCPB, we only need to have
N = 1, i.e. it is given by

1
n

n
i=1


sin(φi − φ̂i)

sinφi


,

where all the other cases are the same as in the simulation formula. The results are shown in Tables 3 and 4. The discussion
of the results is found in the following section.

5. Conclusion and recommendation

From the simulation in the last section, we conclude that the likelihood-based predictor using the AGvM error performs
better than the other four predictors for asymmetric data and even for symmetric data. Using the real data examples, the
3rd distance-based predictor performed better that the other four predictors for the bird’s nest data [6], which are almost
symmetric, while the likelihood-based predictor using the AGvM errors performed better than the other four predictors for
the wind direction data [6], which are asymmetric. Overall, on the basis of the RCPB criterion, the simulations indicate that
the likelihood-based predictor using the AGvM errors performs better than the other four predictors for asymmetric data,
while either the 3rd distance-based predictor or the likelihood-based predictor using the AGvM errors performs better than
the other three predictors for symmetric data.

We emphasize that the likelihood method using the AGvM errors has a particular merit in that it can be flexible enough
to accommodate errors in not only asymmetric but also bimodal shapes. From the example section, it was also evident that
the likelihood method using the AGvM errors performs better than the new distance-based methods for asymmetric data
sets.

Acknowledgments

We thank the Editor for kindly extending the time for resubmission and the referee for valuable and constructive
comments and criticisms, which helped us to modify/revise our paper to achieve a better presentation.

Appendix

Proof of Theorem 1. The limiting distribution of ζ = (a, b) is obtained using an exact first-order Taylor series expansion
of the first-order condition, for some ζ+ between ζ̂ and ζ0 [3]:

∂Qn(ζ )

ζ
=

1
n

n
i=1

∂mi(ζ )

∂ζ
sin{θi − mi(ζ )}

=
1
n

n
i=1

∂mi(ζ )

∂ζ
sin{θi − mi(ζ )}|ζ0 −

1
n

n
i=1

∂mi(ζ )

∂ζ

∂mi(ζ )

∂ζ ′
cos{θi − mi(ζ )}|ζ+(ζ̂ − ζ0) = 0.

√
n(ζ̂ − ζ0) =


1
n

n
i=1

∂mi

∂ζ

∂mi

∂ζ ′
cos(θi − mi)|ζ+

−1

×
1

√
n

n
i=1

∂mi

∂ζ
sin(θi − mi)|ζ0 .
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We apply the multivariate CLT for independent random vectors [14] in the following, to obtain an asymptotic multivariate
normality of 1

√
n

n
i=1

∂mi
∂ζ

sin(θi − mi)|ζ0 , whose proof is shown in the following section. The multivariate CLT, in Theorem
2 of [14], follows later. Then,

1
√
n

n
i=1

∂mi

∂ζ
sin(θi − mi)|ζ0

d
−→N(0, B0), where

B0 =
∂mi

∂ζ

∂mi

∂ζ ′
var(sin(θi − mi))|ζ0 =

∂mi

∂ζ

∂mi

∂ζ ′
E(sin2(θi − mi))|ζ0 ,

and plim
1
n

n
i=1

∂mi

∂ζ

∂mi

∂ζ ′
cos(θi − mi)|ζ+ = lim

1
n

n
i=1

∂mi

∂ζ

∂mi

∂ζ ′
E{cos(θi − mi)}|ζ+

=
∂mi

∂ζ

∂mi

∂ζ ′
E{cos(θi − mi)}|ζ+ = A0.

Now, using Slutsky’s theorem (or the Product Limit Normal Rule) we get
√
n(ζ̂ − ζ0)

d
−→N(0, A−1

0 B0A−1
0 ).

Then, the asymptotic distributions are given by

ζ̂
a
∼N(ζ0, n−1A−1

0 B0A−1
0 ). �

In the following, we prove that the ∂mi
∂ζ

sin(θi − mi)|ζ0s have an asymptotic multivariate normal distribution using the
aforementioned Theorem 2. A proof of Theorem 2 is found on p. 285 of [14].

Considering independent 2 × 1 vectors ∂mi
∂ζ

sin(θi − mi)|ζ0 , we have that

P
∂mi

∂a
sin(θi − mi)|ζ0

 ≤ C,

∂mi

∂b
sin(θi − mi)|ζ0

 ≤ C


= 1, ∀i ∈ {1, . . . , n}, (A.1)

which is established below. For φi ≠ π , 3π ,

0 <
∂mi

∂a


ζ0

=
2

1 +


a + b tan


φi−µφ

2

2 < 2

0 ≤
∂mi

∂b


ζ0

=

2 tan


φi−µφ

2


1 +


a + b tan


φi−µφ

2

2 < ∞.

This means that there exists a finite real number 2 ≤ C < ∞ such that the condition (A.1) is satisfied. Next, we have
E ∂mi

∂ζ
sin(θi − mi)|ζ0 = 0, since E sin(θ − m) = 0 for all circular variables with m denoting their mean direction, and

cov ∂mi
∂ζ

sin(θi − mi)|ζ0 =
∂mi
∂ζ

∂mi
∂ζ ′ E sin2(θi − mi)|ζ0 = κi, where 1

n

n
i=1 κi = κ is a positive definite {2 × 2} matrix. Thus,

following Theorem 2, we get

1
√
n

n
i=1

∂mi

∂ζ
sin(θi − mi)|ζ0

d
−→N


(0),

∂mi

∂ζ

∂mi

∂ζ ′
E{sin2(θi − mi)}|ζ0


.

Theorem A.1 (Multivariate CLT for Independent Vectors). Let {Xi} be a sequence of independent {k × 1} random vectors such
that P(|Xi1| ≤ C, |Xi2| ≤ C, . . . , |Xik| ≤ C) = 1 for all i, where C ∈ (0, ∞). Let E(Xi) = µi, cov(Xi) = Ψi, and suppose that
limn→∞

1
n

n
i=1 Ψi = Ψ is a positive definite {k × k} matrix. Then

1
n

n
i=1

(Xi − µi) → N(0k, Ψ ) in distribution,

where 0k represents the k × 1 0 vector.

Proof. See [14, pp. 274–276]. �
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