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ABSTRACT A new model combining parametric and semi-parametric approaches and following
the lines of a semi-Markov model is developed for multi-stage processes. A Bivariate sojourn
time distribution derived from the bivariate exponential distribution of Marshall & Olkin (1967)
is adopted. The results compare favourably with the usual semi-parametric approaches that have
been in use. Our approach also has several advantages over the models in use including its
amenability to statistical inference. For example, the tests for symmetry and also for
independence of the marginals of the sojourn time distributions, which were not available earlier,
can now be conveniently derived and are enhanced in elegant forms. A unified Goodness-of-Fit
test procedure for our proposed model is also presented. An application to the human resource
planning involving real-life data from University of Nigeria is given.
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Introduction and Motivations

Population models of multi-grade systems have been discussed by a number of authors and

have also been applied in a number of ways. The grades normally correspond to recogni-

zed divisions within the system like grades of staff in a manpower system, level of com-

mitment to a job, etc, as shown in McClean (1980), Gani (1963) and the references therein.

References on their applications to biological systems, pharmacokinetic processes,

epidemiology, etc may be found in McClean (1978). However, it seems that in all these

areas, no work has so far been done using a multivariate modelling approach.

This paper is aimed at unifying the existing models by employing a joint distribution

function in estimating the sojourn time of individuals in a multi-stage process. With this

model, it will now be possible to evaluate the conditional probability of sojourn time in

any state given the sojourn time in the previous state. This model also enhances the use

of statistical tests such as tests for independence and for symmetry of the sojourn times.

The model assumes naturally that the sojourn times in different states are dependent on

their immediate past states. Estimation of sojourn times for event history can throw
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light on how the process works and help in planning for the future, e.g. as of the sojourn

times in different stages of a disease like cancer or AIDS.

Research has shown that for a chronic disease like breast cancer, women under the age

of 50 years have a shorter sojourn time than women aged between 50–74 years (Tabar

et al., 1995). Some methods for the estimation of sojourn time using a specific sojourn

time distribution can be found in Day & Walter (1984), and Paci & Duffy (1991).

Chen & Porok (1983) used a non-parametric method and split time into discrete inter-

vals. The use of Markov models for the natural history of a disease process from disease

free state to the preclinical-screen detectable phase (PCDC) and then to the clinical phase

can be seen in Duffy et al. (1995) and Chen et al. (2000).

Many authors have proposed the use of multivariate exponential distributions to model

lifetimes of components of a multivariate system, see, for example, Marshall & Olkin

(1967) (MO henceforth), Block & Savits (1981), Basu (1988). Several tests of the

parameters of these multivariate models have also been developed in SenGupta (1995)

and these have enhanced the usefulness of these models in statistical inference.

Here, based on both practical and theoretical justifications, we enhance the multivariate

exponential model of MO to model multi-stage processes in general and data from

human resource domain in particular. Some of the justifications for this choice are as

follows. First, exponential distribution is a commonly adopted model for the promotional

time in each category. We further believe that promotions are usually based on merit and

efficiency rather than on the duration of service. This implies that the lack of memory for

promotional time is only reasonable to enforce and this is a characterizing property of

our chosen marginal distributions, i.e. the exponential distributions. Second, promotions

for each category are usually (save out-of-turn merit promotions) given after the manda-

tory eligibility period at certain intervals of time at a pre-fixed date, say January 1. This

gives positive probability of exactly equal lengths of time for successive or several pro-

motions. The chosen model encompasses such situations since it gives P (X ¼ Y ) . 0

for the two marginal random variables X and Y. This is not true for the other familiar

generalizations of the univariate exponential distribution. Third, as pointed out by a

referee, the existences of candidates who are high-fliers is only to be expected. In

academic cases, the proportion of such cases may be quite high implying higher

probability of promotion at the earlier years rather than at some distant year – again

a property possessed by the exponential distribution. Finally, we note that usually the

professional characteristics of an individual tends to persist and, as driving forces,

should yield similar results for the transition of the individual from one category to

another and to the next, etc – i.e. incumbents with early (late) promotions at the

initial categories are expected to receive early (late) promotions at the subsequent cat-

egories too. This fact establishes that the correlation of promotional times for different

categories should be taken to be positive. Here again, our chosen model guarantees this

requirement of the relevant correlation.

Several semi-Markov models for human resource planning are available. These models

were developed using different approaches and applied to different aspects of human

resource planning. The continuous time semi-Markov modelling approach may be

found in Mehlmann (1979), Bartholomew (1982) and McClean (1993). They defined

the force of transition or hazard rate from one grade to another given the duration in

the first grade and then used it to derive the probability that an entry into a grade will

move to the next grade given the holding time in the earlier grade. They also used the

method of maximum likelihood estimate to obtain the probability of eventual transition

from one grade to the other. Mehlmann (1979), McClean (1980) and Bartholomew et al.

(1991) discussed the other version of a semi-Markov model as a renewal type equation.
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Their approach defines the probability of an individual being in a state at time t given that

the individual was in the earlier state at time zero. They used it to derive a renewal type

equation for predicting future manpower structure. There have also been generalizations

to non-homogeneous semi-Markov models in Vassiliou & Papadopoulou. (1992) and

McClean et al. (1998). Some of these models assume time homogeneity while the non-

homogeneous ones divide the calendar time into a succession of time windows. The

approach in this paper does not require those assumptions since it is based on observed

sojourn times. However, we recall the result from MO that an underlying multivariate

Poisson process yields their multivariate exponential distribution. Hence the conditions

driving such a process are being implicitly assumed here.

The preliminary notions for the parametric and semi-parametric models are derived in

the next section. The section after discusses the models and estimation of parameters

including some statistical tests, such as the test of goodness-of-fit for a sparsely distributed

contingency table, test for independence and the symmetry test for the marginal of the

Bivariate exponential distribution. In the fourth section, the model and methodologies

developed here are applied to the real-life data on promotion times for faculty members

in University of Nigeria. The fifth section contains the suggestions for further generali-

zations and concluding remarks.

Preliminary Notions

Consider a system with grades S1, . . . , Sm, where the length of stay in Si conditional on

eventually making the transition to Sj, has a probability density function (p.d.f.) fij(t),

with distribution function Fij(t) and survivor function

Gij(t) ¼ 1 � Fij(t) ¼

ð1
t

fij(x)dx; i = j; i, j ¼ 1, . . . ,m: (1)

(In many applications, e.g. in promotional data where demotion is ruled out, we will have

i , j.) The corresponding p.d.f. of time spent in Si is fi(t) with distribution function Fi(t)

and survivor function

Gi(t) ¼ 1 � Fi(t) ¼

ð1
t

fi(x)dx (2)

Consider now the case of grouped data, as in a contingency table, with 2-way classifica-

tion first. Let the random variable Xl denote the sojourn time in Sl, l ¼ i,j. Let there be R

and K ‘time-intervals’, defining the classes in the contingency table, for Xi and Xj respect-

ively. The data may then be visualized as a R � K contingency table of the two factors Si
and Sj at levels R and K respectively. This table yields the RK ‘cells’ for the joint dis-

tribution of Xi and Xj, the ijth cell corresponding to the joint event that Xi and Xj are

in the time-intervals [tr
(i), trþ1

(i) ) and [tk
( j ), tkþ1

( j ) ) respectively, r ¼ 1, . . . ,R, k ¼ 1, . . . ,K,

and R and K, i, j ¼ 1, . . . ,m: Then,

p½xj � t
(j)
k jxi � t(i)r � ¼ p½xi � t(i)r , xj � t

(j)
k �=p½xi � t(i)r �

Similarly,

p½xj � t
(j)
k jxi � t(i)r � ¼ p½xi � t(i)r , xj � t

(j)
k �=p½xi � t(i)r �
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But

p½xi � t(i)r , xj � t
(j)
k � ¼ 1 � p½xi � t(i)r � � p½xj � t

(j)
k � þ p½xi � t(i)r , xj � t

(j)
k �

[ p½xj � t
(j)
k jxi � t(i)r � ¼ {1 � p½xi � t(i)r � � p½xj � t

(j)
k �

þ p½xi � t(i)r ,xj � t
(j)
k �}=p½xi � t(i)r � (3)

Let the joint p.d.f. of the length of time spent in Si and Sj be given by hi, j(t
(i)
r ,t

(j)
k ) with

distribution function Hi, j(t
(i)
r , t

j
k) and survivor function

Gi, j(t
(i)
r ,t

(j)
k ) ¼ 1 � Hi, j(t

(i)
r , t

(j)
k ) ¼

ð1
t(i)r

ð1
t
(j)

k

hi, j(xi,xj)dxidxj (4)

Define pi, j(t
(i)
r ,t

(j)
k ) to be the probability that an individual will spend less than or equal to t(i)r

time in Si and less than or equal to t
(j)
k time in Sj. Then

pi, j(t
(i)
r ,t

(j)
k ) ¼ p½xi � t(i)r , xj � t

(j)
k � (5)

It can easily be shown that equation (5) is equivalent to

¼ 1 � p½xi � t(i)r � � p½xj � t
(j)
k � þ p½xi � t(i)r ,xj � t

(j)
k � (6)

Then, the cell probabilities can be expressed as follows

p(t(i)r � Xi � t(i)rþ1, t
(j)
k � Xj � t

(j)
kþ1)

¼ p½xi � t(i)rþ1, xj � t
(j)
kþ1� � p½xi � t(i)r , xj � t

(j)
kþ1� � p½xi � t(i)rþ1, xj � t

(j)
k �

þ p½xi � t(i)r , xj � t
(j)
k � (7)

; F(t(i)rþ1, t
(j)
kþ1) � F(t(i)r , t

(j)
kþ1) � F(t(i)rþ1, t

(j)
k ) þ F(t(i)r , t

(j)
k ) (8)

where F(a,b) ; p(Xi � a,X2 � b) is the cumulative distribution and can easily be obtained

from equation (6).

The Models

We consider below both the parametric and the semi-parametric basic models.

(1) The Parametric Model

Given the states of a multi-grade process, the probability that an individual will spend

less than or equal to t(i)r time in Si and less than or equal to t
(j)
k time in Sj gives such a

bivariate distribution as

pi, j(t
(i)
r ,t

(j)
k ) ¼

ðt(i)r
0

ðt(j)
k

0

hi, j(xi, xj)dxidxj (9)

This can easily be evaluated using equations (5) and (6).

(2) The Semi-parametric Model

There is a probability that an individual spends t(i)r time in Si given such an individual

eventually moves to Sj with a certain force of transition and then spends time t
(j)
k in Sj.
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We assume that the time spent in Sj is independent of the probability dictating the

force of transition from Si to Sj but it possibly depends on the duration of the individ-

ual’s stay in Si. Then the probability of such an occurrence is given by,

p½xi � t(i)r � p½sj=xi� p½xj � t
(j)
k =xi,sj� ; p½xi � t(i)r , xj � t

( j)
k � p(sj=xi)

¼ zi, j(t
(i)
r )

ðt(i)r
0

ðt(j)
k

0

hi, j(xi, xj)dxidxj (10)

where p½sj=xi� ¼ zi, j(t
(i)
r ) is the force of transition from Si to Sj at duration t(i)r and its

Kaplan–Meier estimate (McClean, 1980) is given by

zi, j(t
(i)
r ) ¼

ni, j(t
(i)
r )

n::
and n:: ¼

X
r(i)

X
r(j)

ni, j(t
(i)
r )

where ni, j(t
(i)
r ) is the observed frequency in ijth cell at duration t(i)r .

We note that the force of transition depends on the conglomeration of candidates as a

totality and is normally evaluated from a priori information on this group whereas the

time spent by individuals in Sj may very well depend on the amount of time spent in Si
by those very individuals. Furthermore, if we have Markov transitions between grades

then the duration of stay in each grade is exponential and does not depend on the destina-

tion. If instead, we consider semi-Markov transitions, then we may include our knowledge

of the distribution of length of service before leaving, and also allow for the fact that the

length of time spent in a state may depend on the destination as well as the present grade of

the individual (McClean, 1976).

The Bivariate Exponential Distribution

Several bivariate exponential models may be considered given the basic assumption

of dependent sojourn times, and the usual practice of modelling univariate sojourn time

by an exponential distribution: it was just appropriate to adopt the model given by MO.

In justifying the use of this model, we considered that p(X1 ¼ X2) . 0. If X1 and X2

are sojourn times before promotion then it is much more likely since management

normally meet at a particular time of the year to take decisions on such matters. The

distribution function of this bivariate exponential model (henceforth, BVE) is then

given as follows:

P½X1 . x1,X2 . x2� ¼ exp (�l1x1 � l2x2 � l12 max (x1, x2)) (11)

The bivariate model proposed in MO has the marginal exponential distributions given by

exp (l‘ þ l12), ‘ ¼ 1,2

Let,

l ¼ l1 þ l2 þ l12 (12)
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Then,

E(Xl) ¼ l‘ þ l12,‘ ¼ 1,2 and

Cov(X1, X2) ¼ l12½l(l1 þ l12)(l2 þ l12)��1 . 0

Adopting the method of moments to estimate the parameters of equation (11), we have the

following three equations,

x1 ¼ l‘ þ l12, ‘ ¼ 1,2

x1x2 ; E(x1x2) ¼ l�1{(l1 þ l12)�1 þ (l2 þ l12)�1} (13)

where we are using the notation ÊY ¼ Y ; EY to denote the sample average of

yi, i ¼ 1, . . . , n, which estimates the corresponding population moment as is done in the

method of moments.

Then it follows that

l̂ ¼ (�x1 þ �x2)=x1x2; l̂12 ¼ �x�1
1 þ �x�1

2 � l̂ ; l̂1 ¼ l̂ þ �x�1
2 ; l̂2 ¼ l̂ þ �x�1

1 (14)

Some Statistical Tests: Goodness-of-Fit Test

To determine the adequacy of the BVE distribution, the power divergence Goodness-of-

Fit test of Cressie & Read (1984) can be used.

The test statistic is given by:

t2
h ¼

2

h(hþ 1)

Xm
i

Xm
j

nij
nij

Eij

� �h

�1

� �
, �1 , h , 1 (15)

where nij is the observed frequency, Eij is the expected frequency in the ijth cell. The

expected frequency Eij ¼ n : :Pij and
Q

ij is the estimated probability of an individual

who spends t(i)r time in Si and t
(j)
k time in Sj, r ¼ 1, . . . ,R and k ¼ 1, . . . ,K.

i.e. Pij ¼ p(t(i)r � Xi � t(i)rþ1, t
(j)
k � Xj � t

(j)
kþ1)

where P̂ij is obtained from equation (8) by using the estimated l̂1, l̂2 and l̂12 and then

replacing Eij by Êij ¼ n : : P̂ij. For this test, t2
h is equivalent to x2 when h ¼ 1. They

recommended the statistic with h ¼ 2/3, which they found less susceptible than x2 to

the effects of sparsely distributed data.

Test for Independence

The test for independence of X1 and X2 is conducted using the test statistic:

x2 ¼
X
ij

(nij � Êij)
2

Êij

� x2
n�y (16)

where y is the number of estimated parameters. We do this under both the parametric and

the semi-parametric scenarios.
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(a) The Parametric BVE Approach

The probabilities
Q̂

i: and
Q̂

:j of the exponential marginal distributions for the various

time intervals under independence were first computed. These estimated probabilities

from the marginal distributions are given respectively as P̂i: ¼
Ð
t(i)r
l̂1e

�l̂1x1 dx1 and

P̂:j ¼
Ð
t
(j)

k

l̂2e
�l̂2x2 dx2 for the respective time intervals.

Then the expected frequencies were obtained as Êij ¼ n : : P̂i:P̂:j.

(b) The Non-parametric Contingency Table Approach.

The usual non-parametric test is implemented with the expected frequencies given by

Eij ¼ ni:n:j=n : : , where ni: and n:j are the marginal totals in the ith row and jth column.

Test for Symmetry of the Marginal (under Dependency)

The test for symmetry could be done by first using the method of moments on equation

(11) to obtain the estimates for the common (under symmetry) parameter l1 ¼ l2 ¼ l�

and l12, where,

l̂ ¼ x1x2
�1=(�x�1

1 þ �x�1
2 ); l̂12 ¼ (�x�1

1 þ �x�1
2 ) � l̂ ;

l� ¼ l̂ � {(�x�1
1 þ �x�1

2 )2=2(�x�1
1 þ �x�1

2 )} (17)

Furthermore, Pij for the given data was obtained by using the method of evaluating ijth

cell probabilities as in equations (7) and (8) and using the estimates l̂1 ¼ l̂2 ¼ l̂ � and l̂12.

Finally, the expected frequency is Êij ¼ n : : P̂ij.

The Trivariate Exponential Distribution

The BVE model extends easily to the multivariate situation. In particular, we illustrate this for

a three-stage sojourn time with the survival function for the trivariate distribution given as:

P½X1 . x1,X2 . x2,X3 . x3� ¼ exp (�l1x1 � l2x2 � l12 max (x1, x2)

� l13 max (x1, x3) � l23 max (x2, x3)

� l123 max (x1, x2, x3)

li,lij,l123 � 0; i = j; i, j ¼ 1, 2, 3:

(18)

We note that all the lower dimensional marginals will follow the exponential distribution

and, in particular, the two-dimensional marginals of the above distribution are BVEs and

the one-dimensional marginals are exponentials.

Estimation of Parameters

Let, l ¼ l1 þ l2 þ l3 þ l12 þ l13 þ l23 þ l123.

We shall adopt the method of moments in estimating the parameters of equation (18).

To obtain a more compact notation for this distribution, let S denote the set of vectors

(s1, s2, s3) where each si ¼ 0 or 1 but (s1, s2, s3) = (000). To do this, it is convenient to

replace the parameters ls by the new parameters gs, s [ S, defined by gs ¼
P

rs=0 lr,

i.e. gs is the sum of all ls such that some coordinates are 1 in both r and s. For

example, with n ¼ 3, g100 is the sum over all ls where s1 equals 1, then,

g100 ¼ l111 þ l110 þ l101 þ l100 ; l123 þ l12 þ l13 þ l1

So, l ¼ g111.
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It then follows that,

g100, g010, g001, g110, g101, g011, g111ð Þ ¼

1 0 0 1 1 0 1

0 1 0 1 0 1 1

0 0 1 0 1 1 1

1 1 0 1 1 1 1

1 0 1 1 1 1 1

0 1 1 1 1 1 1

1 1 1 1 1 1 1

2
666666664

3
777777775

l1

l2

l3

l12

l13

l23

l123

2
666666664

3
777777775

i.e. g ¼ Ml0, say.

Since M is a non-singular matrix, we have,

l
�

0 ¼ M�1 g
�

(19)

We recall that the moment generating function of a trivariate exponential distribution

function is given by

F(s1, s2, s3) ¼
s1s2s3

g111 þ s1 þ s2 þ s3

�
(g110 þ s1 þ s2)�1{(g100 þ s1)�1

þ (g010 þ s2)�1} þ (g101 þ s1 þ s3)�1{(g100 þ s1)�1 þ (g001 þ s3)�1}

þ (g011 þ s2 þ s3)�1{(g010 þ s2)�1 þ (g001 þ s3)�1}
�

(20)

We obtain seven equations to estimate the seven parameters by the method of moments.

The first three sets of equation (21) are obtained from the univariate exponential margin-

als, while the next three are obtained from the BVE marginals and given in equations (22)

and (23). The seventh equation, equation (24), is obtained from the full trivariate exponen-

tial distribution.

�x1 ; EX1 ¼
1

g100

; �x2 ; EX2 ¼
1

g010

; �x3 ; EX3 ¼
1

g001

(21)

x1x2 ; EX1X2 ¼
@2F

@s1@s2

����
s1¼s2¼0

¼
1

g111

1

g100

þ
1

g010

� �
(22)

Similarly,

x1x3 ; EX1X3 ¼
1

g111

1

g100

þ
1

g001

� �
; x2x3 ; EX2X3 ¼

1

g111

1

g010

þ
1

g001

� �
(23)

The calculation of the third moment is somewhat tedious. After some computations and

simplifications we arrive at

x1x2x3 ; EX1X2X3 ¼
@3F

@s1@s2@s3

����
s1¼s2¼s3¼0

¼
1

g111

1

g110

1

g100

þ
1

g010

� ��

þ
1

g101

1

g100

þ
1

g001

� �
þ

1

g011

1

g010

þ
1

g001

� �	
(24)
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where we are using the notation EY ; �y ¼ ÊY to denote the sample average of

yi, i ¼ 1, . . . , n, as is done in the method of moments.

Then it follows that solving these seven equations simultaneously will yield the estimate

of g say ĝ. Then, from equation (19), we easily get the estimates of the parameters, l̂ .

Finally the method of moments guarantees the optimality properties of consistency and

asymptotic joint normality of these estimators.

Example

The models and methods of analysis developed above are now illustrated using the data

collected from the personnel department of the University of Nigeria, Nsukka during

1970–1995. Complete data on 354 staff who have passed through the promotion process

from Lecturer to Senior Lecturer and then to Associate Professor were taken. We have

considered the actual waiting time in years, beyond the mandatory eligibility period, until

notification for promotion is given. We define the random variable Xi to be the sojourn

time in grade Si,i ¼ 1,2, where 1 and 2 refer to Lecturer and Senior Lecturer respectively.

The set of data was grouped in Table 1 to enable us to get the consolidated picture of the

joint distribution. In addition, Bartholomew et al. (1991) have recommended grouping of

even relatively small sets of such data.

Results and Discussions

In our quest for fitting a model to our data, we considered several bivariate exponential

distributions. Based on the assumptions for their use, we decided on the BVE distribution

that readily gave a good fit to the set of data. The striking feature in the data is the equality

of both variables at several points, which unequivocally advocates the choice of the

above model. The basic assumptions for the use of that model were also found to be sat-

isfactory. The values of the estimated parameters of the distribution were obtained as

l̂1 ¼ 0:54;l̂2 ¼ 0:62,l̂12 ¼ 0:05. Figures 1(a) and (b) display the plots (using the values

of the estimated parameters) of the cumulative and survivor distributions of the distri-

bution respectively. A summary table of the power divergence test to determine how

good the model fits the data is given in Table 2. The values show that the test is not

significant at 5% levels and 21 d.f., the corresponding cut-off value being 32.67. We

thus adopt this model for our data.

Adopting this model, we conducted a test for independence of X1 and X2. The parametric

test for the null hypothesis H0: l12 ¼ 0 gave thex2 value of 45.33 with d.f. ¼ 22. See Table 3

for the estimated frequencies and marginal probabilities used in this test. A similar test was

done using the non-parametric contingency table approach and gave the x2 value of 29.78

Table 1. Observed frequencies for the groups

X2

X1 0 ! 1 1 ! 2 2 ! 3 3 ! 4 �4

0 ! 1 64 38 20 11 8

1 ! 2 54 28 16 3 14

2 ! 3 20 10 10 5 2

3 ! 4 13 3 3 2 4

�4 6 4 8 6 2
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Figure 1. (a) Fitted BVE distribution function of Marshall & Olkin; (b) Survivor distribution

function of the fitted model

Table 2. Summary result of test of Goodness-

of-Fit using power divergence test

l Chi-square values

1 28.62

2/3 28.69

0.1 28.52

20.5 30.62
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with d.f. ¼ 16. The observed frequencies are given in Table 4. Both these tests are signifi-

cant at the 5% level. Thus we conclude that X1 and X2 are not independent.

The test for symmetry was also done adopting the BVE distribution. Under the hypo-

thesis of symmetry H0: l1 ¼ l2, the estimates of the parameters were l̂1 ¼ l̂2 ¼ 0:58

and l̂12 ¼ 0:05. These values were used for evaluating the required probabilities. The

x2 value was 46.31, which implied significance at the 5% level of significance. We con-

clude that the model is not symmetric. See Table 5 for the estimated frequencies under

symmetry. Tables 6 and 7 show the expected frequencies for the parametric and semi-

parametric models respectively. These were obtained from the cell probabilities calculated

Table 3. Estimated frequencies using the exponential marginals under independence

X1

X2

0 ! 1 1 ! 2 2 ! 3 3 ! 4 �4 P̂i:

0 ! 1 74.70 41.06 22.77 12.62 17.25 0.476

1 ! 2 39.01 21.45 11.89 6.59 9.01 0.249

2 ! 3 19.94 10.96 6.08 3.37 4.60 0.127

3 ! 4 10.17 5.59 3.10 1.72 2.35 0.065

�4 13.16 7.23 4.01 2.22 3.04 0.084

P̂:j 0.444 0.244 0.135 0.075 0.102

Table 4. Estimated frequencies using the non-parametric approach under independence

X1

X2

0 ! 1 1 ! 2 2 ! 3 3 ! 4 �4 ni.

0 ! 1 62.53 33.06 22.70 10.75 11.95 141

1 ! 2 45.81 26.96 18.52 8.77 9.78 115

2 ! 3 20.84 11.02 7.56 3.58 3.98 47

3 ! 4 11.09 5.86 4.03 1.91 2.12 25

�4 11.53 6.06 4.19 1.98 2.28 26

n.j 157 83 57 27 30 354

Table 5. Estimated frequencies under symmetry of the BVE distribution

X1

X2

0 ! 1 1 ! 2 2 ! 3 3 ! 4 �4

0 ! 1 78.73 36.67 21.42 12.39 16.85

1 ! 2 52.71 31.68 15.40 8.35 9.84

2 ! 3 14.05 9.17 6.05 2.55 2.97

3 ! 4 10.96 6.17 3.46 2.19 1.02

�4 9.13 7.54 4.21 2.34 2.97
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as described earlier. With the satisfactory result obtained from these tests and tables, it is

then obvious that this model has been an appropriate choice.

Conclusions

By determining the conditional probabilities of length of stay in the grades, one can easily

assess the level of dependency of the length of stay in the two grades and on the individual

promotion prospects on entry to a grade. The above model can also be used in predicting

sojourn times in different grades – this work is ongoing.

With the joint distribution function, one can also determine the expected times spent in

each part of the system given the grade of entry. We may similarly use our above formu-

lation to investigate the movement pattern prevalent in the system. Yet another important

application of this approach is that we can obtain the probability of an individual’s sojourn

time in the present state given the sojourn time in the last state. Further, the extension of

this approach to more than three grades may be considered.

Nonetheless, there are some limitations in this study. For example, this model cannot be

applied if the marginals do not follow exponential distribution. We note that fitting expo-

nential distribution to length of service has been criticised in Bartholomew et al. (1991).

They suggested the use of lognormal since it always has a peaked distribution. This limit-

ation can also be avoided by simply invoking other multivariate exponential or gamma

distributions in our general approach. However, for promotional data the length of stay

in a grade is usually shorter than the length of service. We observed that exponential

distribution did give good fit to each marginal modelling this short stay in a grade

before moving to the next higher grade and the test for adequacy of fit of the model

confirmed that the BVE model is quite a reasonable choice.

Table 7. Estimated frequencies for the semi-parametric model

X1

X2

0 ! 1 1 ! 2 2 ! 3 3 ! 4 �4

0 ! 1 78.59 36.82 21.42 12.57 7.08

1 ! 2 52.71 24.74 11.65 6.20 7.05

2 ! 3 18.97 11.61 7.40 3.47 3.96

3 ! 4 9.17 6.20 3.47 2.19 2.19

�4 8.28 7.08 3.93 2.23 2.83

Table 6. Estimated frequencies for the parametric model

X1

X2

0 ! 1 1 ! 2 2 ! 3 3 ! 4 �4

0 ! 1 81.49 36.92 18.87 12.78 6.8

1 ! 2 54.52 24.50 11.01 2.51 8.92

2 ! 3 22.41 12.07 7.29 3.29 3.36

3 ! 4 12.45 6.66 3.61 2.16 1.98

�4 5.03 8.07 4.32 2.36 2.69
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