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On optimal tests for isotropy against the
symmetric wrapped stable± circular uniform
mixture family
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Indian Statistical Institute, Calcutta 700 035, India and 2Department of Statistics,
University of Kalyani, West Bengal 741 235, India

abstract The family of Symmetric Wrapped Stable (SWS) distributions can be widely
used for modelling circular data. Mixtures of Circular Uniform (CU) with the former also
have applications as a larger family of circular distributions to incorporate possible outliers.
Restricting ourselves to such a mixture, we derive the locally most powerful invariant
(LMPI) test for the hypothesis of isotropy or randomness of directionsÐ expressed in terms
of the null value of the mixing proportion, p, in the model. Global monotonicity of the
power function of the test is established. The test is also consistent. Power values of the
test for some selected parameter combinations, obtained through simulation reveal quite
encouraging performances even for moderate sample sizes. The P3 approach (SenGupta,
1991; Pal & SenGupta, 2000) for unknown p and q and the non-regular case of unknown
a, the index parameter, are also discussed. A real-life example is presented to illustrate the
inadequacy of the circular normal distribution as a circular model. This example is also
used to demonstrate the applications of the LMPI test, optimal P3 test and a Davies-
motivated test (Davies, 1977, 1987). Finally, a goodness-of-® t test performed on the data
establishes the plausibility of the above SWS-CU mixture model for real-life problems
encountered in practical situations.

1 Introduction

Symmetric Wrapped Stable (SWS) distributions (Mardia, 1972: 57) constitute a
very large family of circular unimodal symmetric distributions useful in the analysis
of directional data. The Circular Normal (CN) distribution, although extensively
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used and probably the only well-known distribution to practitioners for modelling
circular data is often not appropriate for modelling real-life data. A `suitably chosen’
member of the SWS family turns out to give a better ® t than a CN distribution in
many such situations. Also, it has been observed by Mardia (1972: 66) that a CN
distribution can be well approximated by a SWS distribution for some speci® c
parameter values. Mixtures of SWS and Circular Uniform (CU) distributions are
also very useful and important for incorporating possible outliers in the data. By
taking such a mixture, the symmetry in the distribution is still retained, whereas
one has more latitude in the choice of an appropriate model because of the presence
of the additional parameter p, the mixing proportion.

Let f( h ; a, q , l 0) be the density function of an SWS distribution given by

f( h ; a, q , l 0) 5
1

2 p {1 + 2 +
`

n 5 1

q na
cos n( h 2 l 0)}.

Recall that a CN distribution with parameters j and l 0 has the p.d.f.

f*(h ; j , l 0) 5
1

2 p I0( j )
exp{ j cos(h 2 l 0)}

where j > 0 and I0(.) is the modi® ed Bessel function of order 0 with a purely
imaginary argument. Denote by g( h ; a, q , l 0 , p) the density function of a p-mixture
of SWS and CU distributions, with the parameters having their usual meanings.
The density g, when the contaminating distribution is CU, occurs naturally in
connection with experiments on the perception of a group of subjects (e.g. insects)
for movements towards a given direction. A goodness-of-® t test, based on Watson’s
U2-statistic incorporating a grouping correction introduced recently by Brown
(1994), on Jander’s ant data (Batschelet, 1981: 49) shows (SenGupta, 1998a) that
a suitable SWS distribution gives a better ® t than a CN distribution. It was also
observed that a SWS-CU mixture gave a still better ® t than a SWS distribution.
Contamination of CU by SWS arises in human perception tests, e.g. in traý c
engineering, where it is generally observed that most of the individuals tend to
move randomly, save a few who have a rather strong perception, after undergoing
some `brain-washing’ treatment. In this context a popular Indian game called
`Breaking the Pitcher’ is worth mentioning, where the player is ® rst shown the
position of the target, then blindfolded and rotated randomly on the initial position
and then asked to choose his/her own direction to break the pitcher with a stick.

The problem of testing isotropy is quite important and has received considerable
attention. Several tests for this purpose under diþ erent set-ups (types of alternatives)
exist in the literature. Beran (1968, 1969) considered this problem under a quite
general set-up and derived a general form of the LMPI test. He noted that Ajne’s
test, Watson’s U2 test, Rayleigh’s R2 test etc, are diþ erent particular cases of the
general test corresponding to diþ erent choices of the alternative hypotheses. Later,
Gine (1975) developed the theory of Sobolev tests as a large class of tests containing
many of the known ones. Chang (1991) and SenGupta & Chang (1996) have
considered locally most powerful (location) invariant (LMPI) tests (with unknown
l 0) for isotropy, in terms of the hypothesis involving q , extensively under the model
f and, the LMP test under g when p are known.

In this paper, we restrict ourselves to the density g and give a new derivation of
the LMPI test for the null hypothesis H0 : p 5 0 against H1 : p > 0, assuming q and
a to be known. This derivation, based on an expansion of the Most Powerful
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Invariant test statistic in powers of p (see, for example, Bhattacharyya & Johnson,
1969), is given in Section 2. It may be instructive to note the approach of Beran
(1968) in its general formulation through group spaces for any `arbitrary’ density,
together with the explicit derivation of ours, for the speci® c case of the general
family of SWS-CU mixtures. Asymptotic distributions of the test statistic, both
under the null and the alternative hypotheses, are also presented. Section 3 provides
the global monotonicity of the power function and consistency of the test. Exact
cut-oþ points and power values for some selected parameter combinations, obtained
through extensive simulations, are presented in Section 4. The power computation
reveals quite encouraging performances for reasonable parameter combinations
even with moderate sample sizes. For the general situation when q is also unknown,
we show in Section 5 that the location invariant P3-test (SenGupta, 1991; Pal &
SenGupta, 2000) reduces to Rayleigh’s R2-test and is L-optimal. This establishes
the optimality robustness of the R2-test in CN distribution against the extended
SWS-CU general mixture family. The `non-regular’ situation when q is known and
a is unknown is treated in Section 6. An example, and the associated summary
results, in support of our proposed model are presented in Section 7. This example
is also used to demonstrate the applications of the optimal tests obtained in
Sections 2, 5 and 6. A large part of the computations of this section has been
performed using the statistical package DDSTAP developed by the ® rst author
(SenGupta, 1998b). Finally, a rose diagram, also obtained by using DDSTAP, is
displayed at the end of the paper.

2 The LMPI test

The model under consideration is

g( h ; a, q , l 0 , p) 5 pf( h ; a, q , l 0) + q(2p ) 2 1 (1)

where f( h ; a, q , l 0) is as given in Section 1. Here 0 < h < 2p ; 0 < l 0< 2 p , 0 < q < 1,
0< a < 2, 0 < p < 1, q 5 1 2 p; q and a are known while l 0 and p are unknown; l 0

being the location parameter. It may be remarked in this context that, although q

and a are assumed to be known, in practice either or both of them may be unknown.
These aspects are discussed in subsequent sections. Suppose ( h 1 , h 2, . . . , h m) is
a random sample of size m( > 2) from a population with density given by (1). We
want to test the hypothesis H0 : p 5 0 against H1 : p > 0. Denote by R2

n the quantity
( R m

j 5 1 cos n h j)
2 + ( R m

j 5 1 sin n h j)
2. The form of the LMPI test is derived in the following

Theorem 2.1

For known a and q , the LMPI test for H0 : p 5 0 against H1 : p > 0 is given by the
critical region x : T 5 R `

n 5 1 (q 2)na
R2

n > C, where the constant C is to be determined
from the size condition.

Proof

First note that the problem of testing H0 against H1 remains invariant under the
change of location h i ® h i + c (mod 2 p ). A set of maximal invariant statistics is
( h 1 2 h m, h 2 2 h m, . . . , h m 2 1 2 h m). Based on this maximal invariant, the most power-
ful invariant test for H0 against a ® xed p > 0 is given by the test statistic
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T*(p) 5 ò 2p

0

*
m

i 5 1 f p(2 p ) 2 1{1 + 2 +
`

n 5 1

q na
cos n(x + h i)}+ q(2 p ) 2 1 g dx . (2)

To get the LMPI test we expand T*(p) in powers of p and consider the lowest
order random term (see, for example, Bhattacharyya & Johnson, 1969).

Now the right-hand side of (2) is

( 1

p )m ò 2 p

0

*
m

i 5 1
{1

2
+ pYi(x)}dx (3)

where

Yi(x) 5 +
`

n 5 1

q na
cos n(x + h i).

The coeý cient of p in (3) is, apart from a multiplicative constant,

+
m

i 5 1 ò 2p

0

Yi(x) dx 5 +
m

i 5 1 f ò 2p

0
{ +

`

n 5 1

q na
cos n(x + h i)}dx g .

The signs of summation and integration in the square bracket of the above
expression are seen to be interchangeable by virtue of the extended version of the
Levi theorem for series of functions (see Theorem 10.26 of Apostol, 1974: 269).
It then easily follows that the required coeý cient of p is zero. The coeý cient of p2

on the other hand, barring again a multiplicative constant, is

+
i< j ò 2p

0

Yi(x)Yj(x) dx

5 +
i< j ò 2 p

0
f +

`

n 5 1

+
`

k 5 1

q na + ka
cos n(x + h i) cos k(x + h i) g dx

5 2 p +
i< j

+
`

n 5 1

( q 2)na
cos n( h i 2 h j)

by the same reasoning as above for the interchangeability of summation and
integration, followed by some algebraic manipulations. We can then write

T*(p) 5 k1 + k2p2 +
i< j

+
`

n 5 1

( q 2)na
cos n( h i 2 h j) + oP(p2)

where k1 and k2(> 0) are constants. The critical region of the LMPI test is therefore

x * : T* 5 +
i< j

+
`

n 5 1

(q 2)na
cos n( h i 2 h j) > C* (4)

where C* is to be determined from the size condition. This test is obviously
equivalent to x as given in the statement of the theorem. Hence the proof.

Remark 2.1

It is known that the Cardioid distribution can be viewed as obtained from an SWS
distribution by retaining only the ® rst term of the in® nite series occurring in the
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expression of its p.d.f. f. Analogous results do, therefore, hold for the LMPI test
statistic in the Cardioid-CU mixture family. We then have the following

Corollary 2.1

The LMPI test for H0 : p 5 0 against H1 : p > 0 in the Cardioid-CU mixture family
corresponds to the statistic T with n 5 1 and therefore coincides with the Rayleigh’s
R2 test.

The asymptotic null distribution of the test statistic may be obtained from
Corollary 3.1 of Beran (1969) or Theorem 4.1 of Gine (1975).We, however, prove
the following theorem, which establishes the asymptotic distribution explicitly by
directly appealing to the multivariate Central Limit Theorem (CLT).

Theorem 2.2

Under H0 the asymptotic distribution of (2/m)T is the same as the distribution of
R `

n 5 1 ( q 2)na
v 2

(n) where {v 2
(n) , n 5 1, 2, . . . } is a sequence of independent v 2 variables

each with 2 d.f.

Proof

Straightforward calculations show that under circular uniformity of h

E(sin n h ) 5 E(cos n h ) 5 0;
Var(sin n h ) 5 Var(cos n h ) 5 1

2, for each n 5 1, 2, . . . ;
Cov(sin n h , sin kh ) 5 Cov(sin n h , cos k h ) 5 Cov(cos n h , cos k h ) 5 0;

for each n, k 5 1, 2, . . . ; n ¹ k.
Consequently, for any n, by multivariate CLT

where

R (2n 3 2n) 5
1

2 ( I2 O . . . O

O I2 . . . O

. . . . . . . . . . . .

O O . . . I2

) .

This shows that the limiting distribution of (2/m)T 5 (2/m) R `
n 5 1 ( q 2)na

R2
n is the same

as the distribution of R `
n 5 1 ( q 2)na

v 2
(n) where {v 2

(n) , n 5 1, 2, . . . } is a sequence of
independent v 2 variables each with 2 d.f. Hence the theorem.
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To obtain the asymptotic non-null distribution of T, one may appeal to the
general result in Theorem 1 of Beran (1969). However, the derivation of the
distribution involves evaluations of some complicated integrals. We present here
an alternative derivation that exploits multivariate CLT directly, as in the null case.

First note that since T is invariant under the change of location, one may take,
without loss of generality, l 0 5 0. After some routine algebra, it follows that under
the mixture alternative with density g( h ; a, q , 0, p) and for any n 5 1, 2, . . . ,

E(cos n h ) 5 pq na
, E(sin n h ) 5 0,

Var(cos n h ) 5 1
2 [1 + pq (2n)a] 2 p2( q 2)na

,
Var(sin n h ) 5 1

2 [1 2 pq (2n)a], Cov(cos n h , sin n h ) 5 0.

It also follows that for any n, l 5 1, 2, . . . ; n ¹ l,

Cov(sin n h , sin l h ) 5 (p/2)[ q ½n 2 l ½a 2 q (n + l)a],
Cov(sin n h , cos l h ) 5 0,
Cov(cos n h , cos l h ) 5 (p/2)[ q ½n 2 l ½a + q (n + l)a

] 2 p2 q na + la.

For r, s 5 1, 2, . . . , writing

r (CC)
rs 5 Cov( q ra

cos rh , q sa cos s h )

r (CS)
rs 5 Cov( q ra

cos rh , q sa sin s h )

r (SS)
rs 5 Cov( q ra

sin r h , q sa sin s h )

and noting that r (CS)
rs 5 0"r and s, one sees again by multivariate CLT that, under

the mixture alternative,

where

R *(2n 3 2n) 5 ( r (CC)
11 0 r (CC)

12 0 . . . r (CC)
1n 0

0 r (SS)
11 0 r (SS)

12 . . . 0 r (SS)
1n

r (CC)
21 0 r (CC)

22 0 . . . r (CC)
2n 0

0 r (SS)
21 0 r (SS)

22 . . . 0 r (SS)
2n

. . . . . . . . . . . . . . . . . . . . .

r (CC)
n1 0 r (CC)

n2 0 . . . r (CC)
nn 0

0 r (SS)
n1 0 r (SS)

n2 . . . 0 r (SS)
nn

).

Now applying [(ii), 6a.2] of Rao (1973: 387) and taking n ® ` , one can see that
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m 2
3

2 ( T 2 (pm)2 +
`

k 5 1

( q 4)ka ) ®, N(0, r *2) as m ® ` (5)

where

r *2 5 4p2 +
`

r 5 1

+
`

s 5 1

( q 2)ra + sar (CC)
rs . (6)

We then have the following

Theorem 2.3

For any p > 0 under the alternative hypothesis H1 , the asymptotic distribution of
T is given by (5) with r *2 given by (6).

Remark 2.2

Exact distributions of the test statistic T under both the null and the alternative
hypotheses are analytically intractable. That is why we take recourse to extensive
simulations (in Section 4) to obtain exact cut-oþ points and power values of the
LMPI test for diþ erent parameter and sample size combinations.

Remark 2.3

The asymptotic distribution of (2/m)T under H0 , as given by Theorem 2.2, is not
convenient to carry out the test in practice. We, therefore give an approximation
for the above distribution. The approximation of Satterthwaite (1946) seems not
to be appropriate for this purpose, as it yields very bad results for some parameter
values. We, therefore, adopt a diþ erent approach based on characteristic functions.
Note that under circular uniformity, the asymptotic characteristic function of (2/
m)T is } (t) 5 { P `

n 5 1 (1 2 2( q 2)na
it)} 2 1, a ® rst-order approximation of which is

(1 2 2Kit) 2 1 where K 5 R `
n 5 1 ( q 2)na

. This is clearly the characteristic function of K.Z
where Z has a chi square distribution with 2 d.f. The values of the cut-oþ points
obtained using this approximation are quite close to those obtained by simulation,
at least for some parameter combinations. For example, for m 5 20, a 5 0.05 and
for q 5 0.5 and a 5 1.5, the cut-oþ point is calculated as 16.21, which compares
favourably with the simulated value 16.08 of Table 1.

3 Monotonicity of the power function and consistency of the test

It is convenient to work with the test statistics T* given in (4). Monotonicity and
consistency follow from the following

Theorem 3.1

For any ® xed q and a, the test given in (4) possesses a monotone power function
in pÎ[0, 1]. Further, the test is also consistent.

Proof

To prove the ® rst part of the theorem we need the following results:

Result 3.1 (Wintner, 1947: 591)
The function 1 + 2 R `

n 5 1 q na
cos n h is decreasing in 0 < h < p and, by symmetry,

increasing in p < h < 2 p irrespective of 0< q < 1 as long as 0< a < 2.
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Result 3.2 (Wintner, 1947: 591)
For 0< d < p , a set of suý cient conditions for the series R `

n 5 1 bn sin n d to be
positive is

nbn ®0 as n ® ` and

nbn > (n + 1)bn +1"n 5 1, 2, . . .

Result 3.3 (SenGupta & Chang, 1996)
Let (X, Y ) have absolutely continuous joint distribution depending on a single
parameter h such that each of X and Y has stochastic ordering property in h . Then
X + Y has also the same stochastic ordering property.

Note that the p.d.f. of c ij 5 h i 2 h j (mod 2 p ), where h i and h j are independently
distributed as (1), can be written as

h(c ij; p) 5
1

2 p {1 + 2 +
`

n 5 1

p2( q 2)na
cos nc i j}, 0 < c i j < 2 p .

By Result 3.1, for given c, $a d Î(0, p )

+
`

n 5 1

( q 2)na
cos nc i j > cÛ0< c i j < d or 2 p 2 d < c i j < 2 p .

Hence for any i, j(i< j),

P(p) 5 P{ +
`

n 5 1

( q 2)na
cos nc i j > c ½ p}

5 2ò d

0

h(c i j; p) dc ij

5
d

p
+ 2p2

p ò d

0

+
`

n 5 1

( q 2)na
cos nc ij dc i j

and on diþ erentiation w.r.t. p

 P

 p
5

4p

p ò d

0

+
`

n 5 1

( q 2)na
cos nc ij dc i j

5
4p

p
+
`

n 5 1

bn sin n d

with bn 5 (1/n) ( q 2)na
, by interchanging again the order of summation and

integration.
Thus, P(p) is increasing globally in pÎ[0, 1], by Result 3.2. Repeated applications

of Result 3.3 on the variables R `
n 5 1 ( q 2)na

cos nc i j for all i, j (i< j) then ensure the
monotonicity of the power function.

To prove consistency, it suý ces (from Theorem 4 of Beran, 1969) to verify that
the function b( h ; a, q , l 0 , p) de® ned by
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Table 1. Simulated cut-oþ points of the LMPI test based on T

a

m q 0.5 1.0 1.5 2.0

10 0.25 (2.25, 3.30) (1.86, 2.74) (1.81, 2.73) (1.78, 2.59)
0.50 (12.94, 16.81) (8.40, 11.48) (7.53, 10.73) (7.26, 10.56)
0.75 (53.74, 65.48) (25.12, 35.99) (19.78, 27.92) (17.00, 24.90)
0.90 (124.97, 157.95) (64.86, 79.08) (39.55, 52.67) (30.52, 43.53)

15 0.25 (3.36, 4.67) (2.84, 4.17) (2.69, 4.05) (2.61, 4.00)
0.50 (19.33, 25.85) (12.96, 17.84) (11.74, 17.64) (11.35, 16.26)
0.75 (81.41, 96.91) (37.46, 50.37) (28.29, 40.89) (26.78, 39.99)
0.90 (189.15, 225.82) (97.02, 119.74) (58.53, 81.79) (46.15, 60.80)

20 0.25 (4.44, 6.29) (3.81, 5.84) (3.77, 5.69) (3.59, 5.45)
0.50 (25.82, 35.90) (17.48, 24.73) (16.08, 23.05) (14.77, 21.71)
0.75 (110.06, 133.34) (51.53, 65.28) (37.80, 51.91) (35.61, 50.21)
0.90 (250.27, 300.33) (127.81, 159.79) (78.08, 101.63) (63.26, 85.76)

30 0.25 (6.54, 9.42) (5.66, 8.35) (5.29, 8.09) (5.27, 7.67)
0.50 (40.17, 52.45) (24.66, 36.26) (23.44, 35.44) (21.13, 30.38)
0.75 (163.61, 199.44) (78.37, 105.04) (62.08, 94.85) (53.25, 82.42)
0.90 (376.02, 442.52) (196.16, 240.38) (119.42, 156.11) (94.53, 131.99)

(The ® gures inside the brackets denote the cut-oþ points at 5% and 1% levels respectively.)

b( h ; a, q , l 0 , p) 5 ò 2 p

0
f f( h ; a, q , x) 2

1

2 p g g(x; a, q , l 0 , p) dx

corresponding to any density g( h ; a, q , l 0 , p) under the alternative hypothesis, is
non-zero.

Now

b( h ; a, q , l 0 , p) 5
1

p ò 2p

0
f +

`

n 5 1

q na
cos n( h 2 x) g f 1

2 p
+ p

p
+
`

n 5 1

q na
cos n(x 2 l 0) g dx

5
p

p
+
`

n 5 1

( q 2)na
cos n( h 2 l 0)

after simpli® cation, followed by some algebraic manipulation. Thus, b( h ;
a, q , l 0 , p) ¹ 0, proving the consistency of the test. Hence the theorem.

4 Simulation and computation

In this section we present exact cut-oþ points (Table 1) and power values (Table
2) of the LMPI test, obtained through simulations, for some selected parameter
combinations. Simulation from a symmetric stable distribution have been done
using the RNSTA subroutine of IMSL. An observation X from a symmetric stable
distribution with `scale factor’ 1, when multiplied by d1/ a gives another, say Y, with
scale factor d, having the characteristic function

u Y(t) 5 exp( 2 d ½ t ½ a ).



138 A. SenGupta & C. Pal

Table 2. Simulated power of the LMPI test at 5% level

p

a q m 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5 0.25 10 0.051 0.054 0.055 0.068 0.077 0.082 0.106 0.119 0.138 0.156
20 0.054 0.061 0.072 0.098 0.108 0.145 0.165 0.200 0.256 0.300

0.50 10 0.053 0.063 0.090 0.145 0.193 0.251 0.337 0.413 0.518 0.605
20 0.062 0.095 0.168 0.248 0.356 0.482 0.635 0.734 0.828 0.921

0.75 10 0.072 0.120 0.237 0.363 0.502 0.645 0.783 0.871 0.942 0.972
20 0.078 0.214 0.390 0.638 0.827 0.913 0.971 0.993 1.000 1.000

0.90 10 0.074 0.215 0.396 0.592 0.760 0.877 0.944 0.986 0.998 1.000
20 0.142 0.400 0.689 0.898 0.963 0.993 0.999 1.000 1.000 1.000

1.0 0.25 10 0.054 0.057 0.058 0.060 0.068 0.093 0.094 0.112 0.130 0.144
20 0.056 0.058 0.073 0.079 0.099 0.123 0.133 0.183 0.236 0.282

0.50 10 0.055 0.063 0.077 0.100 0.146 0.191 0.251 0.335 0.419 0.502
20 0.058 0.067 0.105 0.169 0.247 0.359 0.473 0.604 0.723 0.858

0.75 10 0.062 0.088 0.157 0.262 0.367 0.522 0.635 0.783 0.874 0.949
20 0.065 0.140 0.255 0.442 0.644 0.826 0.911 0.973 0.994 1.000

0.90 10 0.074 0.134 0.283 0.449 0.628 0.779 0.897 0.958 0.992 1.000
20 0.106 0.295 0.535 0.766 0.912 0.978 0.998 1.000 1.000 1.000

1.5 0.25 10 0.052 0.053 0.060 0.067 0.081 0.084 0.088 0.108 0.131 0.149
20 0.053 0.057 0.068 0.078 0.089 0.117 0.141 0.168 0.221 0.271

0.50 10 0.055 0.061 0.082 0.114 0.150 0.207 0.272 0.336 0.440 0.532
20 0.056 0.070 0.106 0.158 0.235 0.364 0.477 0.609 0.744 0.838

0.75 10 0.056 0.074 0.127 0.214 0.310 0.425 0.589 0.734 0.847 0.946
20 0.073 0.145 0.259 0.401 0.599 0.773 0.904 0.974 0.993 1.000

0.90 10 0.073 0.115 0.212 0.368 0.524 0.702 0.846 0.929 0.987 0.999
20 0.091 0.200 0.423 0.661 0.866 0.945 0.989 0.999 1.000 1.000

2.0 0.25 10 0.053 0.056 0.062 0.071 0.075 0.080 0.100 0.126 0.132 0.157
20 0.054 0.062 0.071 0.087 0.109 0.128 0.157 0.201 0.235 0.288

0.50 10 0.054 0.057 0.078 0.111 0.158 0.199 0.269 0.353 0.443 0.539
20 0.055 0.081 0.127 0.169 0.289 0.429 0.520 0.663 0.786 0.881

0.75 10 0.060 0.098 0.140 0.205 0.335 0.463 0.615 0.762 0.900 0.981
20 0.063 0.123 0.223 0.386 0.574 0.746 0.891 0.975 0.997 1.000

0.90 10 0.068 0.109 0.198 0.339 0.492 0.652 0.830 0.934 0.988 1.000
20 0.093 0.206 0.329 0.584 0.816 0.939 0.982 1.000 1.000 1.000

Given q , one can take d 5 2 loge q and wrap the resulting Y over (0, 2 p ) to get an
observation from SWS(0, q , a ) distribution.

For each parameter and sample size combination, the cut-oþ points and the
power values have been computed on the basis of 5000 and 1000 observations,
respectively, on the statistic T calculated from samples generated from respective
distributions. It may be noted that, although the statistic T appears in the form of
an in® nite series, it usually suý ces to consider only a ® nite number of terms in
practice. We have taken the ® rst 30 terms of the series for the computation of T.
Power computations of Table 2 show encouraging performances for `reasonable’
parameter combinations, even for samples of size 20. It is also worth noting that
the power is increasing with q for each ® xed m, a and p. This is expected because,
if a and p are ® xed, the larger the value of q , the more the deviation of the density
g from circular uniformity and this fact should be re¯ ected by any reasonable test.
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5 The P3-test

In Section 2, we have assumed both q and a to be known and have derived the
LMPI test for the null value of p. The situation becomes more complicated if either
or both of q and a are unknown. The experimenter usually has the choice of `a’
for which a mixture model might give the best ® t to the data. We therefore assume
that q alone is unknown. However, even then the problem cannot be reduced by
any of the principles of similarity, unbiasedness or invariance with respect to the
nuisance parameters l 0 and q . Invoking location invariance, one can search for an
optimal P3-test (see SenGupta, 1991; Pal & SenGupta, 2000, for further details)
in such a situation. Note that for any pair (i, j), i< j,

Eg(cos(h i 2 h j)) 5 (pq )2º g , say

where g plays the role of the appropriate Pivotal Parametric Product (P3) in this
case. Based on ( h 1 , h 2 , . . . , h m), an unbiased (and consistent) estimator of g is then

U 5
2

m(m 2 1)
+
i< j

cos(h i 2 h j) 5
R2

m(m 2 1)
2

1

m 2 1
.

A test for isotropy (which is now equivalent to H0
¢: g 5 0) may be based on U or

equivalently on R2. Chang (1991) has shown that for p 5 1 but unknown, the LBI
test for H0 : q 5 0 against H: q > 0 is the Rayleigh’s test, i.e. one based on R2 . Note
that this test does not depend on a, and is therefore robust against the SWS q 0

family. From Chang (1991), we then have the following.

Theorem 5.1

When p 5 1 but q 0 is unknown, Rayleigh’s R 2-test is (location invarient) robust
optimal against the SWS family.

6 q known, a unknown: non-regular case

When q is known but a is unknown, we encounter the non-regular problem of
having a only under the alternative. Motivated by Davies (1977, 1987), we enhance
a technique of constructing the optimal test for this case. To apply this technique,
assume that aÎ[e , 2], where e is a known small positive number.

Observe that for each a, under H0

T ¢(a)º 2

m
T(a) 5

2

m
+
`

n 5 1

( q 2)na
R2

n ®, +
`

n 5 1

( q 2)na
v 2

(n) as m ® ` (7)

where {v 2
(n) , n 5 1, 2, . . . } is a sequence of independent v 2 variables each with 2 d.f.

The test then consists in rejecting H0 for large values of supaÎ[e ,2]T ¢(a). Also observe
that T ¢(a) is monotonically decreasing in a and hence

sup
aÎ[e ,2]

T ¢(a) 5
2

m
+
`

n 5 1

( q 2)n e
R2

n (8)

The signi® cance probability of the test determined by the statistic (8), however,
cannot be directly obtained from the results given in Davies (1987), since the
asymptotic distribution considered there is that of a single v 2 . However the required
signi® cance probability can be calculated using the asymptotic distribution given
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in (7) with a replaced by e . To obtain this, we recall (2.10) of Beran (1969). It
then follows that the required probability is

+
`

n 5 1

anexp[ 2 t/2( q 2)n e
] (9)

where an 5 P k ¹n [1 2 ( q 2)ke 2 n e
] 2 1 and t is the observed value of supaÎ[e ,2]T ¢(a) in (8).

7 Example

We present here the analysis of Jander’s Ant data to demonstrate the applications
of the LMPI test and the other optimal tests considered in Sections 5 and 6. We
also recall (SenGupta, 1998a) that the CN distribution does not ® t satisfactorily
or is even unsuitable for this example whereas the SWS-CU mixture distribution
gives a good ® t.

The tests are applied to the data assuming that SWS-CU mixture model holds.
The signi® cance probability corresponding to the LMPI test has been computed
using (9) of Section 6 with the determined value of a in place of e . For the
Davies-motivated test, the same formula has been used with e 5 0.1, whereas the
(asymptotic) signi® cance probability for the Rayleigh’s test has been calculated on
the basis of a v 2 distribution with 2 d.f. It may be remarked in this context that,
although the expression for the signi® cance probability in (9) and that of an therein
involve an in® nite number of terms, for numerical computation it suý ced to retain
at most 25 terms. Once rejection is obtained, the goodness-of-® t test is carried out
using Watson’s U2-statistic, incorporating a grouping correction recently introduced
by Brown (1994). The parameters for ® tting CN are estimated by the m.l. method
and, for the SWS and SWS-CU cases, following SenGupta (1998a), the method
of moments has been used for estimating l 0 and q while p and a have been
determined adaptively (using DDSTAP) to select the `best’ member of the respec-
tive family. In the following, although the parameters have been estimated from
the samples, we have assumed, for the sake of simplicity, that the estimates are
actually the true values of the respective parameters (because the estimates are
consistent and samples are of large sizes). For the purpose of comparison of the U 2-
values with the tabulated ones, we have used the appropriate ® gure corresponding to
case 0 of Table 1 of Lockhart & Stephens (1985: 649) since these ® gures are
universal whatever the `known’ distribution we ® t.

7.1 Jander’s ant data

Batschelet (1981: 49, Fig. 2) depicted the orientation of ants towards a black target
when released in a round arenaÐ an experiment originally conducted by Jander
(1957). We adapt the data to construct a grouped frequency distribution of angles
with 36 classes of equal widths; the total frequency being 146. The rose diagram
of the data is shown in Fig. 1. Summary results of the applications of the optimal
tests are presented in Table 3.

From Table 3 it is seen that each of the three optimal tests discussed in Sections
2, 5 and 6 leads to rejection of the null hypothesis of circular uniformity of the
data. We therefore carry out the goodness-of-® t test. Summary results for ® tting
CN ( l 0 , j ), SWS ( l 0 , q , a) and SWS-CU mixture are presented in Table 4.
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Fig. 1. Rose diagram of Ant data.

Table 3. Results of the application of optimal tests on Jander’s Ant data

p-value
Test applied (signi® cance probability) Remark

LMPI 0.0 Highly signi® cant
Rayleigh’s R2 0.0 Highly signi® cant
Davies-motivated 0.0 Highly signi® cant

(Î 5 0.1)

Table 4. Goodness-of-® t tests for Jander’s Ant data

Distribution ® tted U2 Remark

CN 0.4799 Not satisfactory
SWS (a 5 0.8) 0.0492 Satisfactory
MIX (a 5 1.59, p 5 0.7) 0.039 More satisfactory



142 A. SenGupta & C. Pal

8 Concluding remarks

The test procedures we used in the earlier sections are the locally best tests or their
diþ erent modi® cations. One reason for considering such tests is that they are easy
to obtain and, as is seen, enjoy nice properties, namely monotonicity of the power
function and consistency. In addition, it should be borne in mind that it is, in
general, diý cult to detect small departures from the null hypotheses while large
departures can be detected quite easily by any reasonable test. The LRTs in all
these situations are very computation-intensive and diý cult to apply since they
cannot be written in any closed form. Note that no non-trivial suý cient statistic
exists for our mixture family and hence this is expected. The exact distribution of
the LRT statistic is intractable. Further, the standard result yielding the v 2 as the
asymptotic null distribution of the LRT statistic is not valid for our case. This is
so due to the non-regular nature of our problem where the parameter space is no
longer open and where the parameter lies on the boundary under H0 . For these
reasons, the LRT approach is not to be pursued, and any numerical comparison,
which can be possibly explored at most via simulations, seems unappealing and
uninstructive. However, it may be worthwhile to note that the LMP test can be
viewed as a ® rst-order approximation of the LRT.

The problem of detection of outliers is currently drawing the attention of many
researchers. The review paper by Jupp & Mardia (1989) contains several references
on this interesting area. Guttorp & Lockhart (1988) provide a Bayesian solution of
the problem of detecting the location of a downed aircraft from distress signals
transmitted by it and received by diþ erent search-and-rescue stations. Outliers in
the data may occur due to irregularities in the readings caused by distorting objects
near the receptor site. One can, therefore, either detect and reject the outliers or
can assume a mixture model in order to incorporate them for the analysis. Thus,
if one intends to `accommodate’ outliers in the model, it is common practice to
assume a mixture distribution for it. Otherwise, one may assume a non-mixture
model like CN (Collett, 1980) for outlier detection. The SWS distribution intro-
duced in Section 2 may also be used for this purpose and this may be an interesting
problem for further research.
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