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Abstract

Recent applications of Statistics often leads one to encounter testing prob-
lems where the original hypothesis of interest comprises of the union of sev-
eral sub-hypothesis. In the framework of such Intersection-Union testing of
hypothesis, in contrast to the usual Union-Intersection framework, a sub-
hypothesis therein may specify a parameter or a function of some of the
parameters of the underlying distribution. The parameters may even be
constrained to lie on the boundary of their parameter spaces. Even large-
sample tests such as the usual Likelihood ratio. Lagrangian multiplier or
the Wald’s tests then do not apply as their usual asymptotic distribution
theory remain no longer valid. An approach based on a Pivotal Parametric
Product P 3 is enhanced here. It is shown that this approach often leads to
appealing simple and elegant test statistics. The exact cut-off points and
the power values can be computed by judicious use of numerical packages.
L-optimality of such a test for the mixture problem is established. For mul-
tivariate multiparameter testing problems it is shown that such an approach
leads to Union-Intersection Intersection-Union tests. Construction of such
tests are exemplified through several real-life problems as in, e.g. testing for
interval specifications in Acceptance Sampling, for Generalized Variance of
structured correlation matrices in Generalized Canonical Variable, for agree-
ment in Method Comparison Studies, for no contamination in multiparame-
ter multivariate mixture models, etc. It is demonstrated for a real-life data
set in an acceptance sampling problem that the proposed class of P3 tests
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includes the intuitive one existing in the literature.
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1 Introduction

S.N. Roy’s principle of construction of tests for the case when the null hy-
pothesis H0 consists of the simultaneous occurrence of several disjoint sub-
hypotheses and is represented as H0 = ∩s

i=1H0i is well known as the Union-
Intersection (UI) principle (Roy, 1953). The reverse scenario, i.e. where H0

holds when at least any one of H0i holds, ie. H0 = ∪s
i=1H0i, referred to as the

Intersection-Union (IU) testing of hypotheses problem in SenGupta (1991), is
also faced in practice and is recently attracting quite some attention. While
the celebrated Union-Intersection testing procedure of Roy is mainly en-
hanced for multiparameter testing problems in multivariate distributions,
the Intersection-Union testing problems arise in important one-parameter
situations also, e.g. in some recently emerging areas such as Bioequivalence
or generally ”equivalence” testing problems (see e.g., Choudhary and Na-
garaja, 2005; Madallaz and Mau, 1981), Acceptance Sampling in Statistical
Process Control (SPC) (Berger, 1982), Reliability and Multivariate Analy-
sis. This problem also arises of course for multiparameter problems, of which
special mention must be made of the test for no mixture in contaminated or
mixture models. Sometimes the standard separate tests for each H0i may be
combined, to yield a test for H0 as, say, with the critical region given by the
intersection of the separate critical regions, see e.g. Choudhary and Nagaraja
(2005). However, the determination of the cut-off points there seems as to be
often done in an intuitive manner. Also, as e.g. is exemplified below by the
mixture models, it is not always even possible to have exact “separate” tests.
This is so because the elimination of even location or scale, and of course a
non location-scale, nuisance parameter poses non-trivial problems. An uni-
fied approach motivated by optimality considerations and based on Pivotal
Parametric Product (P 3) (SenGupta, 1991) and its unbiased estimating func-
tion is pursued here and is shown to yield simple and elegant exact tests for
a variety of situations including those mentioned above. An application of
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the P 3 test to yield a useful test that can be implemented in practice in lieu
of the trivial UMP test (Lehmann, 1986, Additional Problems 53, p. 126)
is also presented here. Examples also include tests for no contamination for
linear random variables and for isotropy for circular random variables. De-
termination of exact cut-off points and derivation of exact power are also
illustrated through an important real-life problem from Acceptance Sam-
pling. Further, the fact that the class of P 3 tests can have attractive power
performance is exemplified by the superiority of such a test over some ad-hoc
ones and also by demonstrating that it includes the existing intuitive one for
this problem through exact power computations. Additionally, such P 3 tests
are shown to be capable of yielding even UMP and L-optimal tests. Finally,
it is demonstrated interestingly that for the general situation of multivariate
multiparameter IU testing problems, application of Roy’s UI principle on the
optimal P3 tests is a powerful method that can yield elegant tests. Such tests
are named here as the Union-Intersection - Intersection-Union tests.

2 Definition and Construction of a P 3 Test

We note that for the IU testing problem, the likelihood ratio tests (LRTs)
can be quite cumbersome, e.g. when some of the H0is constrain the param-
eter(s) in certain intervals. The LRTs may even lack their usual asymptotic
properties , e.g. when one of the H0is, as written above, specifies a parameter
value lying on the boundary of the parameter space. This is very common,
e.g. in the framework of testing for no contamination in mixture models as
will be taken up later. A simpler procedure which is based on an optimality
approach is proposed here. The idea is to first recast the original multiple
H0i representation of the null hypothesis in terms of only a single hypothesis
involving an appropriately chosen parametric function. We will call such a
parametric function a Pivotal Parametric Product (P3 in short).

Definition 1. A scalar parametric function η of a possibly vector-valued
parameter θ, i.e. η ≡ g(θ), will be termed a Pivotal Parametric Product, P 3

in short, when the null hypothesis H0 ≡ ∪s
i=1H0i for θ holds if and only if

η = 0.
After an appropriate P3 is chosen, the test for H0 : η = 0, will be con-

structed on the basis of a suitable (usually unbiased and/or consistent) es-
timator, say η̂, of it. The critical region will be defined based on how the
original alternative translates, one-sided or two-sided, in terms of η. We will
call such a test a P3 test. In general a IU testing problem will not admit of
the existence of the UMP test. Attention will therefore be then focussed to
locally optimal procedures, e.g. ‘L-optimal’ tests introduced by SenGupta
(1991) and further pursued by Pal and SenGupta (2000a) in the context of
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mixture problems.

3 Case of One-parameter H0

Let a random variable X follow the distribution f(x; θ), where θ is a scalar
parameter. Here we consider testing

H0 : θ ≤ θ1 or θ ≥ θ2 vs H1 : θ1 < θ < θ2.
H0 can be represented as ∩2

i=1H0i where the subhypotheses H01 and H02

are given by, H01 : θ ≤ θ1 and H02 : θ ≥ θ2.
A P 3 can be easily identified as η = (θ − θ1)(θ − θ2) and H0 and H1

translate in terms of η to H0 : η ≥ 0 and H1 : η < 0, respectively. A critical
region (c.r.) of the test based on η can then be suggested as ω : η̂ ≤ K, where
η̂ is an unbiased estimator of η and K is a constant to be determined such
as to meet the desired size α. However, noting that η is a quadratic function
of θ, this test can be equivalently represented by the test φ(θ̂) defined by the
c.r. (assuming the non-randomized setup for simplicity)

ω : K1 ≤ θ̂ ≤ K2, (1)

where θ̂ is an unbiased estimator of θ. We specify the determination of K1, K2

by using the conditions:

Eθ1φ(θ̂) = Eθ2φ(θ̂) = α. (2)

3.1 Exponential Family

Consider (1) and (2) above. In particular, for the one-parameter Regular
Exponential Family (REF), we have

Theorem 1. For the one-parameter testing problem stated above, a P 3 test
can be constructed in the one-parameter REF to be the UMP test.
Proof: In (1) take the unbiased estimator θ̂ as the usual efficient estimator
for the one-parameter exponential family based on the sufficient statistic.
An application of Theorem 6 of Lehmann (1986), p. 101, then completes the
proof.

We start with a very simple example, whose generalizations have appli-
cations in Reliability and Queuing theory, to illustrate a P 3 test.

Example 1. Let X follow an exponential distribution with mean parameter
λ. Let us test H0 : λ ≤ 0.2 or ≥ 0.5 vs H1 : not H0, based on a single
observation, with α = .05. In the context of queues, H1 may be interpreted
as neither a too short nor a too long waiting time (in hours, say) for a
customer. From (1) the P 3 test is given by the critical region,

ω : a ≤ X ≤ b.
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Then (2) reduces to

.05 = e−.2a − e−.2b = e−.5a − e−.5b

⇒ a = −5ln(.05 + e−.2b), b = −2ln(e−.5a − .05) (3)

These give b = f(b), for which the Newton-Raphson method can be con-
veniently employed to find b. a can then be determined from any of the
equations in (3).

Power of this P 3 test is given by

βλ = e−λa − e−λb, λ = .2(.05).5

A plot of the power curve is given in Figure 1.
Note the (unusual) bell-shaped form of the power curve of this UMP test.

This is to be expected from the nature of H1 and is characteristic of the power
curves of all reasonable tests for H0 vs H1 as defined for this section. For
UMP tests, this fact follows from part (iii) of Theorem 6 of Lehmann (1986),
p. 100.

Example 2. (Acceptance Sampling.) We now consider testing H0 above
(as specified at the outset of this section) for the normal distribution N(θ, σ2).
In the framework of Acceptance Sampling the intention here is to accept
(rather than reject) the hypothesis that the θ lies within a specified (open)
interval, which constitutes our H1. Let X1, ., Xn, be a random sample from
this distribution. The MLE of θ under H0 is given by

θ̂ = X̄, X̄ ≤ θ1 or ≥ θ2

= argminθi
(X̄ − µi)

2, o.w.

The exact distribution of the LR test statistic is a mixed distribution and
the usual χ2 large-sample approximation to even the null distribution of LRT
does not hold here. Since σ is unknown, a scale-invariant test is needed in
general. This seems a non-trivial proposition here. Example 4.2 of Berger
(1982), describes an example from textile industry where such a testing prob-
lem arises as a part of the acceptance sampling procedure and suggests an
intuitive test.

For illustrative purposes, first let us assume σ to be known, say equal
to the upper bound of .05, the value as assumed by Berger. Also, we will
be concerned with the last parameter θ9, the mean percentage change for
upholstery fabric. It was of interest to test H0 : θ9 ≥ .02 or ≤ −.05 vs H1 :
not H0. Berger devoted detailed discussions on the derivation of his test,
which we will refer to as Berger’s test. Using α = .05 we have,

θ1 = −.05, θ2 = .02, σ0 = .05, m = 9; θ0 =
θ1 + θ2

2
= −.015.
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Figure 1: Power Curve for Example 1.
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A version (to be referred to as BN1 test) of Berger’s symmetrized test for
the case of unknown σ (see below) modified for this case of known σ, may be
given by

ω : − a ≤ X̄ ≤ a,

where a satisfies the size condition

.05 = Φ(

√
m(a− θ0)

σ0

)− Φ(

√
m(−a− θ0)

σ0

).

a is trivially solved as, a = σ0τ.475/m
1/2 + θ0, τ.475 being the upper 47.5 % of

the standard normal distribution.
The power of this test is given by

βθ = Φ(

√
m(a− θ)

σ0

)− Φ(

√
m(−a− θ)

σ0

), − .05 ≤ θ ≤ .02

Now consider P 3 test for this situation, to be referred to as BN2 test.
Using (1) and motivated by theorem 1, it is given by

ω : a ≤ X̄ ≤ b,

where a and b are to be determined using (2).

.05 = Φ(

√
m(b− θ1)

σo

)− Φ(

√
m(a− θ1)

σo

) = Φ(

√
m(b− θ2)

σo

)− Φ(

√
m(a− θ2)

σo

)

⇒ b = θ1 +
σ0√
m

Φ−1[.05 + Φ(

√
m(a− θ1)

σ0

)]

a = θ2 +
σ0√
m

Φ−1[Φ(
(
√

m(b̂− θ2)

σ0

)− .05] (4)

As in example 1, these give b = f(b), for which the Newton-Raphson method
can be conveniently employed to find b. a can then be determined from any
of the equations in (4).

Power of this P 3 test is given by

βθ = Φ(

√
m(b− θ)

σ0

)− Φ(

√
m(a− θ)

σ0

),−.05 ≤ θ ≤ .02

Certainly, by virtue of theorem 1, this BN2 test being the P 3 test here will
outperform the preceding Berger-type test. Here again, as in example 1, the
P 3 test is the UMP test.

Next consider the case when σ is unknown. Though σ2 is unknown,
Berger suggests a test that can be implemented with the assumption of its
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known upper bound, say σ2
0. The test suggested by Berger is a symmetrized

test, i.e. with symmetrized test statistic (around θ0) and symmetric cut-off
points a,−a, given by :

ω : − a ≤ m1/2(X̄ − θ0) ≤ a, θ0 = (θ1 + θ2)/2.

The constant a is determined from the following equation

P (−a ≤ Tδ0 ≤ a) = α,

where Tδ0 follows a non-central t distribution with non-centrality parameter
δ0 = m1/2(θ2−θ1)/2σ0 and m-1 degrees of freedom, and α is the desired level
of significance of the test.

Consider now the P3 test for this problem. From (1), to invoke such a test
we first need an unbiased estimator of θ. X̄ is of course such an estimator.
We next need that the distribution of this statistics is free of the nuisance
parameter under H0. Since σ is unknown, this implies that a scale-invariant
test is needed in general. However, the distribution of X̄ even under H0

involves σ. We adopt the same assumption on σ and the same argument of
the monotonicity of the non-central t distribution with respect to its non-
central parameter as given by Berger. The class of tests thus emerging based
on the P3 will be referred to as the P3− type tests.

It may be interesting, in the spirit of the P3 tests, to study the behavior
of the semi-symmetrized version of Berger’s test, i.e. the class of tests with
test statistics centered as before around θ0, but the cut-off points being now
left arbitrary. We will refer to this test as P3S test. Observe that this class
includes Berger’s test, by taking k1 = −k2. The critical region of such a test,
is then given by

ω : k1 ≤ T = m1/2(X̄ − θ0)/s ≤ k2, θ0 = (θ1 + θ2)/2,

where s is the sample standard deviation, and k1 and k2 are determined using
(2). The power function of this test is given by,

βθ = Pθ[

√
m(X̄ − θ0)

s
< k2]− Pθ[

√
m(X̄ − θ0)

s
< k1]

= Ft′(δθ)(k2)− Ft′(δθ)(k1), δθ =

√
m(θ − θ0)

σ0

(5)

From (5) we get,
k2 = F−1

t′(δθ1
)[.05 + Ft′(δθ1

)(k1)]

k1 = F−1
t′(δθ2

)[Ft′(δθ2
)(k2)− .05]
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The above is again in the same form as the previous ones leading to the
invocation of Newton-Raphson method for a single variable, since we can
combine these two equations to yield an equation of the form k1 = f(k1).
However, it turns out the solution is k1 = −k2 = −a, i.e. the resulting P3S
test is the Berger’s test. Hence we will denote Berger’s test by P3S also.

Consider now a generalized/modified version of the P3S test, to be re-
ferred to as P3M test. In contrast to restricting to the symmetrized test
statistic and symmetric cut-off points −a and a as done by Berger, our P 3

test from (1) (and motivated by theorem 1) is defined by the critical region

ω : {√m
[X̄ − θ2]

s
< k2} ∩ {

√
m

[X̄ − θ1]

s
> k1},

⇒ ω :
sk1√

m
+ θ1 < X̄ <

sk2√
m

+ θ2

Then,

α = Pθ1 [

√
m(X̄ − θ2)

s
< k2]−Pθ1 [

√
m

s
(X̄−θ1) < k1] = Ft′(δ1)(k2)−Ftm−1(k1)

(6)
where, δ1 = [

√
m(c − d)]/σ0, is the non-centrality parameter of the t distri-

bution with (m-1) d.f. Similarly,

α = Ftm−1(k2)− Ft′(δ2)(k1), (7)

where δ2 = [
√

m(θ2 − θ1)]/σ0 = −δ1.
We solve (6) & (7) to get k1 and k2. Now, form (6)

k1 = F−1
tm−1

[Ft′(δ1)(k2)− α] (8)

From (7) and (8) we get,

k2 = F−1
tm−1

[α + Ft′(δ2)(k1)] ≡ g(k2), (9),

say. (9) appears in a tailor-made form for the implementation of, as for the
previous examples, the Newton-Raphson method. Once k2 is determined, k1,
can be obtained directly from (8).

The power function of this test is given by,

βθ = Ft′(δθ2)(k2)− Ft′(δθ1)(k1), θ1 ≤ θ ≤ θ2,

where δθi = [
√

m(θ − θi)]/σ0, i = 1, 2, and Ft′(δ)(x) is the c.d.f of the non-
central t-distribution with non-centrality parameter δ and degrees of freedom
(m-1). We will refer to the version of P3− type incorporating the above
modification as the P3M test.
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Finally, suppose that we retain the original P3 test suggested for the
known σ case, referred to as the BN2 test, but simply replace σ2 by its
estimator s2. We will refer to this test as the P3O test. It is defined by the
critical region

ω : A ≤ √
m

X̄

s
≤ B,

where A and B are obtained from the size conditions as before. Then the
power function of this test is given by,

βθ = Ft′(δθ)(B)− Ft′(δθ)(A),

where δθ =
√

mθ/σ0.
How do the two tests, BN1 and BN2, and the three tests P3S, P3M and

P30 compare with each other ? As expected BN2 test, which is in fact the
UMP test when σ, is known outperforms all others. Also, for the PS3 test
here, k1 turned out to be equal to −k2, thereby coinciding with Berger’s
test, and outperforms the other two adhoc tests P3O and P3M. Care is thus
needed to choose a good test here. These results are exhibited through Figure
2.

Example 3. (Testing Bioequivalence.) Consider two independent nor-
mal variables Xi, following distributions, N(µi, σ

2), i = 1, 2. The problem of
testing H0 : µ1 − µ2 ≤ −δ or ≥ δ vs H1 : not H0 has received quite some
attention. Schuirmann (1987) proposes combining two one-sided tests pro-
cedure, e.g. the corresponding one-sided t tests, for this equivalence testing
problem, see e.g. Casella and Berger (2002), Exercise 8.47, p.411 and Berger
and Hsu (1986). Westlake (1981) refers to a similar setup for the problem of
testing Bioequivalence. Letting θ = µ1 − µ2, K1 = −δ and K2 = δ, we are
back in the setup of a one-parameter problem as in example 2 above. Hence
the P 3 test suggested there can be adapted for this situation also. The test
can then based on the corresponding pooled t statistic and be given by

ω : K1 <
X̄1 − X̄2

[S2
p(1/n1 + 1/n2)]1/2

< K2.

The cutoff points K1 and K2 are to be determined using the resulting non-
central t distributions under Hi, i = 1, 2, as before.

Example 4. (Multidimensional Scatter) The Generalized Variance
(GV) |Σ|, the determinant of the population dispersion matrix Σ = (σij)
of a p-dimensional random vector variable X plays an important role (see
e.g. SenGupta, 2005a) in multivariate analysis as a scalar measure of multidi-
mensional scatter. In one of its many and diverse applications, the reduction
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Figure 2: Superimposed Power Curves for Example 2.
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of dimensionality by Generalized Canonical Variables (GCVs) (SenGupta,
2005b), a test for H0 : |Σ| ≤ σ2p

0 vs H1 : |Σ| > σ2p
0 , σ2

0 known, is of impor-
tance. In the context of multivariate statistical process control (SPC) also
such a test is quite useful as can be perceived by the increasing popularity
of the |S|-chart. Let a p-dimensional random vector variable X follow a
standard symmetric multivariate normal (SSMN) distribution, Np(µ1, Σρ)
so that σii = 1, σij = ρ, i 6= j, i, j = i, , p, i.e. each component has zero mean
and unit variance and they are equicorrelated. This distribution, though
not a member of the one-parameter REF, is however, a member of the (1,2)
Curved Exponential Family (CEF), i.e. a CEF having a 2-dimensional suf-
ficient statistic for a one-dimensional parameter. Consider now testing H0

vs H1 as stated in this example (for the usual two sided alternative, see
SenGupta, 1982, 1987) for the GV of the SSMN distribution. Since |Σρ| =
[1+(p−1)ρ](1−ρ)(p−1), a concave function of ρ, the testing problem becomes
that of testing H0 : ρ ≤ ρ1 or ≥ ρ2, vs H1 : not H0, where ρi, i = 1, 2, are
known (from σ0). This problem then falls under the same general formula-
tion as stated in the beginning of this section 3. The test suggested there
can thus be implemented. However, theorem 1 cannot be invoked for this
CEF. Note that

ρ̂ = Σn
u=1Σi≤jXiuXju/np(p− 1)

is an unbiased (in fact best “quadratic” unbiased estimator) of ρ. Following
our general procedure in (1) and (2), the corresponding P 3test here is then
given by

ω : K1 ≤ ρ̂ ≤ K2.

The exact null and non-null distributions of ρ̂ needed for determining K1, K2

and power values are available from SenGupta (1987) in terms of confluent
hypergeometric (or Kummer’s) functions. It needs to be mentioned that the
tests based on MLE and on the likelihood ratio are quite cumbersome here
in contrast to this elegant P 3 test.

3.2 Non-exponential Families

Consider now non-exponential families. A mixture family, a particular mem-
ber of the non-exponential families, constitutes an interesting example both
from the theoretical as well as from the practical considerations. In general
such a family does neither admit of any non-trivial sufficient statistic nor does
there exist any test procedure based on invariance or similarity when the nui-
sance parameter is the mixing parameter. Also, since the mixing parameter
may lie on the boundary of the parameter space, the usual large-sample dis-
tributional results for the maximum likelihood estimator and the likelihood
ratio test do not hold here. Further, we recall (Lehmann, 1986, Additional
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Problems 53, p.126) below a worrisome result on our above testing problem
for a two-component mixture distribution.

Result 1. Let X follow the distribution

f(x; θ) = θg1(x) + (1− θ)g2(x),

where g1 and g2 are two probability densities with respect to µ, and 0 ≤ θ ≤ 1.
For testing H0 vs H1 as defined above, the trivial test φ(x) = α is UMP at
level α.

However, in terms of the P 3 test the situation is not so bleak - this is
demonstrated by the following constructiion.

Example 5. (Mixture model) Consider the popular example of the nor-
mal mixture model. Let fθ(x) = θg1(x)+(1−θ)g2(x), gi(x) is N(x; µi, σ

2
i ), σi, µi, i =

1, 2, known. Then, based on a random sample X1, , Xn, from this population,
an unbiased estimator of θ is given by,

θ̂ = [X̄ − µ2]/[µ1 − µ2]

We can construct the test in the same lines as described earlier. The cut-off
points are obtained as follows.

α = Pθ[a <
n

Σ
i=1

Xi < b] = Fθ(b)− Fθ(a) (10)

for θ = θ1 and θ = θ2, where

Fθ(x) =
n

Σ
m=0

(
n

m

)
θm(1− θ)n−m[G∗m

1 ∗G
∗(n−m)
2 (x)]

=
n

Σ
m=0

(
n

m

)
θm(1− θ)n−m[Φ(

x− (mµ1 + (n−m)µ2)√
nσ

)] (11)

which follows by the representation by Behboodian (1972) for the distribution
of a symmetric statistic under an underlying mixture distribution.

Solve for a and b using (2) and (3) with θ = θ1 and θ = θ2. Then the
exact power function βθ can be obtained using these values in (2) and (3)
with θ1 < θ < θ2. We will return to the mixture families in more details when
we consider the case of multi-parameter problems below.

4 Case of Multiparameter H0

We continue with the two-component mixture distribution as an illuminating
example of of a multiparameter non-exponential family to enhance the P 3

test where H0 specifies several parameters. In particular we deal with the
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optimal testing problems for the hypothesis of ‘no mixture’ in two-component
mixture distributions (with or without nuisance parameter(s)) in which the
parameter of interest and the mixing proportion both are unknown.

Consider the mixture model with density

g(x|p, θ, ϑ) = pf(x|θ, ϑ) + (1− p)f(x|θ0, ϑ) (12)

where 0 ≤ p ≤ 1, θ ∈ Θ, an interval of the real line; both p, θ are un-
known and θ0 is a known point of Θ; and ϑ is an unknown parameter (pos-
sibly vector-valued), to be interpreted as a nuisance parameter. The density
f(x|θ, ϑ) is assumed to be sufficiently ‘regular’. We want to test the null
hypothesis H0: ‘no contamination’ against the alternative H1: ‘ there is con-
tamination’. Under the above setup, the null hypothesis of no contamination
translates to the union of three parametric hypotheses : [ H01 : p = 0

⋃
H02:

θ = θ0
⋃

H03 : p = 0 and θ = θ0 ].
Durairajan (1980) addressed the problem of testing the hypothesis of

no mixture in two-component mixtures of distributions in some generality.
When both p and the parameter (say θ) are unknown, he obtained LMPI and
LMPS tests for hypotheses involving p, treating θ as the nuisance parameter.
The other problem, i.e., testing for θ with p as nuisance parameter can
not, usually, be tackled by the Neyman-Pearson theory since p can not be
eliminated by any of the principles of sufficiency, similarity or invariance.
The more general case when no mixture can arise by treating both p and θ
as parameters of interest was not considered by Durairajan. We now address
this problem below through the P3 approach.

The main idea of the P3 approach, stemming from definition 1, is to
characterize a single parametric function η ≡ η(p, θ, θ0) so that η = 0 holds
iff H0 is true. In the context of the mixture distribution given in (12), one may
take (SenGupta, 1991) η = p(θ − θ0). Clearly several such characterizations
are possible.

Consider the setup of a mixture model given in (12). In the following
development we focus our attention to obtaining such a P3 as will lead to a
locally optimal procedure by considering what is called (SenGupta, 1991) a
‘L-optimal’ test. The following definitions are slightly generalized versions,
to incorporate nuisance parameters, of those given in SenGupta (1991) (for
the case of no nuisance parameter).

Suppose θ is the parameter of interest and ϑ is the nuisance parameter,
which may be vector-valued.

Definition 2. A parametric function η = η(p, ϑ, θ, θ0) is said to be a P3 if
η = 0 iff p = 0 or θ = θ0 or p = 0, θ = θ0 for all ϑ, i.e., iff ‘no mixture’ holds
for all ϑ.

Definition 3. A (randomized) test ψ based on an unbiased and/or consistent
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estimator T of η is said to be L-optimal similar unbiased (LSU) or L-optimal
invariant unbiased (LIU) or L-optimal C(α) (L-C(α)) for testing H0 : η = 0
against H1 : η 6= 0 according as ψ is LMPSU or LMPIU or C(α) for testing
H0 : θ = θ0 against θ 6= θ0 for each given p ∈ (0, 1).

The power of an L-optimal test, therefore, matches that of the corre-
sponding locally best test for the parameter for each given p. An L-optimal
test is admissible, i.e., there does not exist any other test which performs
at least equally well (in terms of power function) at all the points under the
alternative hypothesis and actually better than this test at some point(s).
Furthermore, this test is consistent.

The approach suggested is that of first deriving a locally optimal test
with p assumed to be known. We shall choose η so as to ensure that L-
optimal test for the hypothesis H ′

0 : η = 0 (which is now equivalent to H0)
can be constructed based on an unbiased and consistent estimator of η. The
(locally) optimal P3 test, if it exists and is unique, can then be established
to be the L-optimal test.

4.1 No Nuisance Parameter

Consider first the case when there is no nuisance parameter ϑ. A set of
sufficient conditions on the class of densities such that the associated class
of mixtures admits an appropriate P3 is formulated.

Denote by G the class of density functions g, given by (12), of mixture
distributions obtained by restricting f to a certain class F of the component
density functions. The following lemma gives a set of general conditions on
F under which each member of G admits a P 3, along with its appropriate
general form and the structure of the corresponding L-optimal test for mem-
bers of G. Let X1, . . . , Xn be n i.i.d. observations drawn from a population
with density g.

Then a characterization of a general form of the appropriate P3 and the
structure of the corresponding L-optimal test can be given. This approach
is formalized in the following

Theorem 2. (Lemma 2.1 of Pal and SenGupta, 2000) Let F = {f}
be a class with any member f of this class being a one-parameter density
function, with respect to an appropriate σ-finite measure µ, of a possibly
multidimensional random variable X. Assume that f satisfies the following
conditions :

(C1) The parameter θ belongs to the parameter space Θ which is a
non-degenerate open, semi-open or closed interval of the real line
containing θ0 as an interior or a boundary point.

(C2) The support X is independent of the parameter θ.
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(C3) The (one- or two-sided) derivative ∂f(x|θ)/∂θ|θ0 exists and is
finite for all x ∈ X .

(C4) Efθ

(
∂ log f(X|θ)

∂θ

∣∣∣∣∣
θ0

)2

< ∞ for all θ ∈ Θ.

(C5) Efθ

(
∂ log f(X|θ)

∂θ

∣∣∣∣∣
θ0

)
def
= γ(θ, θ0) = 0 if and only if θ = θ0.

Then η = pγ(θ, θ0) or any monotone function of it may serve as an ap-
propriate P 3. A test appropriately based on an unbiased and consistent
estimator T of η will be L-optimal for testing H ′

0 : η = 0 against either of the
one-sided alternatives, if T coincides, a.e., with the average score statistic

1
n

n∑

i=1

∂ log f(Xi|θ)
∂θ

∣∣∣∣∣
θ=θ0

. Furthermore, this test is consistent.

A large class of (component) distributions is covered by the above lemma.
In particular, we exhibit the following examples.

Examples 6. (REF components.) Consider the one-parameter REF
given by the density (w.r.t. a σ-finite measure µ) in the canonical form

h(x|θ) = exp[θW (x)− A(θ)].

Then h ∈ F and η in this case is given by p(A′(θ)− A′(θ0)).

Examples 7. (General components.) Examples of some other common
component distributions f(x|θ) are: lognormal, inverse Gaussian with loca-
tion or dispersion parameter, bivariate exponential conditionals (Arnold and
Strauss, 1988) with dependency parameter, bivariate inverse Gaussian with
dependency parameter, folded normal, Weibull with shape parameter, etc.,
see Pal and SenGupta (2000).

Remark. There are situations in practice where the nuisance parameter
appears only under the alternative. In that case a P 3 may be constructed
and estimated as done above for the case of no nuisance parameter.

Example 8. (Test for Isotropy.) An example of the preceding remark
is provided by the test for isotropy (or uniformity) on the circle against
the alternative of an underlying distribution from the symmetric wrapped
stable-circular uniform (SWS-CU)mixture family. The nuisance parameter
in point is the index parameter or the characteristic exponent of the stable
distribution.
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The SWS-CU mixture family for a circular random variable is defined by
the probability density functions

g(x|a, ρ, µ0, p) =
p

2π

{
1 + 2

∞∑

r=1

ρra

cos r(x− µ0)

}
+

1− p

2π
. (13)

Here H0 : X has a circular uniform distribution, is equivalent to (p = 0)∪(ρ =
0) and a P3 is given by η = pρ. The two nuisance parameters are thus µ0 and
a. µ0 may be considered to be a “location parameter.” First, let us assume
that µ0 is known. Then, it turns out that η is estimated unbiasedly by
C̄ ≡ Σn

i=1 cos xi/n, which is infact the LMP test statistic for H0 when p > 0
is known. Thus the P3 test here is robust, whatever be a, L-optimal test.
For further details see SenGupta and Pal (2001).

4.2 Integrated likelihood approach and the optimal P 3

test

Let L(θ, p) denote the likelihood function of θ and p and let π(p) be the
density of a prior distribution of p (with respect to Lebesgue measure on
[0,1]). The integrated likelihood of θ, L̃(θ), is then obtained by integrating
L(θ, p) with respect to π(p)dp (see Aitkin and Rubin, 1985). We then have

Theorem 3 (Theorem 3.1 of Pal and SenGupta, 2000) The locally most
powerful test for H0 : θ = θ0 against either of the one-sided alternatives,
based on the integrated likelihood L̃(θ), is equivalent to the optimal P3 test.

4.3 Nuisance Parameters Present

Nuisance parameters may appear in the context of P3 as ones involved in func-
tions of several parameters defining some of the H0is. By transformations,
each such function may be represented by a new parameter and further result
in parameters ν no longer involved in the P3. We will refer to such nuisance
parameters ν as induced nuisance parameters. There may also be parameters
which are not involved in P3 before any transformation as referred to above.
Such parameters will be referred to as ordinary or simply nuisance parame-
ters. In general we will denote a nuisance parameter, possibly vector-valued,
by ϑ. The following examples will illustrate these definitions.

Examples 9. We present three general mixture distributions below.

Example 9.1. g(x|p, µ, σ2) =
p

σ
f

(
x− µ

σ

)
+

1− p

σ
f

(
x− µ0

σ

)
, µ0 known.

A P3 is given by η1 = p(µ1 − µ0). Here σ is an ordinary nuisance parameter.
Example 9.2. g(x|p, µ1, µ2) = pf(x− µ1) + f(x− µ2).
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A P3 is given by η2 = p(µ1 − µ2). However, the second factor of η2 involves
two parameters. A simple transformation µ1 = µ2 + θ, µ2 = µ shows that
now a P3 can be written in terms of the product of the two single parameters
p and theta, η′2 = pθ. Then µ ≡ µ2 can be seen to become, what we refer
to as, an induced nuisance (location) parameter. It often turns out that to
obtain a L-optimal (LMP S,I,Cα, etc.) test, it will greatly facilitate to adopt
a P3 with a(some) induced nuisance parameter(s).

Example 9.3. g(x|p, µ, σ2) =
p

σ
f

(
x− µ1

σ

)
+

1− p

σ
f

(
x− µ2

σ

)
.

A P3 can be given by η3 = p(µ1 − µ2). Transform the parameters by let-
ting µ1 = µ + δ, µ2 = µ and denote δ/σ = θ. We can now define a P3 as
η′3 = pθ. Then, here µ and σ are induced and ordinary nuisance parameters
respectively.

Method of Transformation of Parameters: Observe that transforma-
tion of parameters can be a powerful tool to obtain appropriate P3s which
lead to L-optimal tests in various classes. In example 9.2 above, a simple such
transformation has been employed. This shows that under H0 the nuisance
parameter is a location parameter. Hence, for such a p.d.f. g(.) as admitting
a boundedly complete sufficient statistics for its location parameter µ under
H0 : θ = 0 (and some mild conditions, see Spφjtvoll, 1968), one can construct
locally most powerful similar test for H0. It is well known that the class of
such p.d.f.s is quite a rich one.

Example 10. (Example 9.2 continued.) Specializing to f(.) ≡ φ(.),
the normal p.d.f., we have η1 = p(1 − p)(µ1 − µ2)

2. In terms of the re-
parameterized model, we have η1 = pθ with an unbiased estimator of it

being given by T1 = S2 − 1, where S2 =
1

n

n∑

i=1

(Xi − X̄)2. Further, it can be

shown using Basu’s theorem that an unconditional LMPSU test obtains here
and its critical function is given by:

ψ
(1)
0 (x) = 1 if S2 > c.

Note that the above test is also LMPIU and its cut-off points can be found
easily using the χ2

n−1 distribution.

We now consider a distribution where random variable X is a vector,
but the parameter of interest θ is a scalar and the nuisance parameter ϑ is
possibly vector-valued. The mixture of SSMN distributions (see example 4)
is an example of such a distribution. It is given by

g(p)(x|m,σ2, ρ) = p(2πσ2)−k/2|Σρ|−1/2 exp
{
−(x−M)′Σ−1

ρ (x−M)/2σ2
}

+ q(2πσ2)−k/2 exp
{
−(x−M)′(x−M)/2σ2

}
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Then g(.) is the density of a mixture of two k-variate SMN distributions with
mean vector M = m1, σ2 being the common variance and ρ, the equicorre-
lation coefficient defining the correlation matrix Σρ. Here H0 : no mixture,
corresponds to having a P3 defined by η = pρ. Optimal similar tests for
known p have been derived in SenGupta and Pal (1993) ( see this also for ex-
amples of real-life applications) and therein the approach of P3 for unknown
p to derive L-optimal similar tests has also been suggested.

5 Multivariate Multiparameter problems

We now enhance our P3 approach to the encompass the generalized situation
of multivariate multiparameter models possibly involving nuisance parame-
ters also. We will restrict our discussions here to the case of such mixture
models as generalizations to the univariate setups dealt with above.

Consider a multivariate mixture density with possibly vector parameters
θi, i = 1, 2, and a nuisance parameter ϑ, of the form

g(x|p, θ1, θ2, ϑ) = p f(x|θ1, ϑ) + (1− p) f(x|θ2, ϑ). (14)

In some cases, θ2 may be known, say specified as θ0. We will propose two
approaches here, one based on LMMPU tests and the other based on Roy’s
UI principle, to be referred to as UI-IU tests.

5.1 LMMPU based tests

Proceeding as for the univariate case, let us first consider the case when p
is known. Suppose further, for simplicity, that θ2 = θ0, known. We seek a
multiparameter optimal test here. This can be taken as Locally Most Mean
Powerful Unbiased (LMMPU) test when there is no nuisance parameter or
LMMPU Similar (LMMPUS) test in the presence of a nuisance parameter ϑ,
as given by theorems 2 and 3 respectively of SenGupta and Vermeire (1986)-
the reader is referred to this paper for basic definitions and derivations also.
For the original problem of testing for no mixture, i.e. with p unknown,
now an appropriate P3 may be defined which may also be “indicated” by the
LMMPU(S) test statistic. We illustrate this approach by an example below.

Example 11. (Example 9.1 continued.) Consider the multivariate (k-
dimensional) version of example 9.1 specializing to the multivariate normal
distribution with Σ = I and θ0 = 0. Then the underlying mixture density is
given by,

g(x|p, θ,0) = pNk(x|θ, I) + (1− p)Nk(x|0, I)

Then for p known, we have H0 : θ = 0. Let us adopt for our mixture
setup the LMMPU test (using ni = n∀i and Σ = I) derived (see Result 5
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of SenGupta and Vermeire, 1986) for the component distribution Nk(x|θ, I)
for the same H0. We have seen earlier that this has been usually the case for
the univariate mixture problems with known p. (It remains to be established
that this test is indeed the LMMPU test under the mixture setup with known
p - this problem will be taken up elsewhere.) The test statistic reduces to
T = nΣk

i=1X̄
2
i .

For p unknown, an obvious choice for a P3 is η0 = pθ. However, a choice
of P3 which is most convenient (as suggested by the test statistic) for us here
is given by η = [p + (n − 1)p2] Σk

i=1θ
2
i . Then a little algebra shows that an

unbiased estimator of η is given by T−k, and hence the P3 test coincides with
the LMMPU test based on T. Thus this test is a multivariate mutiparameter
‘optimal’ test.

5.2 Union-Intersection - Intersection-Union based tests

For known p, observe that the null hypothesis of no mixture reduces to the
vector (multi) parameter hypothesis H0 : θ1 = θ2, which is representable in
the equivalent form ∩

l 6=0
H0l, where H0l denotes a scalar parametric function

(possibly a scalar function of the corresponding components in the param-
eters θi, i = 1,2,.) Assume that an optimal test is available for testing the
scalar hypothesis H0l for each l. We are then back in the classical framework
for the application of the ∪ − ∩ principle of Roy (1953) to get a UI test
for H0. When p is unknown, the IU test obtained from the P3 approach
may form the required optimal test for the scalar hypothesis H0l. We may
then apply the ∪ − ∩ principle to yield, what we will call, the UI-IU test
for H0. This approach is very useful for many multivariate testing problems,
in particular those involving the multivariate normal distribution. Here we
illustrate it by considering the multivariate extension to example 9.2, which
involves nuisance (induced) parameters also.

Example 12. (Example 9.2 continued.) Consider the multivariate ana-
logue of the distribution in example 9.2. Let X be a random vector variable
following the distribution

g(x|p, µ1,µ2) = pNk(x|µ1, I) + (1− p)Nk(x|µ2, I),

or equivalently,

g(x|p,θ,µ) = pNk(x|µ + θ, I) + (1− p)Nk(x|µ, I).

A P3 for no mixture is given by the vector η = pθ. A more convenient
representation of it is in terms of a scalar η′ ≡ p(1− p)(θ′θ).

Following Roy’s UI approach, define Yi = l′Xi, i = 1, 2, . . . , n, where
l ∈ L, the collection of all k-vectors l of unit norm. Then it is easily seen
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(Pal and SenGupta, 2006) that the UI approach leads to the test which rejects

H0 if T ′
2 = sup

l∈L
l′Al > c i.e., if λM(A) > c, where A =

n∑

i=1

(Xi− X̄)(Xi− X̄)′

and λM(A) is the largest characteristic root of A. The cut-off point c can
be found from Sugiyama (1972). This test is thus an example of UI-IU test
described above.

6 Concluding Remarks

We have considered in this paper a testing problem, referred to as the
Intersection-Union testing problem, which may be looked upon as the prob-
lem complementary to the one considered by Roy and which led to his Union-
Intersection principle. For such problems the usual likelihood ratio or Wald
type tests are not convenient to implement and their usual asymptotic distri-
butional results are in general not valid. It has been shown here that many
intersection-union testing problems can be conveniently formulated in terms
of testing a single parametric function, denoted here by a Pivotal Parametric
Product, or notationally by P3. The choice of a P3 is motivated by optimal
tests. It is demonstrated that such an approach leads to UMP tests in regu-
lar exponential families and L-optimal tests in several non-exponential fam-
ilies. Variety of examples were presented. Further it was seen that P3−tests
can be conveniently constructed even in the presence of nuisance parame-
ters. Extensions to multivariate multiparameter situations naturally led to
the construction of Union-Intersection - Intersection Union tests. There are
many intersection-union testing problems in real-life and it is expected that
the P 3 approach presented here may be enhanced to solve such problems.
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