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We propose asymmetric angular-linear multivariate regression models, which were 
motivated by the need to predict some environmental characteristics based on some 
circular and linear predictors. A measure of fit is provided through the residual analysis. 
Some applications using data from solar energy radiation experiment and wind energy are 
given. 
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1. Introduction 

 
 In recent times, great emphasis is being devoted to the development and possible 
use of alternative sources of energy. This is so because of the sure and eventual depletion 
of the conventional sources of energy, such as oil and natural gas and other fossil based 
fuels, coupled with their ever-rising cost of procurement and environmental hazards. It is 
in this light that the development of renewable energy resources in the world is very 
important. Some of the key renewable energy resources are the solar energy and wind 
energy. Due to the nature of the atmosphere, some solar energy fails to penetrate the 
atmosphere and a vast majority is reflected back by dust particles. Cloud covers prevent 
the earth’s surface from being uniformly heated thus causing temperature differences on 
the surface and in the atmospheric masses situated near them. These temperature 
differences cause atmospheric pressure differences as well. The air attempts to equate 
these peaks and troughs by circulating across terrestrial surface in swirls and eddies. 
These air movements are further modified by the forces imposed by the earth’s rotation 
as well as by the resistance to air movement near the ground presented by topographical 
features. Wind energy therefore, is defined as the kinetic energy of moving atmospheric 
air and which can be seen to be totally and directly caused by solar insulation and is 
infact a derivative of solar energy (Cheremisinoff, 1978).  
 We have observed a periodic phenomenon in the response variable for solar 
energy data, which spans for twelve hours in a day and this periodic phenomenon is not 
necessarily symmetric due to the atmospheric changes observed on daily basis. The wind 
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energy data, which spans for twenty-four hours, was observed for about one month and it 
could have possibly been asymmetric but our data did not reveal such hence we adopted a 
symmetric model. 

 Researchers especially in environmental studies have often encountered 
multivariate regression models involving some circular and linear predictors. Gould 
(1969) had earlier developed a regression model that predicted a circular response from a 
set of linear predictors by using a conditional von-Mises distribution on the set of linear 
covariates. The maximum likelihood estimators of the parameters for his model is 
however not unique. Ohta, Marita and Mizoguchi (1976) and De Wiest and Della 
Fiorentina (1975) suggested a measure of Air Quality Index (AQI) based on bivariate 
data comprising of the circular variable,(wind direction) and one linear variable, (level of 
pollutant). Johnson and Wehrly (1978) developed parametric models for angular-linear 
dependency based on maximum entropy conditional distribution, which have been 
generalized by SenGupta (2004) to encompass possibly asymmetric directional data on 
manifolds. The work by Fisher and Lee (1992) generalized the Johnson-Wehrly models 
by allowing the response variable to have a concentration parameter that is also a 
function of the linear covariates. Some expository literature on regression with directional 
data exist, e.g see the monographs by Jammalamadaka and SenGupta (2001), Mardia and 
Jupp (2000) and Batschelet (1981). However, there have been only limited attempts to 
model multivariate angular-linear data. Further, these do not involve the asymmetry when 
present, which is often so characteristic of circular data in practice. Here, we propose 
some asymmetric circular linear multivariate regression models and apply those to 
several real-life environmental data sets. 
 Our primary interest is in modeling multivariate multiple regression models 
involving a linear response, a circular predictor and a set of linear covariates. In section 2, 
we enumerate the forms of the models under consideration, the method of estimation and 
the criteria for model selection. Some discussions on model fitting are presented in 
section 3. The applications of our approach to two real-life environmental data sets, 
together with the residual analysis for checking the goodness-of-fit of the model are 
given in section 4. Some concluding remarks are presented in section 5. 
 
2. Circular-linear regression models 
 
In model (1), we consider a regression model that involves a simple cosine function given 
by 
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where Y  is the linear response variable, M is the mean level, i iβ  is the regression 
coefficient, Xi is the linear independent variable, A is the amplitude, ω is the angular 
frequency, ti is the circular independent variable (usually time) subject to a certain period 
T, t0 is the acrophase and iε is the random error component. 
The estimate of ω is given in radian or degree respectively as 
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We assume T and, hence, ω to be known. 
Equation (1) can be written as  
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where φφωφ sinD   , cosC  , 0 AAt ===  
The estimates of A and φ can easily be found algebraically once those of C and D are 
obtained. 
We next consider a trigonometric polynomial, which is a generalization of the cosine 
model. It contains the angular frequencies with a multiple of ω given by ωt, 2ωt,…, kωt. 
The function, in addition to the overall period T, contains smaller periods T/2, T/3, … 
which fit exactly into the overall period. The model is given as 
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The terms )2cos(),cos( 2211 φωφω −− tAtA , etc. are called the first, second, etc. 

harmonics. This model is applied when there are multiple periods within the general 
period.  

The non-linear periodic function could be applied when the oscillation pattern is 
complicated with major and minor peaks and troughs. The trigonometric polynomial 
shown in equation (3) may fit well but will involve too many terms and parameters. 
When the peaks and troughs do not follow each other, it implies that there is a skew and 
we propose the non-linear model for this situation to be given as model (2) by, 
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where φωψ −= t  and ν  is the parameter of skewness. It has been shown that ν  is a 
value that usually lies in an interval –30o ≤ ν  ≤ 30o and we obtain the simple cosine 
function whenever ν  = 0o. 
 When the oscillations are sharply peaked or flat-topped, we will consider yet 
another model given by, 
 

      (5) i

k

i
iii vAxMY εψψβ ++++= ∑

=

)sincos( 11
1

11

 

 3



where ν 1 is the parameter of  kurtosis and it indicates to what extent the shape differs 
from a sinusoidal oscillation. 
 
3. Model fitting 
 
Detecting the best parsimonious model is an important step in the analysis of data sets. 
The methods of linear and non-linear least squares were applied in parameter estimation. 
Several diagnostic tools were used to assess the goodness of the model fit. An overview 
of several approaches for assessing the effect of number of parameters in determining the 
best non-linear regression model can be found in the book by Seber and Wild (1988).  

Going by some set of assumptions, the standardized residuals ought to resemble a 
sample from a standard normal distribution. A comparison of these residuals with a 
standard normal distribution allows an assessment of the distributional assumption. A 
plot of the residuals against fitted values allows an assessment of the variance structure. 
We will also consider the normal P-P plot and the Q-Q plot of the standardized residuals 
to assess the fit of the models.  
 
4.  Applications 
 
4.1 Solar energy data 
 
Solar energy is produced through nuclear fusion of the light elements that constitute the 
sun (hydrogen-Helium reaction). 4.7 x 105 tons/sec of elements reacting produces 3.8 x 
1023 kw energy, out of which ½ billion reaches the earth. The sun supplies all forms of 
energy being used on earth both directly and indirectly and without which most activities 
would not proceed on a favorable note. Solar energy is the most dependable, abundant, 
and constant source of energy on earth and it is produced through the process of nuclear 
fusion of light elements, hydrogen, and helium during a spontaneous reaction of the 
atoms. 
 The measurements of the solar radiation can be obtained depending of course on 
the atmospheric weather at the point in time. The measurement could be made of diffuse 
radiation, direct radiation, or total radiation. The instrument conventionally used for total 
radiation is called Pyranometer. It can also be used for measuring diffuse radiation by 
shading it from direct radiation using a shade ring. 
 The experiment was conducted by engineers in Mechanical Engineering 
Department, University of Nigeria, Nsukka. It was performed for over a period of one 
year but a very reliable data was collection for a period of six days in the month of 
October and half-hourly record starting from 9 am to 5.30pm. This period was chosen 
due to the uninterrupted weather condition that provided sunshine throughout. We 
associated these hours with the angles 0o, 20o, 40o,… respectively. The predictor 
variables considered are ambient temperature (X1i), control temperature (X2i), and the 
time in hours (ti) to predict the absorber temperature (Yi) in a well-constructed 
Thermosyphon solar water heater. A preliminary look at the data suggested model (1) as 
a reasonable choice. The estimates of the parameters of the regression curve were 
obtained by the method of least squares. 
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The equation of the fitted model (1) after deriving the amplitude and acrophase is  
   

)5964.17915cos(7069.20960.27500.59700.195 21 −+++−= iiii txxY  (6) 
 
Finally, we convert the acrophase angle φ = 179.5964o into hour of the day. Since 180o 
stands for 12 noon, the acrophase is estimated to be 12 noon.   
 
Table 1: Summary values. 
 

Model R R2  Adjusted 
R2 

Std. Error of 
the Estimate 

1 0.939 0.883 0.878 5.6505 
 
 
      Table 2: The ANOVA table 
 

 
Model 

Sum of 
Squares 

 
df 

Mean 
Square 

 
F 

 
p-value 

1  Regression 
    Residual 
    Total 

24721.674 
  3288.636 
28010.310 

    4 
  103 
  107 

6180.418 
   31.929 

193.571 
 

0.000 

 
Table 3: The Coefficients 
 
Model    1 
           
Coefficients 

 
 
Values(B) 

Unstd. Coeffs. 
       
       Std. Error 

Std. Coeffs. 
 
Beta 

 
 
 t 

 
 
p-value 

   (Constant) 
 Amb. Temp. 
 Cont. Temp. 
  SinWT 
  CosWT 

-195.970      
     5.730      
     2.096  
     1.063 
    -2.489      

15.002 
   .601 
   .195 
   .767 
   .869 

 
.457 
.536 
.049 
-.102 

-13.063 
   9.536 
 10.760 
   1.387 
  -2.863 

.000 

.000 

.000 

.169 

.005 
 
The best fitted equation for predicting the absorbent temperature from ambient 
temperature, control temperature and time of the day for model (1) were determined 
using subroutine of SPSS and the related results are summarized in Tables 1,2 and 3. In 
Table 1, the coefficient of determination is very high with a value of 0.939 while Table 2 
clearly shows that the multiple regression is significant. Table3 shows that both the 
circular and all the linear variables are highly significant. 
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Figure 1: Normal p-p plot of regression standardized residuals  
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Figure 2: A scatter Plot for standardized predicted and residual values  
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Figure 3: The normal Q-Q plot of standardized residuals  
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Figure 4: Plot of predicted absorbent temperature with 95% C.I. 

 
The accuracy of the results and the distributional assumptions for model (1) were 
established using the plots in Figs. 1, 2 and 3. The fitted values of the regression curve 
are shown in Fig. 4, which exhibits an excellent fit. 
 
4.2 Wind Energy 
 

Among the renewable sources of energy, wind energy is not only freely and 
widely available, it is inexhaustible. With the use of routine meteorological records from 
Murtala Mohammed International Airport, Lagos Nigeria for the year 2003, data were 
obtained on the hourly, daily and monthly values of the wind direction and velocity. The 
records are primarily used for the determination of certain statistical characteristics of 
wind distribution. Other records include average daily wind energy, number of hours per 
month for which wind are adequate for windmill operation and the incidence and 
duration of calm period. Our interest is however on the prediction of wind energy 
generated  given the velocity , time  and wind direction ).    )( iY )( 1ix )( it

o
iθ(

The fitted regression curve is due to the skewed dependency of wind energy on time as 
well known in environmental sciences and also exhibited in figure (5) using SPSS, the 
model (2) in equation (4) is enhanced hence,  

 
)cos30cos(904.10566.0185.40542.110 1 iiiii txY θθ −+−+−=   (7) 

 
Finally, we convert the acrophase angle φ = 1.5178o into hour of the day. Since 1.5o 
stands for 6 minutes, the acrophase is estimated to be 6 minutes past midnight i.e. 
approximately midnight.   
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 Figure 5: A plot of the wind energy vs time of the day 
 
Table 4: Summary values. 
 

Model R R2 Adjusted 
R2 

Std. Error of 
the Estimate 

2 0.992 0.984 0.982 6.2573 
 
Table 5: The ANOVA table 
 

 
Model 2 

Sum of 
Squares 

 
df 

Mean 
Square 

 
F 

 
p-value 

  Regression 
  Residual 
  Total 

48685.561 
    783.084 
49468.645 

    3 
  20 
  23 

16228.52 
   39.154 

414.477 
 

0.000 

 
 
Table 6: The Coefficients 
 
Model   2 
      
 Coefficients 

 
 
Values(B) 

Unstd.Coeffs. 
  
   Std. Error 

Std. Coeffs. 
 
   Beta 

 
 
   t 

 
 
p-value 

 (Const.) 
Vel.(M/S) 
Time(hrs) 
Cos22wd 

-110.542   
   40.185      
    -0.566  
   10.904 

5.763 
1.193 
0.192 
4.043 

 
0.991 
 -.086 
0.078 

-19.181 
 33.683 
 -2.941 
2.697 

.000 

.000 

.008 

.014 
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Figure 6: Histogram of regression standardized residual 
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Figure 7: Normal p-p plot of regression standardized residual 
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Figure 8: Scatter plot of standardized value and residual 
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Figure 9: A plot of the fitted values with 95% C.I. 
 

The accuracy of the results and the distributional assumptions for model (2) were 
determined using the plots in Figs 6, 7, and 8. The fitted values of the wind energy with 
95% confidence interval are shown in Fig. . 
 
5. Conclusions 
 
The main emphasis of this work has been to fit regression models to possibly asymmetric 
angular linear variables. A simple cosine function was adopted for the solar energy data. 
However, an asymmetric model was selected for the wind energy data. Four diagnostic 
procedures were adopted to determine the nature of fit of the models. Those methods 
have shown that the models gave quite good fits to the data sets. 
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