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326 GENERALIZED CANONICAL VARIABLES

where r(+) denotes the rank of a matrix. We
note that the weights (w;) involve the {#;}
and so an iterative method of solution is
required (see Nelder [6] for one approach).
However, (5) is in fact the set of likelihood
equations for the {6,} based on error con-
trasts and an assumption of normality for y,
and their solution leads to restricted maxi-
mum likelihood estimates. In this case we
may calculate the information matrix 1(8) of
the {65,-}, and —21(0) turns out to have
diagonal elements

ef—l[r(ci) S AT+ (- ,.,.)Zr(Tj)]

JiN>0 j

(62)

and off-diagonal elements
070" E w, W (T).
J

A particular advantage of using this proce-
dure with (GB) designs is the fact that a
simple expression can be found for the right-
hand side of (5) and Fisher’s scoring method
can be adopted using (6a) and (6b) without
recalculating & explicitly (see Nelder [6]). In
general this cannot be avoided.

We close with a remark about the calcula-
tion of BLUPs of random effects under
models such as (2). This is really an aspect
of the block structure defined by C,,

.,C,, so we do not give any details. It
will suffice to observe that if p'Uy is the best
linear predictor of a contrast of random
effects when a = 0, then b'U(y — Xa) is the
BLUP of this same contrast for arbitrary a.
The great advantage of having (GB) hold is
the simplicity of the expression for & and the
ease of estimation of the necessary disper-
sion parameters.

(6b)

REMARKS

General balance was introduced by Nelder
[5] with the intention of using the notions to
permit the writing of very general computer
programs for analyzing designed expeti-
ments. Many of the ideas described above
have been implemented in a modified form

in GENSTAT (see Alvey et al. [1, Chap. 6]).
The example of a row-and-column design
not satisfying (GB) comes from the thesis of
Houtman [3], as does the combinability re-
sult given in the preceding section. For a
recent review of the literature on variance
components* and BLUPs which includes a
discussion of (GB), see Thompson 9}
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VARIABLES

A random vector X of interest poses bojth
analytical and economical problems 11t
many situations if it has too many compo-
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nents. The large number of correlations as-
sociated with the components of X makes it
difficult to comprehend overall or general
relationships. A reduction in dimensionality
together with some representative measure
of relationships among the variables can
thus be of practical importance. Generalized
canonical variables (GCVs), with their asso-
ciated correlations, termed the generalized
canonical correlations (GCCs), attempt to
serve this purpose.

It is assumed that a meaningful subgroup-
ing of X:p X 1 into several disjoint subvec-
tors X, ..., X, Xiop X L, S p=p is al-
ready given. For k =2, Hotelling [6] intro-
duced the concept of canonical variables
(CVs) and associated canonical correlations
(CCs) (see CANONICAL ANALYSIS).

DEFINITION

The first GCV, Y with YV’ =[T{",
L YO T=1ONXY = [f(X),
{D(X,)], where the f('s are real-
valued functions, is a k-dimensional random
variable, the components of which are cho-

sen so as to optimize a criterion based on-

some function of their correlation matrix.
For each such function there will be a corre-
sponding GCV as a generalization of CV.
The higher-stage GCVs, Y = f((X), i =1,
2, ..., are also k-dimensional random vari-
ables, the components of which are chosen
so as to optimize the same criterion with
some additional constraints imposed at each
stage regarding the relationships among the
variables at a given stage with those in the
preceding stages. [These constraints may be
different for different methods. Also, the
fX,)s are usually linear functions of the
Xs, j= 1,2,...,k, and have unit van-
ances.] For a given GCV, the associated
correlation can be loosely termed as GCC,
although depending on the method of con-
struction of the GCVs such GCCs may in
fact be correlation matrices instead of a one-
dimensional summary statistic. It may be
reasonable to terminate the procedure at the

sth stage if, depending on the method, at the
(s + Dth stage the scalar GCC is near zero
or the off-diagonal elements of the GCC
matrix are close to zeros.

There are two basic problems related to
GCV analysis. One is concerned with the
construction of GCVs when the population
dispersion matrix is known. The other deals
with statistical inference when only a sample
from the population is available. Although
the first problem had been attacked since
1951, the research on the second started only
recently with Sen Gupta [12]. Also, a realis-
tic interpretation of GCVs is of great practi-
cal importance.

CONSTRUCTION

For construction of GCVs, one faces at least
three problems of optimization: (a) selection
of the number k of subgroups and their
corresponding elements, (b) determination
of the compounding functions f{%s, and (c)
deciding on the optimal stage of stopping for
higher-order GCVs. As stated above, it is
usually assumed for (a) that the number and
the elements of the subgroups are com-
pletely specified. Otherwise, one may at-
tempt to use cluster analysis techniques. For
(b) several available methods will be dis-
cussed. With &k > 2, for (c), the situation is
“somewhat arbitrary” for some of these
methods.

The algebraic derivations become simpler
and essentially the same as in CC analysis if
we can reduce the several groups effectively
to two groups. Further, for multivariate nor-
mal populations, testing that the CCs are all
zeros is equivalent to testing that the two
sets are independent. These considerations
motivated the construction of various condi-
tional GCCs. A set or sets of variables are
held fixed and effectively the two sets of
residuals are analyzed. The GCCs can then
be obtained through parallel test criteria of
(conditional) independence as in the case of
two-group CCs. Most recently this concept
has led to g, and g, bipartial GCC analysis
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(see Lee [8)). For each of the cases above,
the GCVs are the normalized cigenvectors
associated with the eigenvalues and GCCs
corresponding to the determinantal equation

| 2 = (k = DeZa =0,

1
k2*=k2:d+k2;- M
pr the diagonal supermatrix with ele-
ments X, i=1,..., k, and ,Z* is the mod-

ified covariance matrix, modified by the par-
ticular generalization under consideration.
Although computationally quite convenient,
these GCVs seem to be of limited practical
utility because of their conditional nature.
McKeon {10] has suggested a (first) GCC
obtained as a generalization of a modified
intraclass correlation coefficient*. For the
CVs (k =2) (see, €8 Anderson [1, Chap.
12, eq. (14)]) and the first GCV by the
method of McKeon (k= k), ,E* of (1) is
simply Z, the dispersion matrix of X. Carroll
[2], Horst 5], and several other authors have
also arrived at a similar solution, although
from different viewpoints. Sen Gupta [12]
derived new GCVs obtained by modifying
with the equicorrelation constraint the crite-
rion of minimizing the generalized variance®

of Y (ie, |Zy]; see Anderson (1, p. 305,

Prob. 5]). These new GCVs are quite conve-
nicnt for purposes of statistical inference
and will be referred to later in that context.

Let the correlation (also covariance) ma-
trix of YU be " = (pf"). An important
property of CC analysis is that the CVs are
invariant under nonsingular transformations
of either set. Exploiting this property, Horst
[5] proposed maximizing Sk -0y and
also maximizing the largest eigenvalue of
5(1). These are termed the SUMCOR and
MAXVAR methods, respectively. Exploiting
the same property, Steel {14] suggested the
GENVAR method, where GCVs are ob-
tained by minimizing the determinant |2V,
the generalized variance of Y, The meth-
ods of SSQCOR and MINVAR were pro-
posed by Kettenring [7}. The former at-
tempts to maximize S o pg? or equiv-
alently trace of =2 while the latter mini-
mizes the smallest eigenvalue of =D, Ket-
tenring has given some interesting factor-

analytic interpretations for the foregoing five
procedures. However, for GENVAR,
SSQCOR, and SUMCOR, the correspond-
ing defining equations cannot be presented
in simple form as in (1) and iterative proce-
dures are required even for first GCCs and
GCVs.

All of the methods above reduce to CC
analysis for k = 2. Each method emphasizes
some aspect of the correlation matrices of
the GCVs and hence attempts o detect cer-
tain forms of linear relationships among the
sets of variables. Thus, depending on the
problem, it may be necessary Lo use several
of these methods to better understand the
underlying relationships among the sels of
variables in X.

For singular ,E*, see Sen Gupta [11].

.

STATISTICAL INFERENCE

When only a sample is available from the
population, the GCVs are usually estimated
by the maximum likelihood* method, which
effectively replaces the population parame-
ters in (1) by their sample counterparts.

Exact distributions for GCVs are quite
complicated and seem 1o be nearly intracta-
ble for those obtainable only by iterative
procedures. A large-sample approximation
by multivariate normality may be suggested.

Several problems of tests of hypotheses*
were formulated in Sen Gupta {12]. Since
GCVs obtained by different methods opti-
mize different criteria, the test statistics and
associated distributions need to be worked
out separately for each method. We illus-
trate this below using the new GCVs ob-
tained in Sen Gupta [12]. For simplicity,
only tests based on the first new GCV, YV
=Y, will be considered. Let the correspond-
ing correlation matrix of Y be . Large
samples are assumed.

1. It would be natural to explore 10 what
extent the GCVs optimize the criteria, i.e.,
what value of the criterion is achieved by a
particular GCV. For new GCVs, this leads
10 a test of Hy: |Eyl = 03% (specified) against
H, 1By < o5t A test for Hy: pth = p§"
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. (given) against H,:p'V = p{V can also be
proposed, where p'? is the new (first) GCC.
These involve curved exponential families*,
Likelihood ratio tests* and a locally most
powerful test for p¢" are available. The lat-
ter test is globally one-sided unbiased and
the exact distribution of the test statistic is
available in terms of the (tabulated) Kum-
mer’s function (see Sen Gupta [13]).

2. Next, it would be of interest to deter-
mine whether with the same dimension k,
reasonable alternative regroupings of X pro-
duce better results (see, e.g., Granadesikan
(3, p. 77, para. 4)). If there are m reasonable
regroupings, each of dimension %, then for
the new GCVs, one would test H,: [Z]s all
equal against H,: [Zv]s are in a given order,
where ;Y is the (first) GCV for the jth re-
grouping, j=1,..., m. If the same set of
data is used to estimate the m GCVs, the
tests will be quite involved, owing to the
mutual dependence of the GCVs. Some judi-
cious transformations are helpful here to
yield simpler tests.

3. It may be possible to reasonably re-
group X into various numbers ki, i=1,
..,/ of subsets, yielding GCVs of different
dimensions. It is then worthwhile to explore

whether a GCV of smaller dimension per- °

forms as good as, if not better than, one of a
higher dimension. For such a case, the for-
mer GCV will naturally be preferred. For /
subsets, with new GCVs, one would test
Hy: |Zx'/% all equal against H,:|Z.|'/*
<UBMVE, ko <k, i#f =1, 0,
where Y is the (first) new GCV of dimen-
sion &; obtained by the ith mode of regroup-
ing, i=1,..., 7 Some solutions can be pre-
sented here through isotonic regression*. For
more details, see Sen Gupta [12].

Example. From Thurstone and Thurstone
[15] k = 3 sets of scores on three batteries of
three tests each (ie., p, =3, i =1,2,3, P=9
for several individuals are available. The
vector variables Z;:3x 1, i= 1,2, 3, repre-
sent different measures of verbal, numerical,
and spatial abilities of the subjects tested. A
transformation was employed on 2’ = (Z!,
Z;,7)) to give internally “sphericized” stan-

dardized variables X. Horst [4), Kettenring,
Gnanadesikan, and Sen Gupta have derived
GCVs for X from its covariance (same as
correlation) matrix R (see also McDonald
[9]). Let R = (R,), the R;; being 3 X 3 matri-
ces. Then R, =1, i=1,2,3, and

[ 0636 0.126 0.059
~0.021 0.633 0.049 |;
0.016 0.157 0521

[0.626 0.059
=1 0.035 ;

| 0.048
( 0.709

0.195
0.459
0.238

0.050

0.129
0.426

~ 0,002
=0039 0532  0.190 |.
[0.067 0258  0.299

Consider, including MAXVAR, the different
approaches discussed above which yield the
same result in the first stage as that of
McKeon’s method. For McKeon’s method
[e.g., in (1)] we have Z* =R, =R,=1,
and the first GCV is obtained from the
eigenvector v("'= (" ¥{D) corre-
sponding to the largest eigenvalue of the
equation [R—AIl =0. The first GCC for
McKeon’s method is p¢D = 0.745, which is
larger than any pairwise correlation in R. In
the MAXVAR method, the usual require-
ment that the components ¥ = oV’ X, of
the first GCV Y'" have unit variance is
achieved by letting af" = v{D/y(D'y(D
=1,..., k. This yields

YO = (0.732X,, + 0.514X,, + 0447, ,
0.659X,, + 0.625X,, + 0.420X,,,
0.678.X3, + 0.640, + 0.362X,,),

where X,]. is the jth element of X, i,j=1,
2,3.

It turns out that YV is “virtually identi-
cal” to the first GCVs obtained by iterative
procedures for the SUMCOR method by
Horst [4] and the SSQCOR and GENVAR
methods by Kettenring. The same is true for
the first GCC matrices for these methods,
which are all almost identical to

1.000 0.735 0.756
1.000 0.743|.

) = [
1.000



330 GENERALIZED HYPERGEOMETRIC DISTRIBUTIONS

For higher-stage GCVs further iterative
computations are required (see Horst [4] and
Kettenring [7] for details).

INTERPRETATIONS

Although all the criginal variables are
needed to obtain the GCVs, the final result
would indicate that only a few GCVs need
to be retained. All future analysis can be
limited to these retained GCVs. For exam-
ple, these GCVs, instead of X, may consti-
tute the variables in future regression analy-
sis. A meaningful reduction of dimensional-
ity is achieved.

The GCVs obtained above as linear com-
binations of the original variables have in
most cases very little practical meaning by
themselves. However, one can attempt to
interpret the GCVs (see Timm [16] for the
case of CCs) via the correlations of the lin-
ear compounds with the corresponding ele-
ments involved, i.e., correlations of Y with
ijS, I'=1,‘..,k, j=1"""’Pi’
t=1,...,8.
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HYPERGEOMETRIC
DISTRIBUTIONS

Hypergeometric distributions* are defined
by the probabilities

p=(M(M M) /(M)
-/ () o

for max(0,n + M — N) < x < min(n, M),
where N, M, and n are positive integers. If
N > M + n, this is written
(N — M)!(N — n)!
POX) = RN =M= n)!

(= M) =)
(N—M—n+1)Fxt’

bt

and the factor depending on x is a term of



