
A Likelihood Integrated Method for Change-point Problem with 
Directional Data  

 
 
 

Ashis SenGupta 
Indian Statistical Institute, Kolkata. INDIA 

 
and 

 
Arnab Kumar Laha 

Indian Institute of Management, Ahmedabad, INDIA 
 

 
 

ABSTRACT 
 

In this paper we introduce a new likelihood-based method, which we call the 

likelihood integrated method. This method is distinct from the well known 

integrated likelihood method. We consider the non-trivial problem of change-

point with directional data. We demonstrate that here this new method yields 

a novel and simple exploratory graphical analysis, which can be easily 

implemented in practice.  The method is applied to analysis of two real life 

data sets. The results found by this simple method are seen to be quite similar 

to those obtained earlier by different complicated formal methods.      
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Introduction  

The problem of detection of a change in the distribution in a given finite 

sequence of independent observations is commonly referred to as the change 

-point problem. This problem was introduced in the statistical literature by 

Page(1955) in the context of detection of abrupt change in process 

parameters which leads to poor quality products.  The now well-known Cusum 

chart is one of the earliest techniques suggested to deal with this problem. 

The change-point problem has received considerable attention in the linear 

case.  The two main streams of work pertain to the parametric set-up with 

normal distribution as the underlying distribution and the non-parametric set-

up see eg, Chernoff and Zacks (1964),  Hinkley (1970),  Sen  and  Srivastava 

(1973, 1975a, 1975b), Chen and Gupta (2000) etc.  In the context of circular 

or directional data, the change-point   problem   arises in many applications, 

e.g.  detection of time of change of wind direction, direction of movements of 

icebergs, propagation of cracks etc. In the circular case not much work has 

been done on this problem. Lombard (1986) initiated work in the context of 

directional data in the non-parametric frame work while Laha (2001) 

discusses the change-point problem in the parametric framework with the 

circular normal distribution as the underlying distribution of the data.  

  

In this paper we discuss the change-point problem for angular variables by 

using a new approach which we call the “likelihood integrated” approach to 

distinguish it from the well known integrated likelihood approach (Berger et. al., 

1999).  In the usual integrated likelihood approach the likelihood based on all 

the observations is integrated with respect to the conditional (joint) prior 



distribution of the nuisance parameter(s) given the parameter(s) of interest. 

The (joint) prior distribution is assumed to be absolutely continuous with 

respect to the Lebesgue measure and hence is assumed to have a density.  

The integration is carried out over all possible values of the nuisance 

parameter(s). This process eliminates the nuisance parameter(s) and the 

resultant quantity is called the integrated likelihood which can be used for 

inference on the parameters of interest. Berger et. al. (1999) give an excellent 

discussion of the integrated likelihood approach.  

 

In our approach, we assume that the observations are mutually independent. 

We first obtain the integrated likelihood for one observation by integrating the 

likelihood for one observation with respect to the conditional (joint) prior 

distribution of the nuisance parameter(s) given the parameter(s) of interest 

over all possible values of the nuisance parameter(s). Thus the resulting 

expression does not involve the nuisance parameter(s). The “likelihood 

integrated” is then formed by taking the product of the integrated likelihood for 

each observation. It is evident that the likelihood integrated method is less 

general than the integrated likelihood method since it assumes that the 

observations are independent. However, this is not a very serious restriction 

as the independence of observations is a widely prevalent assumption in 

statistics.  We illustrate the method for two circular distributions – the circular 

normal (also called von Mises) distribution and the Papakonstantinou’s 

distribution.  

 



The circular normal distribution is the most popular distribution for directional 

data. It is a symmetric unimodal distribution having probability density function 

(p.d.f.)    
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 is the modified Bessel function of order 0. If the angular random 

variable follows the circular normal distribution with parameters κµ  and   

then we write ),(~ κµCNΘ . The parameter µ is called the mean direction 

(also modal direction) and the parameter κ is called the concentration 

parameter. For more details on the circular normal distribution the reader may 

look into Jammalamadaka and SenGupta (2001).  

 

The Papakonstantinou’s distribution is a skew circular distribution having the 

p.d.f.  
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If the angular random variableΘ follows the Papakonstantinou’s distribution 

with parameters k and  ν  then we write ),(~ kP νΘ . It may be noted that for 

this distribution reduces to the circular uniform distribution (which 

incidentally, is a symmetric distribution) and for 

0=k

0≠k we obtain a skew circular 

distribution.  Further details about this distribution can be found in Batschelet 

(1981).  

 

We apply the likelihood integrated method for analysis of two real life data 

sets – flare data (Lombard, 1986) and wind data (Weijers et. al., 1995). We 



discuss a simple graphical method for exploratory analysis of data sets having 

at most one change point. A method for identifying the change point is also 

discussed. The results obtained from these analyses demonstrate the 

potential of this approach for exploratory analysis of directional data 

suspected to have a change point.   

 

Likelihood Integrated Method for Change-point Problem 

Let Θ be independent angular observations. Suppose the p.d.f. of 

is 
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the vector of nuisance parameters. Let )|( iφηπ be the conditional joint prior 

density of η  given . Then the integrated likelihood corresponding to the 

observation 
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The joint likelihood for the n observations is then formed as the product of the 

n integrated likelihoods for single observations, that is, 
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We refer to the above L as “likelihood integrated”. In what follows we use the 

likelihood integrated to draw inferences about the location of change-point in a 

given set of angular data.  

 

In the classical change-point problem set-up, we are interested to test the null 

hypothesis  
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against the alternative that  
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The estimate of the change-point is derived as a by-product of the testing 

procedure. Note that in the above we are testing for the presence of at most 

one change-point. When the change-point is at r, the likelihood integrated has 

the form  
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where we define . It may be noted that when no change-point 

is present in the data set we have r = n. It may be noted that if 
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proper prior then L  is a proper density when 

viewed as a function of
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θ . Hence, it is simple to construct the generalized 

likelihood ratio (GLR) test for this problem using the likelihood integrated. The 

GLR test for testing H0 against H1 using likelihood integrated is  
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where c is chosen depending on the level of significance of the test. In this 

paper instead of the formal testing approach discussed above we focus on 

exploratory graphical analysis of the data with a possible change-point.  

 

It is easy to see that the change-point problem can be viewed as a model 

selection problem. It can be thought of as a problem of choice among n 

models nrM r ≤≤1, where is the model with change-point at r for rM
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and is the model with no change-point. The model selection 

may now be done on the basis of the likelihood integrated for the models . 

Instead of a formal method, we suggest a graphical analysis useful for 

exploratory analysis. We find for each model M the value 

. The values of are then plotted against r.  It is seen 

that the plot of L  shows a sharp downward trend beyond a point. This 

point can be thought of as rough estimate of the change point. This method of 

graphical examination is explained in more detail with the help of real life data 

sets later in the paper.     
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As a first illustration of the above approach, we discuss the change-point 

problem for the mean direction of the circular normal distribution. This 

problem has been studied in details from a frequentist perspective in Laha   

(2001). The models  for 1r ≤≤ nr  are 

 CN(  i.i.d. are  and CN( n1 1), µµµΘκµ ≠nn  

and the model is  

),,...,, 21 κµΘΘΘ 1CN(   n . 

We write )2(mod πδ  where πδ 20 <≤ . The parameters 

are assumed to be all unknown. The parameters of interest are 

and the nuisance parameters are ( ),1 κµ . Henceforth we write 1µ as . 

Let be a proper joint density. The integrated likelihood for single 

observation is 
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where  .   Then the likelihood integrated for the n 

observations is L . We can then obtain 

and use the plot of ( for indication about 

possible presence of change-point.  

nirif
riif

i ≤≤+
≤≤

=
1

0
 

1 
δ

δ

r 1 ,,|,( θθδ L

),,|,(sup 1 nrL θθδ
δ

L

∏ ∏
= +=

=
r

i

n

ri
iin LL

1 1

)|()|0() θδθ

(, * rLr)(* rL = ))

 

As a second illustration, we look at the change-point problem for the 

parameter ν  of  Papakonstantinou’s ),( kP ν distribution. We will assume that 

the initial value of ν is known and with no loss of generality, take it to be 0. 

Thus the models  for 1rM 1−≤≤ nr  are 

         0),,,...,),,..., 11 ≠+ nnrr kk ννΘΘΘΘ nP(  i.i.d. are  and P(0  i.i.d. are  

and the model is nM ),0(,...,, 21 kPn   i.i.d. are ΘΘΘ . Let )(kγ be a prior for k. 

Then the integrated likelihood for one observation is  
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as a function of iθ ,  is the density of ))(,( kEP i γν . The likelihood integrated for 

the n observations is L . We can then 

proceed as before to obtain L  and then use the plot 

of (  for indication about possible location of change-point.  
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Example  

In this section we apply the above methodology for exploratory analysis of two 

real-life data sets – wind data set (Weijers et. al., 1995) and flare data set 

(Lombard, 1986).  

 

We first discuss the exploratory analysis for the data set of wind directions 

given by Weijers et. al. (1995). They investigated the horizontal  perturbation 

wind field within thermal structures encountered  in  the  atmospheric surface 

layer boundary. We are interested to study the possible existence of change -

point in the direction of the horizontal wind field. The Changeogram obtained 

by using DDSTAP1.1 (SenGupta, 2005) is given in Fig. 1 below. The 

Changeogram indicates the presence of two change-points. Since the method 

discussed in this paper is for detection of at most one change-point we 

consider only the first 22 observations for further analysis using the likelihood 

integrated method. We take the joint prior 
π

κµγ
12
1),( =  which arises as the 

product of two independent priors – a circular uniform prior on µ and a 

Uniform (0,6) prior on κ . The computations are done using the R software 

package. The plot of log against r is given in Fig. 2 below )(* rL



 

 

 

We find from the plot of log against r given in Fig. 2 that log declines 

very sharply after observation 17 which is the point of change as seen from 

)(* rL )(* rL

the Fig. 1. The above dataset has been analyzed from a frequentist viewpoint 

Fig 1: Changeogram of wind data  

Fig 2: The plot of against r for wind data  )(log * rL



in Laha (2001). It is reported therein that the NRTT, a parametric test derived 

under the assumption of circular normality in Laha (2001), when applied to 

this dataset indicates the presence of change-point at 5% level of significance 

and identifies the 17th observation as the change-point.  When Lombard’s 

non-parametric test (Lombard, 1986) for single change-point is applied to this 

dataset it indicates the presence of a change-point at 5% level of significance 

but identifies 13 as the change-point.   

 

As a second example we analyze the flare data of Lombard (1986). The 

Changeogram is this data set is given in Fig. 3 below. The data set has been 

previously analyzed using a non-parametric framework in Lombard (1986) 

and using the NRTT in Laha (2001). Both these analyses indicated presence 

of more than one change-point in this data set. Based on the findings of the 

above mentioned studies, we consider two subsets of the full data set each 

consisting of at most one change-point. These subsets are chosen as (1) 

consisting of observation numbers 1-42 and (2) consisting of observation 

numbers 13-60. We use the same joint prior for ),( κµ as in the case of wind 

data. The plots of )(log * rL against r for the two subsets are given in Figs. 4 

and 5 respectively. 

 

 



Fig 3. Changeogram for Flare data  
 

 

 

Fig 4: The plot of against r for flare data (Obs. 1-42)  )(log * rL



 

obs 13-60 Fig 5: The plot of against r for flare data (Obs. 13-60) )(log * rL

 

From Fig. 4 it is seen that there is a sharp decline in the values of 

after observation number 25. A careful examination of Fig. 3 for this 

portion of the data set indicates the presence of a possible change-point at 25.  

However, frequentist analyses presented in Lombard (1986) and Laha (2001) 

did not indicate the presence of change-point at 25 and instead pointed to the 

observation number 12 as the change-point.  

)(log * rL

 

In Fig. 5 we see a sharp decline in the log values after the 26)(* rL th 

observation in the data set 13-60, that is, after the 38th observation in the 



original data set.  In this connection it may be noted that different tests applied 

to this data set had indicated different change-points in the neighborhood of 

the 38th observation.  Lombard’s two change-point test (Lombard, 1986) 

indicated a presence of change-point at 36th observation while Lombard’s 

single change-point test and the NRTT (Laha, 2001) applied in the adaptive 

manner as in this paper indicated 42 as the change-point.      
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