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§ TESTS FOR EQUICORRELATION COEFFICIENT
JF A STANDARD SYMMETRIC MULTIVARIATE
: NORMAL DISTRIBUTION
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Summary

. Sampson (1976, 1978) has considered applications of the standard
jminctric multivariate normat (SSMN) distribution and the estimation
ity cqui-correlation coefficient, p. Tests for p are considered here.
Mo likelihood ratio test suffers from several theoretical and practical
Borcomings. We propose the locally most powerful (LMP) test which
globally (one-sided) unbiased, very simple to compute and is based
I the best natural unbiased estimator of p. Exact null and non-null
atributions of the test statistic are presented and percentage points
9 given. Statistical curvature (Efron, 1975) indicates that its perfor-
patice improves with mk (sample size X dimension) while exact power
Jomputations show that even for reasonably small values of mk the
prformance is quite encouraging. Recalling Brown’s (1971) cautions
cstablish by local comparison with the LMP similar test for p in the
PMN (Rao, 1973) distribution, that here the additional information on
e mean and variance is quite worthwhile.

%Qy words: Brown’s rules; Kummer’s function; locally most powerful similar test;
Randard symmetric multivariate normal distribution; statistical (Efron) curvature.

1. Introduction

A random vector follows a symmetric multivariate normal
[BMN) distribution (Rao, 1973) if the components have equal means,
dqual variances and equal covariances—the common correlation
poclficient, p, between any two components is termed the mtraclass,
Kui-, uniform or familial correlation. Since they arise naturally in
psychology, education, genetics etc., such models have recieved
ponsiderable attention. A random Vector Y will be said to follow a
Mandard symmetric multivariate normal (SSMN) distribution if it
follows a SMN distribution and additionally the components have zero
means and unit variances. Though the literature on the SMN
distribution is quite extensive, no test for p has been proposed for
8SMN distribution. However, such distributions can occur naturally in

e e g



various ways, e.g., see Sampson (1978). Further, in many practical
problems it is necessary to standardize the variables. The sample
means and variances are usually employed for such standardizations
and then the resulting variables behave asymptotically, by Slutsky’s
theorem, as standardized random variables. Such standardizations are
always made and play important roles in the techniques for reduction
of dimensionality, e.g. in canonical variables (Anderson, 1984) and
generalized canonical variables analyses (SenGupta, 1981, 1983).
Finally, if the means and variances are known and hence can be
considered as zeros and ones respectively, then the SSMN distribution
may be considered without loss of generality. This distribution is alsc
quite interesting from several theoretical aspects. Firstly, it provides a
practical example of a curved exponential family (Efron, 1975) and
illustrates some associated difficulties and techniques in inference on
them. Secondly, the components of Y are exchangeable and constitute
an example of the mean-zero invariant model of Anderssen (1976).
Thirdly, it indicates optimal methods for the construction of simple
estimators of p in contrast to the iterative or sequential procedures
leading to more complicated estimators (Sampson, 1976). Finally, it is
demonstrated that, unlike the likelihood ratio tests (LRTs), small
sample optimal test for the correlation coefficient may be conveniently
derived in such models. Anderson (1963) noted . . . the theory in the
case of correlation matrices is much more complicated than for
covariance matrices and no general result could be given in a simple
form . ..’. However, for the above important and special structure of
the correlation matrix, interesting and elegant results can be derived.

Noting that there does not exist an uniformly most powerful
(UMP) test for p, the locally most powerful (LMP) globally unbiased
test is presented. The test statistic 5 is very simple and turns out to be
also the best (minimum variance) natural unbiased estimator (BNUE)
of p. The exact distribution of 5, historically, is related to a problem
attempted by Pearson e al. (1932, p. 341). The exact and asymptotic
distributions of p are derived and some percentage points are given.

Observing that the SSMN distribution is a member of the
one-parameter curved exponential family, its statistical curvature is
computed. Exact power computations indicate that the LMP test
performs reasonably well even for “large” curvatures. Brown (1971)
has pointed out that additional information need not increase the
efficiency of a test. So, as a final justification of the LMP unbiased test,
we demonstrate that it compares favorably with the LMP similar
unbiased test for p in the SMN distribution.

2. Tests for Equi-correlation Coefficient p

Let Y be a k& X 1 random vector which is normally distributed with
mean 0 and covariance matrix X, = (I- p)I + pE, I and E being the



adentity matrix and the matrix with all elements equal to unity
jespectively. Then ' '

Zo'=(1~p) = p[(1 - p){1+ (k - D} 'E = (cj(p)) |

c(p) = {1+ (k = p}/[(1 - p){1 + (k ~ 1)p}].
t. we)=—p/[1-p)Y1+(k-1p}), i%)
;_lk-uce the density function for non-singular Z, can be written as

Cy), _ Typ) }]
(1-p) 1+ (k-1)p)1-p)

-y, <o, i=l,...,k —“lk-D<p<l. (2.1)
'ﬂe above representation is particularly useful because it shows that
#he density function constitutes a member of .the curved exponential
family and (which implies here) there does not exist any one-
 dsnensional sufficient statistic for p. Also, T (y;—y)* and 7 =X ylk

} are independent (Rao, 1973, p. 197). Suppose Y, . . ., Y, is a random
- sample from f(Y, p). Let

i=k é (?-i)_z: V,= i > (¥— Y,

j=1 i=1

where

v LT 1
f 1000) = G e [ zi{

Pwhere Y, = LX, ¥;/k. Note that V;, V; are jointly (minimal) sufficient
fsatistics for p. Further, V,/[1+ (k — p) and V;/(1-p) are inde-
wendently distributed as y2 with m and m(k—1) d.f. respectively.
LAko, by the reduction to- the canonical form (Rao, 1973) for SSMN
distribution, there exists an ortho onal transformation Y— Z, such -
it L Y/=Y 7% and Z, =% Y/Vk where Z, i=1,..., k are all
mdependent. It follows that Z, is normally distributed with E(Z,) =0,
War (Z,)=1+ (k—1)p and Z; are normally distributed with E(Z)=0,
War (Z)=1-p, j=2,..., k We want to test Hy:p = p, *against

Ll - p < (>)p, or against H,: p # p,. ‘

- Likelihood Ratio Test _ . ‘
For testing H, against H, the LRT is derived below and. is

-trivial even for m = 1. From (2.1) above the maximum likelihcod
Joqaation is given by, o

gip)=mik — Dkp(1 - p){1+ (k - 1)p} — ZZij{l + k- 1)p)?
t2 (Z y,-,-) {1+&=-1)p?% =0,
ere ¥ = (yy, .- ., i), F=1,. .»m. It can be shown '(e.g.,. see - "

enGGupta, 1982, Section 2.1) that there exists a maximum likelihood -
pszimator (MLE) of p, 'say p, with -l/(k-1<p<l. :



Theorem 1. Consider a k-variate normal population with mean @
and covariance matrix &,. Let Y,, ..., Y,, be an independent random
sample from the distribution (2.1). Then the likelihood ratio test for
testing Hy: p = p, against the alternative H,: p # py, is given by '

Reject Ho iff A =[|Ep}/|E,,|]™* exp [ - 2{(c11(po) — ci(BN(V2+ V)
= (c1po) — PNV — (k — 1V <K,

“where p is the MLE of p and K is a constant to be determined 5o that
the level of the test meets the specified value.

Under H,, for large m, —21In A is distributed as y* with 1 d.f. It is'
clear that the LRT for p is cumbersome and the exact distributions of
p and the LR statistics are nearly intractable. For one-sided alterna-
tives, it will be even more complicated to study the small-sample
behaviours of the LRT.

Owing to the above difficulties, we present below an alternatwe;
test statistic which is very simple to compute and which possesses some
desirable optimal properties also.

2. 2 LMPU Test For p

Note that there does not exist an UMP test for p.

Theorem 2. The LMP test for Hy:p =0 against Hy:p > (<)0 is
given by

Reject Hy iff p =2, 2. yy¥vilmk(k — 1) > (<c')ec, (2-2)
i ‘ :

where ¢(c') is determined to give the desired level of the test. The test is
globally unbiased against one-sided alternatives.

Proof. Let [, denote the first derivative of the log-hkehhood
function with respect to p. The LMP test for testing Hy: p =0 against
H,:p> (<)) is given by

Reject Ho iff, o > (<k')k, i.e., = {y(0) + 92(0)} > (<c')e
where y,(p) =d |5, |/dp = —k(k — 1)p(1— p)*~2,
¥o(p) = d(L Y[E7'Y))/dp

=2 [{1 + (k- 1)p}2(§£‘, yﬁ)
1= G063 () |/ @+ G- va-

and c(c') is determined to provide the desired level of the test. Some
simplifications yield (2.2).




k. For each j, use an orthogonal transformation (similar to that in
,'n2)Y—>Z,,1—1 , m. Then

o3 {(3n) ()

-3 (ke - 323} /mictie— 1) 2.3)

, b is dlstnbuted as {(1 +(k—-1)p)(k — 1)x,,,— (1 - PdxZ-n)}/
) —1) where %2, and x,,,(k -1y are independent x* variables with m
i m(k 1) d.f. respectively. Under Hp, the distribution of p is the

e as above, with p=0.
Consider H,:p >0. To prove the unbiasedness in this case, it

fices 1o show that
(k— I)Xm - Xm(k <= 1+ (k - l)P)(k l)xm- (1- P)Xm(k ~1)

xch is clearly true. The proof for Hy:p < 0 follows similarly.
£ Observe that due to the e’quicorrelated‘ structure of our model in
I§2.1). for the jth observation X;, j=1,...,m,

E(Y,;Y;)=p, i#i', Li'=1...,k

E[E ----- /k(k 1)] : .
i . . 5
: ased on the entire sample, it is then natural to consider unbiased
jestimators, to be called patural unbiased. estimators (NUEs), of the

> a,-[E ﬁ;Y-t';'_[k(k-f 1')] E

i iv&L" . )
Lemma 1. The test statistic, p, of Theorem 2 is BNUE of p.
Proof. Note that, p = {{k — 1)V, — Vz}[mk(k -1).

So p is a function of the minimal: suﬁic:lent statistic (W1, V) and
tLemma 1 follows by an application of the Rao—Blackwcll theorem.
[§Observe that besides 5, no other BNUE is a function of (V1, V)).]

: Table 1 presents some percentage points for the distribution of 5,
Ewhen p = 0. More detailed tables are given in Gokhale and SenGupta, :
9986, Note that, — < p < and it may be desirable to base the. test
-: a bounded statistic, say, p, where :

~1/(k-1), o h=-1/(k—1)
p= P, -1/(k—-1y<p<t .
L =1

i However, it is reassuring to find from Table 1 that only one percentage 3



TABLE 1

]

Percentage points of : J

‘m=5 m=10 m=15 !

k a =010 005 0:01 a=010 005 ‘ ‘ 0:01 a=0-10 0-05 001 |
2 054220 073200 1-14180 0-39315 0-51819 077570 0:32403 0-42340 0-62330!

3 032866 0-45390 0-72560 0-23508 0-31630  (0-48520 0-19247  0-25626  0-38620°

4 0-23636 0-32977 053280 (-16832  0-22846 0-35400 0©-13750 0-18450 0280&

5 0-18466  0-25910  0-42120 0-13122  0-17897 027890 010708  0-14430  0-22080

6 015155 0-21345 034830 0-10756 0-14716  0-23020 0-08772  0-11853 ~ 0-18198.

7 012852 0-18149 029700 0-09114  0-12497 0-19600 0-07430 0-10059  0-15480-

8 011158 0-15786 0-25880 0-07908 016860 017060 0-06445 0-08738  0-13468

9 0-09858 0-13968 0-22940 0-06985 0-09603 0-15110 0-05691 0:07723  0-11928

10 008830 0-12526 0-20590 0-06254  0-08607 0-13558 0-05095 0:06920 0-10699

point, and that too for the smallest m, k and a, exceeded 1. Thus the
probability that p will exceed 1 is quite small.

Kallenberg (1981) concludes that the shortcomings of the LMP
test in a curved exponential family, under suitable conditions, tend to
zero at the rate m~!|log a,,[*? where a,,€(0,1) is the level of
significance. This result holds good for our test based on p.

3. Exact Null and Non-null Distributions of f

The exact distribution of g is that of the weighted difference of
two independent x* variables with different weights and arbitrary d.f.s.
Now, historicaily, this problem was attempted by Pearson et al. (1932,
p. 341) and later solved only partly for the very special case of equal
weights and equal d.f.s. by Pachares (1952). It was also encountered
by Anderson (1963, p. 139) who conjectured a possible approxima-
tion. The distribution is presented below in terms of Kummer’s
function.

Let U(a, b; z) give independent solutions to the confluent hyper-
geometric differential equation of Kummer:

zd*w/dz? + (b ~ z)dw/dz —aw = 0.

Then in terms of an integral
U, b;z)= [I'(a)]'lf exp(—zV)V* {1+ V) *"1dV, a>0, z>0
0

and in terms of the ; F, hypergeometric function,

T { 1Fila, b;z) 2 R(l+a-b,2- b;-z)
sin b \T(1 +a — b)L(b) T(a)2 - b) }

U(a, b;z}=



F Theorem 3. Let V = &V, — o, V, where a,, a;>0and Vy, V are
\imdependent y* variables with &, and &, d.f. respectively. Then, the

| probability density function of V is given by,
 f@)=[C(E ENTEE > exp (—v/20)
! CULEL/2, (B1+ E)/2; (e + a)2aayv], v=0
= [C(&1, EMT(ESDN(—v)Er* 5D exp (v/20)
_. CULE2, (B + E)/2; —(ay + an)2ea20), v =0
‘where CV(E;, Eo) = 2850,

Proof. Let us expand the density f(v) of V as,

arf) =gl + @il anlgslva)

where g, represents the probability density function of ¥, i=1, 2. For
¥ =0, noting that the limits of the above integral reduce to 0 and ,
simplifications yield the form of f(v) as in the theorem. For v =0, in
order to represent f(v) in terms of U(.) consider the following. First
mote that the exponent for U(.) must be negative. An initial
transformation, &,v,= —uvy and then a further transformation y — 1 =
z vields the claimed result.
Using the above theorem and (2.3) we have the following
Corollary. ' ‘ '

Corollary 1. The exact non-null distribution of p is given by f(v)

. of Theorem 3 with &, =m, E;=m(k— 1), &, = {1+ (k—1)p}/mk and

&, = (1 — p)/mk(k — 1), for which the null distribution is obtained by
substituting p =10. ' '

4. Asymptotic Null and Non-null Distributions of p

i : ‘
; Recalling that p = a;x} — oy, where §;, &, @ and a;, are
. given in Corollary 1,

E L fh L
B =3 (-1 () et utmtas B=L2

where p = E(x¥) and p3 = E(x%), s=0,1,... , h.
By central limit theorem, we have ‘

\ Theorem 4. k(m/2)"*(p — p) is asymptotically distributed as a
* normal variable with mean 0 and variance {1+ (k —1)p}*+ (1 — p*/
L (k1) | |

b



Theorem 3. Let V = &V, — o,V where ay, a3 >0and Vy, V, are
imdependent x? variables with & and &, d.f. respectively. Then, the
grobability density function of V is given by,
f(v) =[C(&1, EHT(E/2) &5 D exp (—v/2a))
U[ES/2, (Ev+ E)/2; (e + e)2anapv], v =0

= [C(&y, E2)/T(E/DN—v)E+ 5 exp (v/25)
g U2, (81 + 8)/2 —(an + @) 2my000], v =0
* where CTY(E,, &) =251+ 50%a 20572,
h Proof. Let us expand the density f(v) of V as,

arf )= [ gl + @il anlgs(va)

" where g, represents the probability density function of V;, i =1, 2. For
¥ =0, noting that the limits of the above integral reduce to 0 and <o,
simplifications yield the form of f(v) as in the theorem. For v =0, in

~order to represent f(v) in terms of U(.) consider the following. First

' wote that the exponent for U () must be negative. An initial

transformation, a,v,= —vy and then a further transformation y — 1 =

! z vields the claimed result.

] Using the above theorem and (2.3) we have the following

_ Corollary. ' ‘

Corollary 1.  The exact non-null distribution of p is given by f(v)
- of Theorem 3 with &, =m, E;=m(k— 1}, oy ={1+ (k—1)p}/mk and
&, = (1 — p)/mk(k — 1), for which the null distribution is obtained by
substituting p =0. ' - '

" 4, Asymptotic Null and Non-null Distributions of p

; Recalling that p = a3} — aaxi,, where &, &,, &, and a, are
- given in Corollary 1,

Ld fh L
(=2 1y oot ity =120

 where ij, = E(Z) and p3, = E(E), s=0,1,.. ., b
; By central limit theorem, we have ‘

Theorem 4. k(m/2)"*(p — p) is asymptotically distributed as a
' normal variable with mean 0 and variance {1+ (k — Dp¥2+(1—pd/
(k- 1). |




5. Statistical Curvature and the Global Performance of the LMP
Test for p

In a regular exponential family, at least in large samples, the LMP'
test (being an approximation to the LRT) is expected to perform
reasonably well. On the other hand, there are specific examples (e.g. -
Cox and Hinkley, 1979, pp. 119-120) which demonstrate that the
choice of the LMP test can be disastrous. It will be thus desirable to |
have an idea of the performance of the LMP test in our case before
proceeding with the actual details of the computations for its exact ‘

_ power. This is achieved through the criterion of statistical curvature y,
(Efron, 1975, p. 1193). !

Consider the LMP test for Hy: 6 = 6, against one-sided alterna-
tives. Efron suggests that a value of y3, =1 is “large” and one can
expect linear methods to work ““poorly” in such a case. In repeated
sampling situations, the curvature n”zy%o= lyﬁo/m. Hence one can
determine the sample size which reduces the curvature below 1/8.

Detailed computations give,

= l[fik_]fl (k- 2)2]]/ [ﬂ]fz——l)] gl

Hence ,v5(k) decreases with increase in the dimension k. Further, we ]
note that for a sample of size m, by Efron’s rule, we would need |
mk > 64 to reduce the curvature below the “worrisome point”’ of 3.
We next investigate how poor the performance of the test is for small |
mk. However, note from Table 2, that-even for m=10, k=2, i.e. |
mk = 20, the power is reasonable. The performance becomes better as |
mk increases. With m=10, k=4, i.e. mk=40 only, the power is |
globally quite encouraging. The LMPU test thus merits serious
consideration as a test for g.

. TABLE2 :
Power of LMPU test for certain m and k. {a = 0-05

m=10 m=15 m=25
k 2 3 4 2 3 4 2 3 4

01 0-09234 013855 0-19001 ©0-10428 0-16539 0-23440  0-12568 021461  0-31566,
02 015284 027037 0-38876 0-18769  0-34640 (0-49852 025307 0-48034 0-6703&
03 023144 042304 0-58218 029923 0-54649 0-72389 0-42389 0-73050 0.887%
04 032547 0-57215 073493 . 0-43096 0-71961  0-86685 0-60915 (-88943 09703
0-5 042987 070092 0-84126 0-56943  0-84434  0-94217 077253 (-96364 0-993?'3
06 053795 0-80210 090934 0-69943 092197 097702 0-88928 0.99036  0-995M
07 064250 0-87572 095037 0-80833 096459 099160 0-95613  (.99794 O-99‘?&l:1
-8 073695 092583 097392  (-88937 098547 099717 0-98624 (99965 0-999%i
09 081649 095793 0-98685 094260 0-99462 0-99913  (.99665 099995 1-

1-0 087870 097732 099366 0-97323 099821 099976  0.99937  1.00000 l-m




6. Brown’s Rules and Comparison of LMPU Tests

; Brown’s paper points out that, in many problems use of “extra”
tion does not lead to better tests. It would thus be desirable to
evidence that the p-test has indeed greater efficiency against
st tests for p. From Gokhale and SenGupta (1982) it is known
g the LMPU similar test for p in the non-standard SMN distribu-
m. with unknown common marginal mean u and variance o2, is
od on the sample intra-class correlation coefficient r (Rao, 1973, p.
- It is then natural to compare the p and the r-tests, both being
ML tests for p.

? Let X,, ..., X, be an independent sample from a k-variate SMN

imabution. Let '

COB=kY (f-%)? W= D(x;,—%) and T=B+W,
1 j=1 i=1i=1 :
e

F

zx,,/k i= sz,,/mk

h. r=(kB—T)/(k~1)T. Further, B/[1+(k—1)p]02 and W/
I—p)o” are independently distributed as x* with (m—-1) and
@& — 1) d.f respectively. The LMPU similar test for .Hy:p=0
st FH, : p >0 is given by

Reject Hy iff r > ry, where r, is a constant to be determined
to give the desired level of significance.

= F,[r>r]=P,[B<pB,] where 8 is dlstnbuted as a Beta variable
e (& —1)/2, (m -1)/2 d.f. and

_ ‘ k . ) ( 1—p )
1_ -
Ba" 1.+((k—1)(1—r0) Nav -
" rr Hy, ﬁ,, Bo is the lower cut-off point of the Beta distribution.
e cut-off points and the powers for the r-test are obtained through

jmdard packages for computing mcomplete Beta mtegrals :
e For the p-test, note that for ay, @, >0, x3 and x3 independent,

P[“lﬁ - a’zx% < U] =f .GI[(U + a’zvz)fl‘xl]gz(vz) dUz (61)

t=max (0, —v/a,) and G,(-) and g,( ) represent the ¢.d.f. and
g p.d.f. respectively of x7. Corollary 1 gives specific values of a;, o,
k. Under H, the constant v in (6.1) is obtained through iteration.
i) 5 available from MDGAM of IMSL. The integral in (6.1) is
pibeated through use of Gauss—Laguerre quadrature formula or™
Bexeatively through tabulated values of Kummer’s function and



TABLE 3

Comparison of powers of p and r-tests (o =(-05)

m=10,k=13

m=5k=2 m=5k=3 m=10,k=2
P h r B r P r [ r
003 0057731 0-055940 0065088 0-062623 0-060885  0-059481  0-071244  0-0693U
0:06 0066169 0-062485 0082300 0077178 0073299 0-070406 0-097110  0-0931X
0-09 0075316 0-069681  0-101513  0-093748 0.087302  0-082933 0-127482 0-1217
012 0-085178 0077622 0122561 0-112395 0-102945  0.097229 0162024  0-15514
015 0095756 0086345 0-145253 0-133160 0-120256  0-113465 0200237 019313
018 0107048 0-095935 0166383  0-156059 0-139246  0-131812  0:241503  0-2338%
021 0119049 0106474 0-194734  0-181083 (-150%3  (-152442 0285133  0-28248
024 0131748 0-118053  0-221089 0-208198 182194  0-175517 0-330404  0-33245
027 0145133 0-130768  0-24823¢ 0237346  0-206064 0201191  0.376600  0-38512
030  0-150188 0-144726 0275970 0-268443  0:231437  0-229595 (423041  0-4396)

standard numerical integration techniques. The powers can be eva-
luated similarly. Exact comparison of local powers for small sample
sizes are presented in Table 3.

7. Conclusions

From Table 2, we had noted that for moderate/large sample sizes
and dimensions, at even somewhat distant alternatives, e.g. m =10,
k=4, p =04, the performance of the p-test is quite satisfactory for
practical purposes. It becomes even better, rapidly, with increase in m,
k and p. For example, with m =25, k=4, p =0-5, the power exceeds
0-99. We thus restrict ourselves to small m and kX to compare two
locally optimal tests in terms of their local powers. For example, let us
consider the alternatives, say p =0-3, to see how “local” the domin-
ance of the p-test is over the r-test. This dominance is over the entire
range of comparison (with m =10, k =3 for p <0-21) as exhibited in
Table 3. Recall that there does not exist in the literature any test for p
in the SSMN distribution. The proposed p-test, by virtue of its optimal
properties and satisfactory power performance, seems to be a reason-
able choice.
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