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THE SLIPPAGE PROBLEM FOR THE CIRCULAR NORMAL DISTRIBUTION

Ashis SenGupta1∗ and Arnab Kumar Laha1,2
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Summary

The slippage problem occurs when an unspecified observation in a given random sample
is from a distribution other than that for all the remaining observations. This paper studies
the problem in terms of the ‘slip’ in the mean direction of a circular normal distribution.
The slippage problem is first treated as a multiple decision problem with a prior which
is invariant under the permutations of the hypotheses. The probabilities of accepting the
various hypotheses for the Bayes rule with respect to this prior are explicitly obtained. The
likelihood ratio tests for this slippage problem, for the cases when the mean directions are
both known and unknown, are shown to be easily computable. The tests are illustrated
through two well-known datasets. The performances of a range of tests are compared using
extensive simulation.

Key words: Bayes rule; directional data; likelihood ratio test; locally most powerful type test;
slippage problem.

1. Introduction

The slippage problem occurs if an unspecified observation in a given random sample
comes from a distribution different from that for all the other remaining observations. In a
given sample the corresponding observation may manifest itself as a ‘surprising’ observation
lying away from the remaining set. However, such a manifestation may not always be appar-
ent save the knowledge of the possibility of its occurrence. We must infer that slippage has
occurred and also identify the ‘slipped’ observation. This can also be viewed as a problem
of ‘outlier’ detection. Slippage assumes great importance in many practical situations, not
only for linear data but also where directional data are encountered; for example, in applica-
tions to meteorological data, wind directions, movements of icebergs, propagation of cracks,
biological and periodic phenomena, quality assurance and productivity measures, etc.

An outlier may occur in circular data due to a ‘slip’ in recording, an uninvited ‘guest’ in
the host population, a poorly ‘trained’ or ‘distracted’ or highly ‘brainwashed’ individual in the
test group, a physical ‘distortion’ in a segment of the otherwise homogeneous sampling site,
a sudden ‘shock’ in the sampling environment, etc. Mardia (1972 p .390) cites his experience
of ‘. . . possible recording errors in axial data such as single observation being given as 321◦
while all others are reduced modulo 180◦’. In studies on homing abilities with biological
subjects, the sample may contain a few from a differing ‘guest’ species, as could possibly
be the case with Jander’s ant data; see Jander (1957) and SenGupta & Pal (2001). Such
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situations can also arise with ‘training’ or ‘brainwashing’ experiments where only a few may
be expected to wander away from or move towards the target direction — see, for example,
the discussions by Fisher (1993 p .87) on the resultant directions of 22 sea stars after being
displaced from their natural habitat. A segment of the sandstone layer may be ‘disorientated’
due to geological or environmental disruptions which may give rise to possible outliers in the
sample of palæocurrent orientations from that layer. Such a dataset from Belford Anticline,
New South Wales (Fisher & Lewis, 1983), is the first example analysed in Section 5. A
wheel may experience a short mechanical instability or a sudden power surge resulting in
a suspicious stopping position; for example, see the dataset on a roulette wheel given by
Mardia (1972 p .2). We analyse this dataset in more detail in Section 5. This example also
demonstrates that, unlike in linear data, an outlier in directional data may be any observation
in the dataset and not necessarily only one of the largest or smallest. Unless the sample is first
‘cleaned’ of the outliers, or an extended model is justified incorporating the outliers, statistical
inference for such data is problematical.

Though practical examples, such as those above on the problem of outliers in directional
data, abound, not much seems to be known about the theoretical foundations of any general
approach to solving the slippage problem under a parametric model; for example, a ‘slip’ in
terms of the mean direction of the circular normal distribution (see, however, Collett, 1980;
Bagchi & Guttman, 1988, 1990; Upton, 1993; Barnett & Lewis, 1994). Here, we deal with
some formulations and derivations of statistical tests in this set-up. Compared to the contam-
ination or mixture formulation which helps to determine only the presence of outliers, our
approach both determines their presence and helps detect them.

Suppose �1, . . . , �n are independent random variables. Let CN(µ, κ) denote the cir-
cular normal distribution. As is usual, we refer to µ as the mean direction and κ as the
concentration parameter. We want to test H0: �j, j = 1, . . . , n are identically distributed as
CN(µ0, κ) against Hi : �1, . . . , �i−1,�i+1, . . . , �n are identically distributed as CN(µ0, κ)

and �i is distributed as CN(µ1, κ), 1 ≤ i ≤ n, µ1 > µ0 , µ1 , µ0 and κ are all known. We
take a decision theoretic route to solve this problem, and derive the test statistic along with its
exact sampling distribution under H0 . These results are contained in Theorems 2.1–2.3.

Our problem in general is to test H0 against H ∗
1 ; namely there exists i, i unknown, such

that �i is distributed as CN(µ1, κ) and �1,�2, . . . , �i−1,�i+1, . . . , �n are distributed as
CN(µ0, κ) and all are independent. In the case that µ1 > µ0, µ1 , µ0 and κ are all known,
we derive the likelihood ratio test (LRT) and show that here also we are able to specify the
exact null distribution of the LRT statistic. That is the content of our Theorem 3.1. We next
consider the case of testing H0 vs. H ∗

1 when the parameters µ0 and µ1 are both unknown
but κ is known. We derive the form of the LRT that is given in Theorem 3.2.

In Section 4 we use extensive simulation to find the null distribution of the LRT statistic.
We provide a table of cut-off points for various κ (Table 1) and also the P -values for κ = 1
(Table 2). We also provide a numerical description of the performance of the LRT in terms
of its power (Table 3). In Section 5, we illustrate these results by analysing two well-known
datasets of practical interest. In Section 6, we provide a locally most powerful type test
(LMPTT) for detecting outliers. In Section 7, we provide a simulation-based comparison of
the performance of the various statistics used for outlier detection: the L statistic, M statistic,
LRT statistic, the LMPTT statistic and the Bayes test with different priors. It is seen that the
Bayes test performs best in detecting outliers of large magnitude whereas the LRT performs
best in detecting outliers of moderate magnitude and the LMPTT performs best in detecting
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outliers of small magnitude. Since no single test performs uniformly better than the others,
we suggest that the Bayes test, LRT or LMPTT be used depending on the severity of the outlier
to be detected in a dataset.

2. The decision theoretic approach

Suppose �1, . . . , �n are independent CN(µi, κ) random variables with density

f (θ;µi) = exp
(
κ cos(θ − µi)

)
2πI0(κ)

(0 ≤ θ < 2π, 0 ≤ µi < 2π, κ > 0), i = 0, 1.

We assume that µ0 < µ1 and n ≥ 3.We are interested in finding the Bayes rule for the multiple
decision problem of accepting one of the n+ 1 hypotheses H0, H1, . . . , Hn with respect to
the prior distributions invariant under permutations of H1, . . . , Hn. We use the loss function
which assigns loss = 0 if the correct hypothesis is accepted and loss = 1 otherwise. The prior
distributions invariant under permutations of H1, . . . , Hn give equal weight to H1, . . . , Hn
and hence they are of the form τp , where τp(H0) = 1−np, 0 ≤ p ≤ (1/n), τp(Hi) = p, 1 ≤
i ≤ n. Let � = (�1, . . . , �n) and let �(�) = (φ(1 | �), . . . , φ(n | �)) denote a gen-
eralized critical function or a multiple decision rule (Ferguson, 1967 p .299) with φ(i | �),

i = 1, . . . , n taking values 0 or 1, and
∑
φ(i | �) = 1. Thus � chooses Hi when � = θ

is observed if φ(i | �) = 1. Let Rj denote the likelihood ratio:

Rj = f (�j ;µ1)

f (�j ;µ0)
= exp

(
κ
(

cos(�j − µ1)− cos(�j − µ0)
))

(j = 1, 2, . . . , n).

Theorem 2.1. The Bayes test with respect to τp for H0 against Hi, 1 ≤ i ≤ n, is given by
φ(0; �) = 0 whenever (1 − np)/p < maxj Rj and φ(i; �) = 0 whenever either Ri <
maxj Rj or (1 − np)/p > maxj Rj , 1 ≤ i ≤ n.

Proof. The result follows from the general theory given in Ferguson (1967 p .299) after some
simplifications.

The following theorem gives the performance of the Bayes rule given in Theorem 2.1 under
the null hypothesis. Let,

K(t) = exp
(
κ cos(δ + π − sin−1 t)

) + exp
(
κ cos(δ + sin−1 t)

)
+ exp

(
κ cos(δ + 3π − sin−1 t)

)
,

g(t) = K(t)

2πI0(κ)
√

1 − t2
(−1 < t < 1) and G(s) =

∫ s

−1
g(t) dt .

Further let µ0 = µ, µ1 = µ+ 2δ and define

u = 1

2κ sin δ
ln

(1 − np

p

)
.

Theorem 2.2. In the framework of Theorem 2.1,

(a) Pr
(
φ(i; �) = 0 | H0 is true

) = 1 − 1

n
+ G(u)n

n
,

(b) Pr
(
φ(0; �) = 0 | H0 is true

) = 1 −G(u)n.
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Proof. Observe that, Rj = exp
(
2κ sin δ sin(�j − µ − δ)

)
. Thus, as a consequence of our

assumption 0 ≤ µ0 < µ1 < 2π, maxj Rj = exp
(
(2κ sin δ)maxj sin(�j −µ− δ)

)
because

exp(x) is an increasing function of x, and 2κ sin δ > 0 because 0 < δ < π. Let ηj =
sin(�j − µ − δ) for j = 1, 2, . . . , n. Since �1, . . . , �n are independent and identically
distributed (iid) it follows that η1, η2, . . . , ηn are iid. We first derive the distribution of η. If
there is a branch of sin−1 θ which is monotone on [π/2, 3π/2], then the inverse tranformation
defined uniquely through the domain of θ as partitioned below (where θ greater than or equal
to 2π is to be interpreted as being reduced modulo 2π ), is

ψ(η) =



µ+ δ + (π − sin−1 η) if µ+ δ ≤ θ ≤ 1

2π + µ+ δ,

µ+ δ + sin−1 η if 1
2π + µ+ δ ≤ θ ≤ 3

2π + µ+ δ,

µ+ δ + 3π − sin−1 η if 3
2π + µ+ δ ≤ θ ≤ 2π + µ+ δ.

After some calculation we find the density of η is g(η).

Note that the density does not exist for the points –1 and 1, but the set {−1, 1} has
Lebesgue measure zero and hence any value can be put at these points without changing
the distribution. We put 0 at these points. Define W = max� η�. Then W has cumulative
distribution function (cdf) H where H(w) = G(w)n. Let W ∗

i = max��=i ηi . Then the cdf of

W ∗
i is H ∗

i (w) = G(w)n−1. Now

Pr
(

max
j
Rj <

1 − np

p

)
= Pr

(
W <

ln
( 1−np

p

)
2κ sin δ

)
= H(u) .

Note that the event Ri < maxj Rj is equivalent to the event ηi < W. Further, we have
Pr(ηi ≥ W) = Pr(ηi > ηs, s �= i) because the distribution of the ηi is continuous. Thus,

Pr(ηi > maxs ηs) = ∫ 1
−1(1 −G(η)) dH ∗

i (η) = (n− 1)
∫ 1

0 (1 − y)yn−2dy = 1/n where we

put y = G(η) and dH ∗
i (η) = (n− 1)G(η)n−2dG(η). Now

Pr(φ(i; �) = 0) = Pr(ηi < W)+ Pr(W < u)− Pr(ηi < W < u) .

Thus, the problem of finding Pr(φ(i; �) = 0 | H0 is true) is solved if Pr(ηi < W < u) is
obtained. Now,

Pr(ηi < W < u) = Pr(ηi < W ∗
i < u) =

∫ u

−1
G(η) dH ∗

i (η)

= (n− 1)
∫ u

−1
G(η)n−1 dG(η) = (n− 1)

∫ G(u)

0
yn−1 dy = n− 1

n
G(u)n.

It follows that

Pr(φ(i ; �) = 0 | H0 is true) = 1 − 1

n
+ G(u)n

n
;

Pr(φ(i ; �) = 1 | H0 is true) = 1 − Pr(φ(i ; �) = 0 | H0 is true) = 1

n
− G(u)n

n
;

Pr(φ(0; �) = 0 | H0 is true) = 1 −G(u)n ;
Pr(φ(0; �) = 1 | H0 is true) = Pr(W ≤ u) = G(u)n.

Theorem 2.3 gives the performance of the Bayes rule when Hj is true. Let ηi be as in
the proof of Theorem 2.2 and let G be its cdf when �i

d= CN(µ0, κ) and let G∗ denote its
cdf when �i

d= CN(µ1, κ).
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Theorem 2.3. In the framework of Theorem 2.1, let 1 ≤ i, j ≤ n,

(a) Pr(φ(i; �) = 0 | Hj is true)

= 1 +
∫ u

−1
G(w)k−2G∗(w) dG(w)− (k− 2)

∫ 1

−1
G(w)k−3(1 −G(w))G∗(w) dG(w)

−
∫ 1

−1
G(w)k−2(1 −G(w)

)
dG∗(w) where i �= j,

(b) Pr(φ(0; �) = 0 | Hj is true)

= 1 − (k − 1)
∫ u

−1
G(w)k−2G∗(w) dG(w)−

∫ u

−1
G(w)k−1 dG∗(w) ,

(c) Pr(φ(j ; �) = 0 | Hj is true)

=
∫ u

−1
G(w)k−1 dG∗(w)+ (k − 1)

∫ 1

−1
G(w)k−2G∗(w) dG(w).

Proof. The proof follows the lines of the proof of Theorem 2.2 but with more tedious com-
putation after noting that under Hj , η1, η2, . . . , ηn are no longer iid. In fact the distribution
of ηj differs from the rest.

The two probabilities given in Theorem 2.2 can be readily computed for the circular
normal distribution. Note, however, that the choice of τi = p reflects the case of equal
ignorance. In the case that we have other prior information, this may be incorporated and the
corresponding probabilities computed as above, but the resulting expressions would be quite
complicated.

3. The likelihood ratio test

Case I. We first consider the case of testing H0 against H ∗
1 when 0 ≤ µ0 < µ1 < 2π,µ1, µ0

and κ are all known. As in the previous section, let µ0 = µ and µ1 = µ+2δ, δ > 0. In this
case we prove the following theorem. Let G be the distribution function of sin(�− µ− δ)

under H0 .

Theorem 3.1. In testing H0 against H ∗
1 the LRT statistic is equivalent to the statistic V =

maxj sin(�j − µ− δ). The exact sampling distribution function of V under H0 is given by
M(θ) = G(θ)n.

Proof . The likelihood under H0 is

L0(θ1, θ2, . . . , θn) = exp
(
κ

∑
i cos(θi − µ)

)
(
2πI0(κ)

)n (0 ≤ θi < 2π, κ > 0, 0 ≤ µ < 2π),

and that under H ∗
1 is,

L∗
1(θ1, θ2, . . . , θn) = max

j

{(
2πI0(κ)

)−n exp

(
κ

∑
i �=j

(
cos(θi − µ)+ cos(θj − µ− 2δ)

))}

(0 ≤ θi < 2π, κ > 0, 0 ≤ µ < 2π, δ > 0).
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Thus the LRT statistic � is given by

− ln� = max
j

{
κ

( ∑
i �=j

cos(θi − µ)+ cos(θj − µ− 2δ)−
∑
i

cos(θi − µ)

)}

= max
j

{
κ
(

cos(θj − µ− 2δ)− cos(θj − µ)
)}

= max
j

{
κ
(
2 sin(θj − µ− δ) sin δ

)}
.

Since 0 < δ < π, we have sin δ > 0. Thus − ln� is equivalent to the statistic
maxj sin(�j − µ − δ) = V. Now note that under H0 , sin(�j − µ − δ) are iid. Hence the
distribution function of V is M(θ) = G(θ)n.

Observe that G(θ) can be evaluated numerically and hence the cut-off points for the LRT
are readily available.

Case II. We wish to test H0 against H ∗
1 when κ is known but µ and δ are unknown. The

form of the LRT is given by Theorem 3.2. Let µ̂0 and µ̂∗
1 denote the estimates of µ under

H0 and H ∗
1 respectively. Further, let Lj denote the likelihood when there is a slip at j (j =

1, 2, . . . , n). Let ̂ be the value of j for which Lj attains its maximum.

Theorem 3.2. In testing H0 against H ∗
1 the LRT statistic � is given by

− ln � = κ
(( ∑

i �=̂ cos θi
)
(cos µ̂∗

1 − cos µ̂0)

+ ( ∑
i �=̂ sin θi

)
(sin µ̂∗

1 − sin µ̂0)+ 1 − cos(θ̂ − µ̂0)
)
.

Proof. The log-likelihood under H0 is

lnL0(θ1, . . . , θn) = −n ln
(
2π I0(κ)

) + κ
∑
i cos(θi − µ)

= −n ln
(
2π I0(κ)

) + κ
(

cosµ
∑
i cos θi + sinµ

∑
i sin θi

)
.

Putting ∂ lnL0/∂µ = 0 and solving for µ gives µ̂0 = tan−1 ( ∑
i sin θi/

∑
i cos θi

)
with

tan−1 so defined as to be unique. Under H ∗
1 the log-likelihood is

lnL∗
1(θ1, . . . , θn) = max

j

{ − n ln 2πI0(κ)

+ κ
(

cosµ
∑
i �=j cos θi + sinµ

∑
i �=j

sin θi + cos(θj − µ− 2δ)
)}
.

Thus, L∗
1 = maxjLj . Fix 1 ≤ j ≤ n. We now compute µ̂j and δ̂j which are the maximum

likelihood estimates (MLEs) of µ and δ under Hj . Putting

∂ lnLj
∂µ

= 0 and
∂ lnLj
∂δ

= 0

and solving for µ gives

µ̂j = tan−1
( ∑

i �=j sin θi∑
i �=j cos θi

)
and δ̂j = θj − µ̂j

2
.

Let ̂ be that j for which Lj attains its maximum value after substituting µ̂j and δ̂j . Thus
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Table 1

Cut-off points of the LRT (α = 0.05, various κ)

κ n =10 n = 20 n = 30

0.5 0.3680 0.3679 0.3679
1.0 0.1357 0.1354 0.1354
1.5 0.0504 0.0499 0.0498
2.0 0.0199 0.0187 0.0185
4.0 0.0139 0.0062 0.0034

10.0 0.0210 0.0102 0.0064

under H ∗
1 the estimate of µ is µ̂̂ (= µ̂∗

1) and that of δ is δ̂̂ (= δ̂). Therefore the LRT statistic
� is given by

− ln� = κ
(
1 + ∑

i �=̂ cos(θi − µ̂∗
1)− ∑

i cos(θi − µ̂0)
)
,

which after some calculations gives the claimed expression.
The exact sampling distribution of the LRT statistic is formidable — no closed form

seems to be possible nor even any analytic representation for it in small samples.
We note that Collett (1980) considers a problem very similar to the above. He tests

for no slippage versus a slippage alternative and derives an LRT statistic for it, which he
calls the L statistic. However, the difference from our approach is that he first uses a data-
based measure to detect the outlier candidate. Subsequently, formal tests are conducted to
statistically validate the hypothesis that it is in fact an outlier. The choice of the measure may
not be reasonable for even symmetric datasets where clusters may appear far from the mean
direction. In our procedure the detection and testing for the outlier is based on the LRT and is
entirely probabilistic.

4. Simulation

We use simulation to obtain the null distribution of � as well as its power. The simu-
lation results for the null distribution are based on 5000 repetitions with sample size n, n =
10, 20, 30. The random sample from a circular normal distribution is drawn using the IMSL
library routine. For simulating the power a particular observation is drawn from a circular
normal population, CN(�, 1) with � = 20(20)180 (in degrees), and repeating it 5000 times.
Since the power function is symmetric about 180◦ the above computation is sufficient. Table 1
gives the cut-off points for the LRT at 5% level of significance. By looking at the null distri-
bution of the test statistic it can be seen to get increasingly concentrated with the increase in
sample size (see Table 2). Further the null distribution is seen to be increasingly concentrated
around 0 as the value of κ increases.

Since the assumptions involved in the usual large sample approximation (−2 ln�
d≈ χ2)

are violated here, it is not appropriate to use this approximation for the distribution of an LRT.
We obtain the power of the LRT with κ = 1 through extensive simulations. The power of this
LRT does not show a perceptible increase with increase in sample size (see Table 3).

The LRT shows (see Table 4) encouraging power performance for κ even as small as 4.
Also, the convergence of the power to 1 increases rapidly with κ. This is expected because
with the higher value of the concentration parameter the observations tend to be close together
making it ‘easier’ for us to detect an outlier.
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Table 2

Percentiles of the null distribution of the LRT (κ = 1)

Percentiles n = 10 n = 20 n = 30

1 0.1353 0.1353 0.1353
2 0.1354 0.1353 0.1353
5 0.1357 0.1354 0.1354

10 0.1367 0.1356 0.1354
25 0.1441 0.1371 0.1362
50 0.1786 0.1448 0.1398
75 0.2638 0.1707 0.1527
90 0.3884 0.2224 0.1774

Table 3

Power of the LRT (α = 0.05, κ = 1)

� (◦) n = 10 n = 20 n = 30

20 0.056 0.055 0.055
40 0.061 0.058 0.057
60 0.062 0.059 0.059
80 0.063 0.057 0.059

100 0.065 0.081 0.055
120 0.074 0.086 0.058
140 0.087 0.090 0.059
160 0.085 0.089 0.057
180 0.088 0.095 0.065

Table 4

Variation in the power of the LRT with κ (α = 0.05, n = 10)

� (◦) κ = 1 κ = 2 κ = 4 κ = 10

15 0.058 0.050 0.057 0.070
30 0.056 0.049 0.062 0.141
60 0.060 0.062 0.165 0.619
90 0.063 0.098 0.437 0.964

120 0.074 0.146 0.776 1.000
150 0.077 0.240 0.947 1.000
180 0.082 0.293 0.986 1.000

5. Examples

We illustrate the above tests through two well-known examples on directional data. For
both these examples, we assume that the ‘known’ value of κ is κ̂, the MLE, as obtained from
the data. The relevant computations as needed below were done through DDSTAP (SenGupta,
1998), a statistical package for the analysis of directional data. We tested both these datasets
for circular uniformity using the Rayleigh test and found them to be compatible with the
assumptions of the circular normal model.

Example 1. Fisher & Lewis (1983) give data from three samples of palæocurrent orientations
from three bedded sandstone layers, measured on the Belford Anticline, New South Wales.
We consider here the first sample. The dataset is 284◦, 311◦, 334◦, 320◦, 294◦, 137◦,
123◦, 166◦, 143◦, 127◦, 244◦, 243◦, 152◦, 242◦, 143◦, 186◦, 263◦, 234◦, 209◦, 267◦,
315◦, 329◦, 235◦, 38◦, 241◦, 319◦, 308◦, 127◦, 217◦, 245◦, 169◦, 161◦, 263◦, 209◦,
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228◦, 168◦, 98◦, 278◦, 154◦, 279◦. Our LRT picked up the observation 38 as an outlier
with an observed value of � = 0.1675 and P = 0.01. This outlier could be attributed to
the segment of the sandstone layer corresponding to this observation being (inconsistently)
disorientated by some ‘external shocks’.

Example 2. We next consider the famous roulette wheel data obtained from Mardia (1972).
The dataset is 43◦, 45◦, 52◦, 61◦, 75◦, 88◦, 88◦, 279◦, 357◦. This dataset has previously
been analysed by Bagchi & Guttman (1990), who assumed a circular normal distribution for
it. With this assumption, the LRT picked up the observation 279◦ as an outlier with � =
0.0276 and P = 0.12. This could be attributed to, for example, subject to verification, a brief
mechanical failure or a sudden electrical surge during that spinning time of the wheel which
resulted in the observation 279◦.

The identification of the observation 279◦ in Example 2 illustrates the fact that, unlike
the linear case, internal values can actually be outliers in the context of directional data. This
incidentally also coincides with the analysis done by Bagchi & Guttman (1990).

Once an outlier has been detected as above, one can discard it and proceed with fur-
ther statistical analyses as needed using the rest of the dataset. Alternatively, one may fit an
extended model to the entire dataset, say a contaminated or a mixture model with a circular
normal distribution, which should give a better fit than the original with only a circular normal
distribution.

6. Locally most powerful type test for outliers

In this section we assume µ, κ to be known and δ to be unknown. Fix 1 ≤ j ≤ n. We
derive an LMP test (LMPT) of H0 against Hj . Motivated by this we propose an LMPTT of
H0 against H ∗

1 .

Theorem 6.1. In testing H0 against Hj the LMPT is:

Reject H0 if sin(�j − µ) > c for some constant c depending on the size of the test.

Proof. The log-likelihood under Hj is given by

lnLj (δ; θ1, . . . , θn) = K +
∑
i �=j

cos(θi − µ)+ cos(θj − µ− 2δ) ,

where K is constant. Then, the score function is given by

Sj (δ) = ∂ lnLj
∂δ

= 2 sin(θj − µ− 2δ) .

Hence Sj (0) = 2 sin(θj −µ). Thus the LMPT statistic for testing H0 against Hj is sin(�j −
µ): we reject H0 if sin(�j − µ) > c for some constant c.

Motivated by Theorem 6.1, for testing H0 against H ∗
1 we propose the test:

Reject H0 if max1≤j≤n sin(�j − µ) > c,

where c is a constant to be determined from the size condition. The exact sampling null
distribution of the test statistic can be obtained using standard techniques. Recall that we
designate θ̂ as the outlier if H0 is rejected and sin(θ̂ − µ) = max1≤j≤n sin(θj − µ).
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Table 5

Performance of the Bayes test for outlier (κ = 2, n = 10, p = 0.05, 0.06 and 0.07)

µ1 H0 not rejected H1 accepted H1 accepted
Correct observation Wrong observation

p = 0.05 p = 0.06 p = 0.07 p = 0.05 p = 0.06 p = 0.07 p = 0.05 p = 0.06 p = 0.07

15 1000 1000 1000 0 0 0 0 0 0
30 1000 1000 1000 0 0 0 0 0 0
45 1000 1000 731 0 0 94 0 0 175
60 1000 735 373 0 121 294 0 144 333
75 754 453 271 146 295 395 100 252 334
90 527 343 204 315 420 506 158 237 290

120 343 213 136 533 625 662 124 162 202
150 240 157 97 666 722 765 94 121 138
180 214 125 84 712 763 785 84 112 131

Table 6

Performance of the LRT, LMP, L and M test for outlier (κ = 2, n = 10)

µ1 H0 not rejected H1 accepted H1 accepted
Correct observation Wrong observation

LRT LMP L M LRT LMP L M LRT LMP L M

15 955 948 948 965 6 14 9 4 39 38 43 31
30 910 943 938 965 24 21 11 3 66 36 51 32
45 935 940 930 970 18 24 12 4 47 36 58 26
75 906 924 902 964 45 44 30 21 49 32 68 15
90 877 922 893 966 78 41 41 27 45 37 66 7

120 766 936 823 951 181 25 89 44 53 39 88 5
150 698 938 732 934 253 13 184 64 49 49 84 2
180 681 945 743 912 271 5 170 84 48 50 87 4

7. Comparison of the various procedures of identifying an outlier

We provide a simulation-based comparison of the various procedures for identifying an
outlier. The statistics which are included in this comparison are the L statistic (Collett, 1980),
the M statistic (Mardia, 1975), the Bayes statistic, the LRT statistic and the LMPTT statistic.

For comparison, 1000 samples of size 10 each containing one outlier are generated such
that nine observations are drawn from CN(0, 2) while the outlying observation is drawn from
CN(µ1, 2). We vary µ1 to measure the effectiveness of the procedures in detecting outliers
of different severity. For L, M, LRT and LMPTT statistics we record the frequency of ac-
ceptance of the null hypothesis, the alternative hypothesis and also the number of times the
correct observation is identified as the outlier. For the Bayes rule we also need to specify the
prior probability p of any of the observations being an outlier. Since the performance of the
Bayes rule is seen to depend on the value of p we examine the performance of the test for
several values of p. The results of these investigations are given in Tables 5–6.

There are several well-known criteria for comparing tests of outliers (Barnett & Lewis,
1994). We compare the above test statistics based on P1 (the power of the test) and P3 (the
probability that the presence of outlier is signalled and the outlier is correctly identified). A
good test has high P1 and low P1−P3 (which is the probability that the test wrongly identifies
a good observation as an outlier). Based on these criteria, we see from Tables 5 and 6 that the
LMPTT performs best for small values of µ1 , the most difficult ones to detect, as expected.
The LRT performs best for moderate values of µ1 and the Bayes rule performs best for large
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values of µ1 which incidentally may attract the most penalties in practical situations. We
also note that the Bayes rule gives increasingly better results with larger values of p, which
is expected since the dataset actually contains an outlier.

The Bayes rule with p = p0 , where p0 is such that 1 −np0 = 0.5, can be used in cases
when there is no prior information about an outlier being present in the dataset. Since the
efficacy of the Bayes rule in detecting the presence of an outlier is seen to increase with p, a
higher value of p should be specified in cases where the presence of outlier is suspected. The
LMPTT appears to perform slightly better than the LRT when outliers of lesser severity are to
be detected (i.e. µ1 is small) which is expected due to the nature of the LMPTT. However, if
we are interested in detecting outliers of moderate to large severity the LRT performs better
than the LMPTT. Moreover, we note that the Bayes procedure, the LRT and the LMPTT all
perform better than the tests based on the L and M statistics.

In this paper we have considered only the case where κ is known. The case where κ is
unknown is quite challenging and no work on it seems to be available. The difficulties stem
from the fact that κ is neither a location nor a scale parameter, so that the usual techniques of
reduction by invariance or similarity cannot be applied to get unconditional tests free of the
nuisance parameter κ. In case an exact or small sample solution is required, one may try to use
a conditional likelihood approach by taking Lc(µ) = L(µ; S | C = c), where S = ∑

i sin θi
and C = ∑

i cos θi , whose distribution is free of κ under H0 . Another approach could be to
try with a Bayesian idea by using the integrated likelihood (Aitkin & Rubin, 1985). We set a
proper prior density (with respect to Lebesgue measure on R

+) for κ, say π(κ) and obtain
the integrated likelihood L∗(µ). Lc(µ) or L∗(µ) may then replace the likelihood function
used in our approaches above. If a large sample is available, one can try to use techniques
available to construct such tests as to be free of a general nuisance parameter. The test statistics
do not however seem to come out in elegant forms. We are currently investigating several
such approaches to this problem.
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