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Abstract. SenGupta and Pal {1991, J. Statist. Plann. Inference, 29, 145—
155) have recently obtained the locally optimal test for zero intraclass correla-
tion coefficient in symmetric multivariate normal mixtures, with known mixing
proportion, for the c¢ase when the common mean, 7, and the common vari-
ance, o, are known. Here, we establish that even under the general situation,
when some Or none of m and o* are known, simple optimal tests can be de-
rived, which are locally most powerful similar, whose exact cut-off points are
already available and which retain all the previous optimality properties, e.g.
unbiasedness, monotonicity and congistency. Some power tables are presented
to demonstrate the favorable performances of these tests.

Key words and phrases: Intraclass correlation coefficient, locally most power-
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1. Introduction

Little seems to be known about any general method of construction of optimal
tests for no mixture against mixture models. We note here that in & symmetric
multivariate normal (SMN) (Rao ((1973), p- 196), Johnson and Wichern ((1982),
p. 373)) mixture population, the test for no mixture (contamination) reduces to
the test for zero intraclass correlation coefficient, p, when the mixing proportion,
p, is known. Situations where distributions with known p are used are quite com-
mon in practice, €8 bidirectional (p = 1/2) circular normal distribution (Bartels
(1984)) in directional data analysis; mixture of standard SMN (SSMN) distribu-
tions (Titterington, et al. ((1985), p. 68), P = 1/2) and mixture of SSMN and
SMN distributions (Henze and Zirkler ((1990), p- 3610)) in test for multivari-
ate normality; mixture of SSMN distributions (Kocherlakota and Kocherlakota
(1981)) and mixture of SSMN and SMN distributions (Srivastava and Lee (1984))
in robustness studies of estimators and tests etc. Also ... another general area
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where mixtures of distributions are important” is that of reliability studies for “the
overall failure distribution” of a multi-component item (Everitt ((1985), p. 560)).
Intraclass correlation structure is also quite popular in *... many areas of appli-
cations, particularly population genetics .. ., reliability studies (products from the
same machine ...) ... and survey sampling _..» (Koch ((1983), p. 212)). Here
again, in many applied areas p, though unknown, is usually positive, e.g., in split-
plot experimental designs (Koch et al. ((1988), p. 48)), finite population regression
models in sample survey (Brewer and Tam ((1990}, p. 428)), multivariate linear
models (Bai et al. ((1990), p. 515)), efficient combination of experiments (Verrill
et al. (1990)), etc. The SMN mixture model with p > 0 thus applies also, when
a product, in batches, is acquired from two different suppliers (machines) in a
known (or approximately known) proportion according to say, possibly time and
cost considerations. Further applications of this‘model may thus be envisaged from
the above examples as particular cases, e.g. tests for multivariate normality as in
Titterington et al. (1985) when p > 0, etc.; or as generalizations, e.g., models for
robustness studies—taking possibly dependent (p > 0), rather than independent,
homoscedastic variables for the second component in expression (1) of Srivastava
and Lee {1984), or SMN components with py = 0, p2 = 0 rather than SSMN
components in expression (1.1) of Kocherlakota and Kocherlakota (1981), or tak-
ing p1 =0, § =0, p2 2 0 in the model of Henze and Zirkler (1990). In a recent
paper, SenGupta and Pal (1991) have considered the locally most powerful (LMP}
test for p = 0 in a SSMN mixture population with known p. For further moti-
vations and applications, the reader is referred to that paper. Here we consider
the extension from the SSMN to the SMN mixture population. Our introduction
of the common mean m and the common variance o2, possibly both unknown,
for the marginals of each of the two.8MN components of the mixture, constitutes
the natural and practical generalizations of the situations considered above. We
establish the appealing simplicity of the LMP similar tests derived here, ease of
construction and of availability of cut-off points, monotonicity of power functions
and hence unbiasedness of the tests, consistency of the tests and finally asymptotic
normality of the test statistics under both the null and alternative hypotheses.

Let g(z | m, 02, p) denote the k-variate SMN density, Nx (M, ¢%X,), with mean
vector M= (m,...,m)\,a®> 0,5, =((p+ (1~ p)6i;)), i being the Kronecker
delta and —(k — 17! < p < 1. This density can also be regarded as a density
of k exchangeable normal random variables with the same marginal parameters
m and 2. Let gup)(® | m,a?, p) be the density obtained as a “p-mixture” of
g(x| m,o?,0) and g(z| m,o?,p), that is

(L) gl mio?p) =p(2ro?) ™ exp{~(e— M) (= M)/20%}
+ q(2ma®) /3 (det £,) 77
exp{—(z— M)'S; (@ - M)/20%}

where 0 < p < 1, and ¢ = 1 —p. For brevity, write gzl m, o2, p), g(x | m,o%,p)
and g(z | m,02,0) as gip), 9o and go respectively. Let Xi,...,Xn be a random
sample from (1.1). Here we derive LMP similar tests of Hy : p = 0 against
the one sided alternatives H; : p > 0. Note that for large k, p should be non-
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negative. Usual reversal of inequalities in the definitions of the critical regions
yields analogous tests for the alternatives p < 0.

2. LMP similar tests

Suppose we want to test Hy : 8 = 6y against Hy : 0 > 6o, 6 € @& C R,
in the presence of a nuigance parameter 17 € N C RF, k> 1. Let D, be the
class of all similar level o tests of Hy against Hy and let B,(8,n) be the power
function of a test ¢ € Da. Spjgtvoll (1968) presented the form of the LMP
similar test in some generality. For the existence of the test, it was assumed that
0PB,(8,m)/00 exists for all # € 2 and n € N for every ¢ € Do. However, it was
observed later {Durairajan and Kale (1982)} that this condition alone does not
suffice. The dominance of the test over a local interval with its one appropriate
end-point at 8o may be destroyed, since such an interval in general will depend on
the nuisance parameter 7. A second condition that for every ¢ € Dy, the family
[88,(6,m)/00;m € N} is equicontinuous at § = fo suffices. This is satisfied, e.g.,
if 828,(6,m)/ 802 < M < o0, 8 € 2. For further details on equicontinuity see,
e.g., Dugundji ((1975), p- 266). For the construction of the test the regularity
conditions assumed were that the underlying distribution admits a probability
density function (p.d.f.) with support.independent of the parameters, the partial
derivative in 83,(6,7)/000 can be passed inside the integral arising for the power
function and the family of p.d.f.s possesses a boundedly complete sufficient statistic
under Hyp. . : o

The structure of the LMP similar test for. the mixture population in each of
the cases in the previous section is based on the inequality '

an

(21) > [ mapis | o o > 0

s=1

where c(t) generically denotes 2 constant depending on a fixed value ¢ of the
sufficient, statistic under Ho. Verification of regularity conditions for our problem
is straightforward though tedious. It needs to be pointed out that for each of
the three cases considered below, the LMP similar test statistic is invariant with
respect to the corresponding nuisance (location-scale) parameter(s) involved under
the respective group of affine transformations X — Y, Y=aX+bl,a>0,b€ R'.
Hence 8,(6,n) = B,(6) is free of . Thus the condition of equicontinuity becomes
superfluous—the usual condition (Ferguson ((1967), p- 235)) of mere continuity of
8B,(0)/00 at 0 = g, suffices.

Since p is known, (2.1) reduces to 2 similar expression with g(p) being re-
placed by g, -, the test statistics coincide with those for the SMN distribu-
tion. For ease of reference, the test statistics are quoted below from Gokhale and
SenGupta {1986) wherefrom their exact null distributions and the corresponding
cut-off points are also available. Thus a tremendous gain is achieved here both
from the theoretical and the computational aspects.

To complete the notation, let X, = (Xs1, Xs2y - , X sk)’, X.; denoting

the i-th component of the vector X,, X denote the sample mean vector; X =
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(22=1 Z?:l X-?i)/nk’ X-‘3 f (Zle XS‘E)/"C) 8= 1’ 2’ ERERL uj = Z?:l E'}ic:l(X-’i_
%)%, B=kY o, (Xs—~ X)?and T = s 3 (X — X)? =B+ W. Under
9oy W/(1 - p)a? is distributed as xi(k_l), B/{1+ (k- 1)p}o? is distributed as
x%_, and W and B are independent (Rao (1973)).

For the cases when the parameters m and o2 are known, without loss of
generality we assume m = 0 and ¢2 = 1. In each of the four cases, the critical
region reduces to the form: Reject Ho if T; > ¢, 80 that it suffices to present the
test statistics, T; only.

ki

k
(2.2)Case 1. m and ¢® both known: T1 = XoiXois
3
s=11#i=1

2
(2.3) Case 2. m known, a2 unknown: T = Z (Z X.si) /szfan

(2.4) Case 3. m and o2 both unknown: T3 = B/T,
(2.5) Case 4. ™ unknown, o2 known: Ty = (k — 1B - W.

[There is a misprint for this Case 3 in Gokhale and SenGupta (1986). For case (iii)
there replace Z, by Z in the expression for 7', p. 267, 1. 8]. The problems under
H, associated with Case 1 for the non-mixture situation deserve special mention
and interested readers are referred to SenGupta (1982, 1987). SenGupta and Pal
{(1991) have established monotonicity, unbiasedness, consistency and asymptotic
normality related to the special Case 1 of the mixture situation. We establish
below these properties for the gene}al Cases 2 through 4 also.

3. Monotonicity of the power. functions

Case 2. m known, o2 unknown: The critical region can be written as

2
n
Ty = ZY; >0 where Y;= (ZXS,-) - cZXEi.
s=1 . i i :
Y., s=1,2,...,nare i.i.d. and each Y, has the distribution given below:

; K1+ (k- Dplxd
(3.1) o2yd ] - iy F {1+ (- Dehxd] under g
kx3 — b1 +xdl under go,

and
32) PM>clp=1-PTG<0 | p)
S1-3 (M) pra a6 <o)

s=0
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where Go(z) and G,(x) are respectively the c.d.fs of Y! with distributions as
specified in (3.1), and “*” denotes convolution. The expression in the RHS of
(3.2) follows directly since Tj is a symmetric statistic of Y's.

Note that the last expression in the RHS of (3.1) is an increasing function of
p for p > 0. This implies that for 0 < p1 < pz £ 1, v/ is (stochastically) larger
. under g,, than under gp,. Hence, G, {x) < G, {z) for all  belonging to the set of

continuity points of ¥;. Consequently for any positive integer 7, G, (z) < G;: (x).
From (3.2) we then get,

P> el =1- 30 (%) p (o [O8 1 6 0)

s=0

1o 3 (M) ra - e < )]
s=0
=1-P(T} <0 pr) = P> clm)

The power function is thus monotonically increasing and hence the test is unbiased.

Case 3. Bothm, o2 unknown: The critical region can be equivalently written
as

(3.3) T = k(1-0) Y (Ko - XY (Kt = Ko >0

Let us first regroup (Behboodian (1972)) the n observation vectors Xy, X2, ..+,
X,, into two groups: one of independent vectors X1, Xuns oo Xuu with com-
mon density go and the other of independent vectors Xous1s Xuut2s- s X, with

common density g, Let Tun = k(1 —¢) T (Xus = X —eX, i Kusi — Xus)?
where,

k - n
Xys = (XusI;-Xua% ey Xusk),) Xus = zxusi/k and Xy= qus/n-

i=1 s=1
Let,
= 3 _ u _ =
X =3 Kusfus  Thy =D (Kus = Xut)*/0,
s=1 3=1
= n — n — =
Xu.2= Z Xm/(n—u), T&g—': Z (Xua_Xu2)2/(n—u)1
s=u+1 s=u+1
w ok I n k _
Z%u = Z Z(Xusi = X‘us)2 and Z%u = Z Z(Xusi - Xus)2~
s=1 i=1 s=u+1 i=1
Then,

Tym = ku(l — )Ty + k(n - w)(1 — )T

+ (ku(n — w)(1 — )/n)(Xu1 = Xuw)? — c(Z2, + Z3,).
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Under gpa UTmfl ~ (Uz/k)Xi—p (?’L - U)Tg‘Z ~ [1 + (k - l)p] (02/k)xgt,—u—11

(Xt — Xuz)? ~ (1) +{(1 + (k = Dp)/(n — W)} /R)x3,
Z2, ~ Xy and 72, ~ (1= p)0° Xy (k1)

So,

(34) 0Ty 2 (1= iy + (1= {1+ (b~ Dpbxout
+ (ku{n —w)(1 - c)/n)
(@ /u) + {1+ (k= 1)p)/(n — w)H(1/k)xd
—elx2-n +(1— P)Xn—wyk-1)}

The distribution of T;, under gy is the same as in (3.4) with p = 0. Moreover, under
both go and g,, all the x? variables occurring in (3.4) are mutually independent.
We also note that the expression in the RHS of (3.4) is an increasing function of
p for p > 0. Hence, for any two values py and pa, 0 < p1 < pe, of p we have,

P(T§> 0] p2) =1~ P(T5< 0| p2)

—1- f_j (:) p¥(1 = p)" " P(Tun <01 p2)

u=0

- n n—uw
>1—Z(u)pu(l—-p) '_P(Tu,n$0|P1)=P(T3'>0[p1),

u=0 -

This implies that the ‘power function is monotonically increasing in p and
hence the test is unbiased.

Case 4. m unknown, o2 known: In this case the critical region comes out
in a stmilar form as in (3.3). Hence the monotonicity and unbiasedness follow by
arguments similar to those in Case 4. : '

We obtain the numerical values for the powers with n = 10 thru simulation.
The cut-off points at o = .05 are tabulated in (Gokhale and SenGupta (1986). For
each n, p and p, we generate 1000 T; values by generating 1000 values for each of
the y2-variables involved, with necessary modifications for u = 0 and u = n. Power
is obtained, then, thru the empirical c.d.f. of T;. So, for example, to obtain Table 1,
the simulation loop was executed p-p-(n+1)-1000.6 = 9- 10-26-1000:-6 = 14, 040, 000
times. From Tables 1, 2 and 3 we note that the performance of the test is quite
good, for small p, even for as small a sample size as 10. The power increases
rapidly with p. The monotonicity of the power function is clearly exhibited. It
can be shown that, as in Case 1 (SenGupta and Pal (1991)), here also the power
increases rapidly, for small p, with increase in n. For large p, the power is not
high. This is to be expected. For large p, the distribution gp) even under the

alternative hypothesis Hy : p > 0 approaches that under the null hypothesis Hp : |

p = 0, and hence any reasonable test will have to suffer the consequences.




TESTING INTRACLASS CORRELATION IN MIXTURES 143

Table 1. Power of Tp-test.

Ap Al 2 3 4 5 r 7 8 9

1 2426 2276 2281 2158 9012 1889 .1794 1697 1645
5 3400 3202 2041 2857 2475 2399 2100 .1946 1663
3 4251 .3086 .3726 3304 3186 2774 2400 2173 1872
4 5109 4851 4456 3864 3505 3186 2791 2275 1968
5 5893 5479 4943 4620 3997 3428 2051 2526 2046
6 5407 6121 5565 5104 4579 4090 3381 2798 2084
4 e85 6392 6059 5359 4835 4318 3804 .2878 2203
s 7314 6879 6487 5802 5283 4455 4050 3148 2487
9

7603 7265 .68l8 6213 5593 4867 4194 3474 2528

Table 2. Power of T3-test.

o\p 1 2 3 4 b 6 i 8 9
1 1304 1157 1074 .1015 .0956 0835 .0868 L0620 0620
2 2414 2227 1024 11621 .1452 ‘1188 .0998 .0837 .0669
3 1845 .3441 2837 2502 .2104 1733 1424 .1134 0789
4 5482 4825 4201 3538 2820 2312 1709 1319 .0829
5 0996 .6388 .5506 4390 .3663 2014 .2108 1560 .0999

. .6 8275 .7Al5  .6608 5485 .4529 .3500 '.2646 “1747 1133

g 9108 8317 .T417  .6473 5255 42567 3055 .2025 1228

8 9621 .8984 8160 7193 .610;1 . 4934 .3539 .2337 12989

9 0811  .9431 8764 .TT4l 6639 5496  .3999 2688 1499
Table 3. Power of Ty-test.

P\P 1 2 3 4 .5 R i .8 9
1 .1231 1190 1095 .0855 .0894 .0667 0743 0615 .0530
2 2200 2102 1842 (1625 1285 1097 0924 .0866 0637
a2 3877 3137 0705 .2446 .2021 .1633 1952 .0958 .0T26
4 5005 4370 3793 .3178 2651 .2146 1727 1207 0769
5 .6036 5346 4683 .3983 .3286 27152 2119 1401 0983
6 .7T140 .6426 5533 .4865 .4064 3178 2431 .1648 0986
g 7939 .T299 6449 5581 .4689 3783 2853 1977 .1229
8 .B5H2  .T836 7191 6277 5304 4290 3302 2257 1288
9 9062 8528 .T175 6795 5949 4691 3652 .2403 1317

4. Asymptotic normality and consistency

Case 2. ‘m known, o Pnknown: Rewrite Ty as To = UV where U =
s Us/n, Us = (> Xsi)za V=2, V/m Vs = Z«;X?s- Then Q, = (US,VS)'
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for s = 1,2,...,n are iid. random vector variables. Under Hi, E(U,) = [1 +
glk — 1)glka® = &1, say; E(V,) = ko? = &, say; and Disp.(Q,) = (03;) = %, say,
where o;;’ s may be obtained by tedious calculations. By the multivariate Central
Limit Theorem (CLT), \/E(Q—.E)LNZ(O, %), where @ = (U, V) and £ = (61,62)".

Thus under Hi, va[T: — {1 + ¢(k — 1)p}] is asymptotically distributed as a
normal variable with mean 0 and variance n;‘;, say, where n:‘; > (. Note that the
function A{U,V) = U/V = T; is totally differentiable. So, the explicit form for
n2, though not needed here, may be obtained by the Delta method (Rao ((1973),
p. 388)) if one is still interested. Under Hy, the relevant quantities are obtained
by substituting p = 0 in the corresponding above expressions. Let henceforth
denote the size of the test.

o= P[(ff/f/) > ¢| Hol = 1 - ®|(c = 1)/(no/ V)] = ¢ = 1+ (7aT0/ V1),

T, being the upper o point of the standard normal variable. ¥or large n, the power
of the test under p > 0 can be written as

1— & [[1+ (noTa/v) — {1+ qlk — 1o}}/ (ns/v/n)]
=1—8[{nota — vVng(k —1)p}/mp) =1 a8 n—00

since g(k — 1)p > 0 for p > 0.

Case 3. m, o2 both unknown: Rewrite the critical region given by (2.4) as
7L > ¢, where T = (B/m)/(W/n)'= [k X, (Xs~ X /n}/ [, s (X = X0/
= kX, Ys/n)/ (3, Zs/n) = kY [Z, say. Note that, under both Ho and Hi,
%P and B(X,) = m. Also under Hy, V(X,) = [po? + a{1 + (k — D)p}c|/k =
po/k, say. So, YEEX, - m)2 = 1, /k, say. Further, Z,, s =1,2,...,n are i.id.
random variables. Under Hy, Zy~ po®x3y +g{l - p)o X7y, Where X}y and Xi2)
are x? variables with d.f.-(k — 1) each, so that E(Z,) = (1 — gp)(k —1)a® = 8,,
say, and var(Zs) = a*(k — 1)[(k + D{p + g1 = p)} = (k= 1){1 = ap)’] = 5, sa.

Then by CLT, vA(Z — 6,)5N(0,52). Let h(Z) = 1/Z. Then v(l/Z —
1/ Bp)—[—‘>N (0,~3), where +5 is obtained by the Delta method as 72 = 3%/6%. Hence

"

by Slutsky’s theorem, under Hy, nl{I3 — 1,/0,] is asymptotically distributed as
a normal variable with mean 0 and variance ﬁg = 'yg,uf,. Under Hg, the relevant
quantities are obtained by substituting p = 0. Then,

o= P, > | Ho) = 1 - ®[/a(d — po/b0) /o] = ¢ = (0/00) + Taflo/ V-
For large n, the power of the test under p > 0 can be written as
1 — ®[{v/Al0/00 — o) + Tafio} A} = 1 85, n— 00,
since tio/0o — ip/9, = —akp/[(k — D)(L — gp)] < 0 for p > 0.

Case 4. m unknown, o% known: Rewrite the critical region given by (2.5)
as T > c/n, where Ty = Ty/n = k(k - 1)Y = 2, ¥ and Z being as defined in
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Cése 3 above. Let p),, 8, and Bi? denote the value of p,, 6, and f32 respectively,
of Case 3 above with * = 1. Also let &, = (k - 1), — ;. Hence by CLT and

using Slutsky’s theorem , under Hy,v/n [Tf - 65’,] is asymptotically distributed as
7!

4 normal variable with mean 0 and variance B,
Then,

o= P[Ts>c¢/n|H|— 1~ B|yr{c/n—8}/B) = ¢ = VT + by
For large n, the power of the test under p > 0 can be written as
1—®[{rabo — V{8, — §y}/B —1 as m— oo
since dél,/dp = k(k—1)g > 0.
5. Comments

As discussed in SenGupta and Pal (1991), one would probably have knowledge
about p more often than about p and hence 'we have considered here tests for p.
However, in case p is known, tests for p, 0 < p £ 1, may be needed i.e. for Hy :
p = 1. Then, one can obtain LMP similar tests for p (Durairajan and Kale (1982))
following (2.1) and considering derivatives of p from the left at p = 1. Further, if
both p and p need to be tested simultaneously, one may use the multiparameter
locally most mean powerful similar test of SenGupta and Vermeire (1986). Finally
when either or both p and g may assume gero values, the test may be based on
an appropriate Pivotal Parametric Product {P?) (SenGupta (1991)). Details may
be pursued in the lines of Rachev and SenGupta {1992) and SenGupta and Pal

(1993).
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