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a b s t r a c t

Statistical learning has been studied as a mechanism by which people automatically and implicitly learn
patterns in the environment. Here, we sought to examine general assumptions about statistical learning,
including whether the learning is long-term, and whether it can occur implicitly. We exposed partici-
pants to a stream of stimuli, then tested them immediately after, or 24 h after, exposure, with separate
eywords:
tatistical learning
mplicit
ong-term

tests meant to measure implicit and explicit knowledge. To measure implicit learning, we analyzed
reaction times during a rapid serial visual presentation detection task; for explicit learning, we used
a matching questionnaire. Subjects’ reaction time performance indicated that they did implicitly learn
the exposed sequences, and furthermore, this learning was unrelated to explicit learning. These learning
effects were observed both immediately after exposure and after a 24-h delay. These experiments offer
concrete evidence that statistical learning is long-term and that the learning involves implicit learning

mechanisms.

tatistical learning has been studied as a mechanism by which
eople automatically discover patterns in the environment. In typ-

cal statistical learning studies, people learn arbitrary associations
etween stimuli based on the statistics of inter-stimulus contingen-
ies, without necessarily intention or effort [11,19]. In this paradigm,
ubjects are passively exposed to stimulus configurations that have
een organized into regular patterns. After only a brief period
f passive exposure, observers can correctly identify which pat-
erns were repeatedly presented during the exposure phase, despite
eporting no conscious awareness of this knowledge. This type of
earning has been demonstrated with a wide range of stimuli (e.g.,
isual spatial arrangements [11], visual temporal sequences [10],
uditory tone sequences [20], audiovisual sequences [23], and tac-
ile sequences [5], in both adults and infants [12,19]. In addition,
eople can learn multiple patterns (from different input sources)

n parallel [6,23].
The pervasiveness of statistical learning phenomena is con-

istent with the proposal that it is a domain-general learning
echanism that may underlie our ability to automatically adapt to

ur environment without intention or awareness (note that some
uggest that attention to the stimuli may be required for successful

tatistical learning [2,26,28]). It has been suggested that this type of
earning may contribute to language learning [19,21], acquisition of
cene and object representations [11], and the hierarchical coding of
bjects (i.e. chunking) [9,14]. It has also been pointed out that statis-
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tical learning shares properties with the artificial grammar learning
(AGL) introduced by Reber [18], the most obvious similarity being
their implicit nature [6,16]. Indeed, Reber suggested that implicit
learning was likely a general mechanism and thus should emerge
in many different contexts and with different types of stimuli [17].

If statistical learning is indeed tapping into adaptive mecha-
nisms to help us adjust to our environment, it should persist across
long delays. However, to date, statistical learning has only been
tested closely after exposure. Thus far, long-term implicit learn-
ing has been well documented in the area of perceptual learning
[3,7,22,24,29]. More relevantly, AGL has been demonstrated to per-
sist across 2 years [1], as measured by performance on a yes/no
grammaticality judgment task, and over 14 days on a visuo-motor
serial reaction time test [27]. However, long-term visual statistical
learning has not been reported.

Statistical learning has largely been assumed to be an implicit
mechanism in that the learning can occur without supervision
(instructions or feedback) and without conscious awareness of such
learning. Notably, statistical learning studies typically use a two-
alternative forced choice test in which subjects report which stimuli
are more “familiar” (e.g. [11,20,23]) and argue based upon debrief-
ing reports that familiarity reports reveal implicit knowledge.
However, inasmuch as it requires recognition of previously exposed
patterns, the familiarity test may be more akin to an explicit learn-

ing test (e.g., recognition in the memory literature); and in fact,
some statistical learning researchers consider familiarity a mea-
sure of explicit rather than implicit learning [2]. Furthermore, as
Turk-Browne et al. [28] comment, the familiarity measure is “an
odd sort of dependent measure to use, because it essentially asks

http://www.sciencedirect.com/science/journal/03043940
http://www.elsevier.com/locate/neulet
mailto:ladan@psych.ucla.edu
dx.doi.org/10.1016/j.neulet.2009.06.030


1 ce Letters 461 (2009) 145–149

o
r

t
i
j
m
c
t
l
[
d
d

b
t
p
m
2
e
v
k
t
(
u
c
e
e

a
s
d

m
p
a
m
C
t

(
1
a
o
p

e
u
s
t

5
c
w
M

l
o
1
a
T
c
(
o
w
c

46 R. Kim et al. / Neuroscien

bservers to make an explicit judgment about implicitly learned
elationships.”

The evidence for lack of conscious knowledge of learning in
he face of accurate familiarity judgments typically comes from
nformal verbal reports [5,9,11]. However, aside from such sub-
ective reports, explicit knowledge has not been quantitatively

easured and compared with implicit knowledge. Thus, results
ould be tainted by a degree of (ineffable) explicit knowledge. For
he long-term artificial grammar learning studies (discussed ear-
ier), subjects demonstrated explicit as well as implicit learning
1,27]; interestingly, both studies also reported a greater degree of
ecay for explicit compared to implicit knowledge, supporting a
issociation between implicit and explicit learning.

Statistical learning has proven a valuable research paradigm,
ut as described above, some commonly held but critical assump-
ions need to be more concretely addressed. The first goal of this
aper is to investigate long-term statistical learning. In Experi-
ent 1, we test people immediately after exposure; in Experiment

, we test a separate group of people approximately 24 h after
xposure to test for long-term statistical learning. Secondly, we
erify previous reports of implicit learning independent of explicit
nowledge. To measure implicit learning, we use an alternative
est of learning to familiarity, a rapid serial visual presentation
RSVP) reaction time test [28]. To measure explicit learning, we
se an item matching test. Also, we examine the possibility that
onsolidation or forgetting has differing effects on implicit vs.
xplicit knowledge [8,27] by comparing long-term with short-term
valuations.

Experiments 1 and 2 were implemented identically, except that
ll tests for Experiment 1 were conducted immediately after expo-
ure, while tests for Experiment 2 were conducted the following
ay.

Twenty-four undergraduates, aged 18–35 (12 in each Experi-
ent) took part in the study, and received course credit for their

articipation. All participants were naïve to the purpose of the study
nd participated in only one experimental condition. The experi-
ents were conducted in accordance with the IRB approved by the

ommittee on Human Research of the University of California and
he Declaration of Helsinki.

Visual stimuli consisted of 12 arbitrary black and white figures
Fig. 1A) adapted from Fiser and Aslin [11]. Images were sized to
28 × 128 pixels and subtended 3 squared degrees of visual angle,
nd were each presented for 200 ms. Visual stimuli were presented
n a 19′′ Cathode Ray Tube monitor with resolution of 1024 × 768
ixels and refresh rate of 75 Hz.

Stimuli were presented one at a time during both parts of the
xperiment (‘Exposure’ and ‘Testing,’ see below). Each figure was
niquely assigned to one of four ‘triplets’ (a sequence of three visual
timuli, see Fig. 1 for details) [10]. The stimulus make-up for these
riplets was randomly assigned for each subject.

The experiments took place in a dimly lit room. Participants sat
7 cm away from the monitor with their heads stabilized using a
hin-rest. Stimuli were presented using custom software written
ith use of the Psychophysics Toolbox [4,15] for MatlabTM (Natick,
A) on a Macintosh G4 computer.

Exposure: During the first phase of the experiment (∼5 min
ong), participants were presented with a rapid serial presentation
f a continuous stream of four visual triplet sequences presented
00 times each, in a pseudorandom order with the constraint that
given triplet could not appear twice in immediate succession.

riplets could not be segmented based on any temporal or spatial

ues as the ISI of the stimuli was fixed within and across triplets
30 ms), and each stimulus appeared at the same central location
n the screen. Stimuli were presented for 200 ms. The same ISI
as used both for Exposure and Testing. Subjects were asked to

arefully watch and listen to the stimuli at the time of Exposure,
Fig. 1. Stimuli. (A) The 12 shapes used in the experiments are shown; sample triplets
are encircled. The actual subcomponents of the triplets were randomly assigned for
each participant. (B) Sample exposure stream using triplets from A.

and participants were not informed about the subsequent Testing
phase.

Testing: One group (Experiment 1) was tested immediately after
Exposure, while another group (Experiment 2) was tested approx-
imately 24 h after Exposure. Participants performed two tests. The
first consisted of a rapid serial visual presentation (RSVP) paradigm,
in which the task was to press a key as soon as they detect a visual
target within a stream of stimuli. The stream of stimuli consisted of
one presentation each of the triplets they experienced during Expo-
sure, in random order. Each stimulus was presented for the same
duration and with the same ISI as in the Exposure period. The trials
proceeded as follows: a target stimulus was presented at the top of
the screen. Once the subject was ready to start the test trial, he/she
pressed a key to begin the test stream and the target disappeared.
Then, each triplet was presented once in a pseudorandom order,
with the constraint that the triplet containing the target stimulus
could not occur first or last in the stream. When the subject saw the
target stimulus, he/she pressed the space bar as quickly as possible,
and the reaction time was recorded. Each of the 12 visual stimuli
was presented as a target eight times, for a total of 96 trials. This
test lasted about 10 min. If subjects did learn the sequences dur-
ing Exposure, reaction times to items later in each sequence (i.e.,
the second and third items in each triplet) should be shorter than
they were to the first items in each triplet, since the later items got
primed by the first items in each sequence, whereas the first items
appeared unpredictably within the stream. If, however, subjects did
not learn the triplets, reaction times should not differ among the
item positions.

The second test was a matching questionnaire intended to
probe whether participants explicitly learned which stimuli were
grouped together. On each trial, one visual stimulus was presented
and the observer was asked on the monitor, “Which two images
are related to this one?” Underneath the test stimulus, the remain-

ing eleven visual stimuli were displayed in a random order, labeled
a–k. Subjects were instructed to type in the letters corresponding to
the two items they believed were associated with the test stimulus
based on what they observed during the first part of the experiment.
We used this test, a type of recognition test rather than a pure recall
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Fig. 2. Experiment 1, short-term learning of visual triplet sequences. (A) Mean reac-
tion times to the items in different positions in the exposed sequences. Error bars
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Fig. 3. Experiment 2, long-term learning of visual triplet sequences. (A) Mean
reaction times to the items in different positions in the exposed sequences. Error
bars indicate between subject standard error of the means. (B) Mean matching
ndicate between subject standard error of the means. (B) Mean matching scores

o the items in different positions in the exposed sequences. Error bars indicate
etween subject standard error of the means. Dashed line indicates chance level.

est, so that we could more sensitively measure explicit learning. It
s possible that subjects do not have enough memory of the stim-
li to spontaneously recall each item, yet can report which items
re associated when all the choices are provided. Also, this way
e can compare performance with a baseline chance performance

2/11).
Finally, participants were verbally asked how confident they felt

bout their responses on both tests, what strategies they used for
ach, and if they noticed any patterns among the stimuli during
xposure.

Fig. 2A plots average reaction times for items in the first,
econd, and third positions in the triplets. A repeated measures
NOVA revealed a significant difference among reaction times

F(2,22) = 7.91, p < 0.01). Planned comparison paired t-tests indi-
ated that reaction times for the second and third items in the
riplets were significantly faster than for the first items (item 1 vs.
tem 2: t(11) = 2.28, p < 0.05; item 1 vs. item 3: t(11) = 5.23, p < 0.01),
ut not for second vs. third items (t(11) = 1.32, p = 0.21).

Since it is possible that some learning could occur within the test
ession itself, we examined whether performance differed between
he first and second half of the testing sessions. Absolute reaction
imes did not change (F(2,22) = 1.99, p = 0.19) from first to second
alf of testing. More importantly, the sequence learning effects, or

ifference in reaction times (�RT) to different item positions (e.g.,
RT12 = RT for item 1 − RT for item 2), did not significantly differ

etween the first and second halves of the testing session (paired
-tests comparing reaction time differences �RT12, �RT13, and
scores to the items in different positions in the exposed sequences. Error bars indi-
cate between subject standard error of the means. Dashed line indicates chance
level.

�RT23 between first and second halves: t(11) = .21, .41, .35; p = .84,
.69, .73, respectively), suggesting that the reaction time effect did
not result from learning within the test session.

As Fig. 2B shows, on the matching questionnaire, subjects per-
formed at chance for all three item positions, with no significant
difference between item positions (F(2,22) = .16, p = .86). Across all
items, subjects scored an average of 21% (SE = .03; t-test vs. chance
(2/11 or 18%): t(35) = 1.14, p = .28). Thus, we found no evidence of
explicit learning, even with a recognition test.

Although on average there was no evidence of explicit learn-
ing, it is possible that the amount of explicit knowledge could
affect reaction time results, i.e., the implicit and explicit measures
used here might not be independent of each other. However, when
comparing reaction time differences between different items with
average matching scores, i.e., (% correct for 1st item +% correct for
2nd item)/2), performance was not correlated across all conditions
(r(10) = .01, p = .99), nor for each condition separately (r(10) = −.31,
.02, .30; p = .33, .94, .34, for �RT12, �RT13, and �RT23, respec-
tively).

Fig. 3A plots average reaction times for items in the first, second,
and third positions in the triplets. A repeated measures one-way
ANOVA revealed a significant difference among the three condi-

tions (F(2,22) = 8.37, p < 0.01). Planned comparison paired t-tests
indicated that reaction times for the second and third items in the
triplets were significantly shorter than for the first items (item 1 vs.
item 2: t(11) = 2.25, p < 0.05; item 1 vs. item 3: t(11) = 4.23, p < 0.01),
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ut not for the second compared to the third items, though they
pproached significance (t(11) = 1.75, p = 0.11).

When comparing between the first and second halves of the
esting session we found no change in absolute reaction times
F(2,22) = 0.90, p = .36). More importantly, the statistical learning
ffects �RT12 and �RT23 did not significantly differ between
he first and second halves of the testing session (paired t-tests
(11) = .02, 1.16; p = .98, .27, respectively), suggesting that the reac-
ion time effect did not result from learning within the test session.
owever, there was a change for items 1 vs. 3 from the first

o the second half of the test session (from �RT13 = .0371 s to
RT13 = .0645 s, t(11) = 2.48, p < 0.05), thus there may have been
ithin-test learning of that relationship.

As Fig. 3B shows, on the matching questionnaire, subjects
erformed at chance for all three item positions, with no signifi-
ant difference between item positions (RM ANOVA: F(2,22) = 1.12,
= .34). Across all items, subjects scored an average of 19% (SE = 3%;

-test vs. chance (2/11 or 18%): t(35) = .41, p = .69).
Performance was not correlated between reaction time differ-

nces and matching test scores across all conditions (r(10) = −.09,
= .61), nor for each condition separately (r(10) = −.2, −.14, .07;
= .52, .66, .83, for �RT12, �RT13, and �RT23, respectively).

Reaction time patterns for short-term and long-term visual sta-
istical learning were very similar. A two-way repeated measures
NOVA on reaction time data with factors Experiment (1 or 2)
nd item (1, 2, or 3) yielded no significant interaction, and no
ignificant main effect of experiment (F(1,22) = .1, p = .76), only a sig-
ificant main effect of item (F(2,22) = 18.8, p < .01). For the matching
ask as well, performance was not significantly different between
xperiments (F(1,22) = .51, p = .49), nor between items (F(2,22) = .89,
= .44).

Finally, although the difference between second and third items
oes not reach significance in each experiment separately, there

s a difference if we combine the data from both experiments
t(23) = 2.217, p < 0.05).

Here we found for the first time that visual statistical learning
an be long-term. The amount of implicit learning immediately
fter exposure was similar to that after a 24-h delay, suggesting
hat implicit statistical learning can persist without deterioration,
t least over 1 day, even with only 5 min of exposure. For learning
egular patterns in the environment it is desirable for the learning
ffect to withstand unrelated intervening stimuli and activities. This
obustness over time has been demonstrated in artificial grammar
earning [1,27] and now, in visual statistical learning.

We observed implicit statistical learning as measured by reac-
ion time differences between the first and second/third items in
he sequences, which is consistent with previous findings [28].
lthough the difference between second and third items does not

each significance in each experiment separately, there is a differ-
nce if we combine the data from both experiments, consistent with
urk-Browne et al. [28]. This reaction time measure is a good alter-
ative measure of implicit learning to the familiarity test, and is
ne that does not require subjects to make explicit decisions about
ecognition.

This implicit learning is obtained in the absence of explicit learn-
ng, as measured by our matching questionnaire; furthermore, the
bserved degree of implicit and explicit learning are not correlated,
uggesting that the implicit and explicit learning (if any) are not
nter-dependent. Previous statistical learning studies have relied on
ost-experiment debriefing reports for evidence of explicit learn-

ng; however, introspective judgments are an unreliable gauge

f learning. It is known that people have poor metacognition in
ssessing their learning and memory [13,30]. For example, people
ften confidently judge massed practice as more effective learn-

ng regimes than spaced practice, though their test results indicate
therwise [25]. Confirming this lack of insight, a few subjects in our

[

[

[

ers 461 (2009) 145–149

study reported some confidence or moderate knowledge of patterns
in the stimuli in verbal post-test interviews, but those assessments
were not correlated with their performance on the matching test.
This highlights the fact that a structured test of explicit knowledge
can provide a more useful metric of the contribution of explicit
learning than verbal reports.

These experiments demonstrate that the learned visual associa-
tions can persist over 1 day, and offer concrete evidence supporting
the assumption that statistical learning involves implicit learning
mechanisms. However, our results also highlight the fact that the
assumption of implicitness cannot be taken for granted, and should
be empirically tested.
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