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by classification images
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Classification image analysis is a psychophysical technique in which noise components of stimuli are analyzed to produce
an image that reveals critical features of a task. Here we use classification images to gain greater understanding of
perceptual learning. To achieve reasonable classification images within a single session, we developed an efficient
classification image procedure that employed designer noise and a low-dimensional stimulus space. Subjects were trained
across ten sessions to detect the orientation of a grating masked in noise, with an eleventh, test, session conducted using a
stimulus orthogonal to the trained stimulus. As with standard perceptual learning studies, subjects showed improvements in
performance metrics of accuracy, threshold, and reaction times. The clarity of the classification images and their correlation
to an ideal target also improved across training sessions in an orientation-specific manner. Furthermore, image-based
analyses revealed aspects of performance that could not be observed with standard performance metrics. Subjects with
threshold improvements learned to use pixels across a wider area of the image, and, apposed to subjects without threshold
improvements, showed improvements in both the bright and dark parts of the image. We conclude that classification image

analysis is an important complement to traditional metrics of perceptual learning.
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Introduction

Perceptual learning is defined as any relatively perma-
nent or consistent change in an observer’s perception of a
stimulus following experience of that stimulus (Gibson,
1963). Perceptual learning has been shown to occur for a
variety of basic visual features, such as orientation and
spatial frequency of gratings (Fiorentini & Berardi, 1980)
and direction of motion (Ball & Sekuler, 1982). The
performance improvements that occur over the course of
training tend to follow characteristic patterns that allude to
aspects underlying brain plasticity (Ahissar & Hochstein,
2004; Dosher & Lu, 1998; Fahle, 2004; Seitz & Dinse,
2007). For instance, a performance improvement with a
stimulus of one spatial orientation may not transfer to
another orientation (Fiorentini & Berardi, 1980). It has
been argued that this pattern of results is consistent with
changes in orientation selectivity of early visual cells
(Schoups, Vogels et al., 2001) and indicates that the locus
of learning may be in these early visual areas (Fahle,
2004). However, the argument that specificity of learning
demonstrates plasticity in visual cortex is not well
supported (Law & Gold, 2008; Xiao, Zhang et al., 2008)
and it is clear that task performance alone is an insufficient
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measure by which to understand brain mechanisms
involved in perceptual learning.

The relationship between psychophysical performance
and underlying physiological changes is fundamentally
inferential. Typically, perceptual learning is operationalized
as improvement in sensitivity (such as threshold or accuracy)
or reaction time on a task. These metrics have provided a
great deal of insight into the mechanisms of perception and
perceptual learning, but the inferential gap between the
observer’s perception and the final performance measure-
ment remains problematic (Mollon & Danilova, 1996). One
aspect of this problem is that sensitivity and reaction time
are very gross measures of performance and reveal little
detail of observers’ perceptual processes. As a result, it is
the onus of the experimenter to design clever studies to rule
out alternative explanations of changes in these perfor-
mance metrics. This task is further complicated by the fact
that, as we report here, these two metrics can produce
opposite patterns under some conditions.

We find an alternative and potentially richer metric in
classification images (Ahumada, 2002). In a classification
image analysis, observers detect or discriminate a
stimulus of interest (the signal) embedded in external
noise. In a typical experiment, an observer is presented
with a signal-with-noise stimulus and a noise-only stimulus
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in succession and asked to report which stimulus contained
the target image. The noise fields from these stimuli are
then grouped and analyzed according to the observer’s
decisions, ultimately producing a classification image that
may be thought of as the mental template that the observer
used to classify stimuli during the task. Classification
images have been produced from a wide variety of studies
and reveal important aspects of perception in both low- and
high-level visual tasks (Keane, Lu et al., 2007; Lu & Liu,
2006; Mareschal, Dakin et al., 2006; Sekuler, Gaspar
et al., 2004; Shimozaki, Chen et al., 2007). The advan-
tages of using classification images as a metric of per-
ceptual learning are substantial because classification
images encode much more detailed characteristics of an
observer’s perceptual processes than do sensitivity or
reaction time measures.

However, one limitation of classification image meth-
ods is that a large number of trials is required to produce a
stable classification image. In many studies, upward of
10,000 trials are employed to construct a classification
image (Ahumada, 2002; Lu & Liu, 2006; Sekuler et al.,
2004). Such a large number of trials, which need to be
spread out across multiple sessions, can be problematic to
capture effects of perceptual learning because substantial
learning can occur during the acquisition of the
classification images. To successfully examine percep-
tual learning of lower order visual features over the
course of several days requires the acquisition of an
image in a single experimental session, approximately
1,000 trials. This has been accomplished in the case of
perceptual learning of vernier acuity (Li, Levi et al.,
2004), however, that study involved stimuli with only 16
changing parts, thus benefiting from a relatively low-
dimensional stimulus space. Generating a classifica-
tion image of a stimulus that is more extended in space
(such as an oriented grating) presents a greater challenge
because such images require variations in many hun-
dreds of pixels and involve a much higher dimensional
stimulus space.

In this paper, we employ an efficient classification
image technique that makes it possible to produce stable
images from as little as 512 trials, allowing for an image-
based analysis of perceptual learning over the course of
several days. We examine both traditional metrics of
perceptual learning (such as reaction time, threshold, and
accuracy) as well as changes in observers’ classification
images.

Subjects

A total of 14 subjects participated in this experiment.
All had normal or corrected-to-normal vision. Subjects
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provided informed consent and were tested under con-
ditions that conformed to the guidelines of the University
of California, Riverside Human Research Review Board.
One subject was excluded from analysis due to irregu-
larities in compliance with experiment protocol, and one
was excluded due to recurrent technical problems with the
testing equipment.

Apparatus

An Apple Mac Mini running Matlab (Mathworks,
Natick, MA) and Psychtoolbox Version 3 (Brainard,
1997; Pelli, 1997) was used for stimulus generation and
experiment control. Subjects sat on a height adjustable
chair at a distance of 36 in from a 19.5-in horizontally
wide Dell Trinitron CRT monitor set to a resolution of
1024 x 768 and a refresh rate of 100 Hz. The distance
between the subjects’ eyes and the monitor was fixed by
having them position their head in a chin rest with a head
bar. Care was taken such that the eyes and the monitor
center were at the same horizontal level.

Stimuli

The stimuli were designed such that each trial would
contribute maximally to the classification image. Stimuli
were 16 x 16 pixels in resolution, enlarged to subtend 5°
of visual angle and presented centrally. Stimuli consisted
of a low-resolution square-wave grating, approximately
0.8 cycles per degree, embedded in noise generated from
an m-sequence (Reid, Victor et al., 1997). The use of an
m-sequence resulted in pseudorandom noise images
composed of black and white pixels without shades of
gray and ensured that the pairwise correlations of pixels
across stimuli were minimized. A total of 256 noise masks
were generated from the m-sequence. This set of masks
was then duplicated four times, and half of these were
contrast-inverted. This ensured that the mean noise mask
across all trials was the same for all pixels.

Procedure

The general procedure for the experiment is shown in
Figure 1. Subjects conducted a two-interval forced-choice
(2IFC) task. On each trial, one interval would display a
noise mask generated from the m-sequence, while the
other would display a different noise mask with a
percentage of the signal stimulus (the square-wave
grating) added into it via a pixel substitution method
(Nishina, Seitz et al., 2007; Seitz, Kim et al., 2009). Trials
were evenly split between either a constant signal level of
30% or a signal level determined by a 3-down, I-up
staircase. Each stimulus was displayed for 300 ms, with an
interstimulus interval of 500 ms. Subjects were required to
respond within 1,500 ms after the offset of the second
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Figure 1. Schematic of the experiment design. (A) Examples of
training and transfer signal images, as well as a noise mask with
and without signal image added. Different masks were used
during each interval of a single trial. (B) Schematic of a single trial.
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stimulus and were provided trial-by-trial feedback regard-
ing the correctness of their responses.

Each session consisted of 1,024 trials and lasted
approximately 1 h. Subjects participated in a total of
eleven sessions. During the first ten sessions, subjects
were trained to detect a grating oriented at either 45° or
135° (orientation counterbalanced across subjects). In the
eleventh session, a transfer test was conducted in which
all presented stimuli were rotated to the orientation
orthogonal to the one used in training. Each session was
split into eight blocks. At the start of each block, subjects
were shown the target signal and reminded to “keep this in
mind” as he/she performed the task.

Monte Carlo filter

A Monte Carlo-based image filter was used to extract
components of the classification image that were unlikely
to occur by chance. Stimuli from each session were
reprocessed with a random pattern of simulated answers
that approximated chance (50% correct) performance. A
classification image was then computed from this random
simulation. The process was repeated 10,000 times for
each session’s stimulus set. This established a distribution
of possible values for each pixel of every classification
image in both Cartesian and Fourier spaces. Pixel data of
classification images were then compared against these

Filtered
transform

Filtered
image

Figure 2. Classification images from a representative subject (first column). For the purposes of analysis and display, all image data have
been rotated such that the target is oriented to 45°. Numbers denote training sessions and “T” denotes the transfer session. Images were
run through a Monte Carlo filter in Fourier space to enhance qualitative features (fourth column), though this processing was not employed

in formal image analysis.
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custom distributions and converted to a normalized z-score,
giving insight into which aspects or areas of the image are
most important to observers.

Image correlations

Classification images were computed using a linear
regression algorithm (Victor, 2005). Images for one subject
are shown in Figure 2. The more common “mean differ-
ence” method (Ahumada, 2002) was considered for use, but
in our testing this algorithm’s results were overly noisy and
failed to produce clearer images even with very large
numbers of trials (see Supplementary Figure 1). The linear
regression algorithm was found to be robust against the
effects of signal insertion and to produce clearer images
with increasing numbers of trials, making it the superior
solution for the stimuli used in this particular experiment.
The correlation between the resultant classification image
and an image of the target signal was computed as the
primary learning metric. In this way, a higher correlation
can be interpreted as a “better” classification image.

Classification image correlation plots are shown in Figure 3.
Subjects show a significant improvement in image correla-
tion of approximately 7% over the course of training (p =
0.012, one-tailed #-test, Day 1 vs. Day 10). Furthermore, the
transfer session shows a significant decrease in the strength
of image correlation (training session 10 vs. transfer session,
p = 0.031). Taken together, these results suggest that per-
ceptual learning is specific to the orientation of training.

Behavioral performance

We also examined traditional measures of perceptual
learning. On average, subjects showed only a 3%
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Figure 3. Correlation of the classification image with the target
image. X-axis denotes training session number (“T” denotes
transfer session, where stimulus was presented at a novel
orientation orthogonal to the orientation of training). Error bars
represent within-subject standard error.
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Figure 4. Average threshold. Dashed horizontal line denotes the
signal percentage used in trials not controlled by the staircase.

improvement in threshold over training (Figure 4), and
this effect was not significant (p = 0.25, Day 1 vs. Day 10,
one-tailed #-test; p = 0.25, Spearman Rank Correlation
between session and threshold). However, as discussed
below, there were a number of subjects who showed
performance decrements across sessions. Additionally, the
threshold level of the transfer session shows no significant
relationships.

Since we employed a mixed design in which half of the
trials contained a stable signal level, we are also able to
gauge improvements in accuracy. Subjects also showed a
3% improvement in accuracy on the constant signal level
trials, which was significant (p = 0.035) and showed a
significant correlation with session of training (r = 0.19,
p = 0.036). Reaction times decreased significantly (p =
0.001) by an average of 160 ms during training.

Relationship between accuracy
and classification image

We observed a strong negative correlation between the
average threshold and the average session image correla-
tion with the target image (> = 0.51, p < 0.001). An
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Figure 5. Correlations of classification images to the target image,
produced separately from staircase-controlled trials and constant
signal trials.
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important question is whether the improvements in the
classification images were simply related to the number of
noise pixels in our images, which changes systematically
with threshold. To control for this, we computed classi-
fication images separately for the constant signal and
staircase-controlled stimulus sets (Figure 5). Both sets of
images demonstrate clear learning effects between the
beginning and end of training (p = 0.02 and p = 0.025,
respectively), indicating that while there is a strong
relationship between signal level and the strength of the
classification image, the relationship is non-causal. Nota-
bly, examination of individual subject data verifies this
non-casual relationship between threshold and the good-
ness of the classification images.

Orientation tuning functions

Just as the image correlation measure can be computed by
correlating a classification image with the target signal
image, it is possible to establish orientation tuning functions
for each classification image by correlating it with target
gratings at all possible orientations. Gaussians were then fit
to these resultant tuning functions (see Figure 6). The height
of the tuning function increased by approximately 9% on
average (measured on the scale of image correlation), a
significant increase (p = 0.003), and this improvement did
not transfer to the untrained orientation in the transfer
session (Day 10 vs. Transfer session, p = 0.008). Further-
more, the center of the tuning function shifted toward the
target’s orientation during training (p = 0.033), and this
improvement appears to have transferred to the orthogonal
orientation (p = 0.383). Although a few individual subjects
demonstrated changes in tuning bandwidth, the effects were

90°
—— Training
—— Transfer

135° 45°

180° — Tt T 11 —10°
Correlation difference (percent)y -8 -6 -4 -2 0 2 4 6 8

Figure 6. Orientation tuning functions for the final training session
(red line) and the transfer session (blue line). See Methods
section and Results section for further details. These functions are
produced by subtracting the subject’'s baseline tuning function
(Day 1) from the Day 10 and Transfer session functions. Owing to
aliasing inherent in these low-resolution images, data have been
smoothed with a Gaussian filter (o = 3°). The gray line at 3% has
been added to aid the visibility of the difference between the
heights of the curves.
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inconsistent and not significant (p = 0.219). In addition to
the improvement in image correlation at the trained direc-
tion, there appears to be a strong inhibition of correlation
surrounding the peak. This inhibition appears to be at
least weakly present everywhere beyond 15 degrees of the
trained orientation.

Individual differences

While the aggregate data show significant learning, we
observed a high degree of between-subject variability in
the learning effects. To clarify these individual differ-
ences, subjects were split into two groups based on how
their thresholds changed over the course of training.
Subjects whose thresholds had decreased by the end of
training were classified into one group, deemed “learn-
ers,” while those who did not were classified as “non-
learners”. Under these criteria, 6 subjects were classified
as learners and 6 as non-learners.

Results of these two groups are summarized in Figure 7.
As expected from the selection criteria, the learners also
showed a 10% decrease in threshold over training (p =
0.001) and a significant correlation between session and
threshold (r = —0.39, p = 0.002). On constant signal trials,
learner accuracy improved by 7.5% (Day 1 vs. Day 10,
p = 0.004) and there was a significant correlation between
session and accuracy (r = 0.36, p = 0.004). Furthermore,
reaction time decreased by 265 ms over training (p < 0.001).
In addition, the learners showed a 13% improvement in
image correlation over training (p = 0.004). The improve-
ments in image correlation and accuracy were specific to
the stimulus orientation (p = 0.015 and p = 0.04,
respectively) and was close to significance for threshold
(p = 0.08).

In contrast, the non-learner group shows no significant
effects other than a 131-ms reduction in reaction time over
training (p = 0.019). All other tests within the non-learner
group are non-significant. They only showed a 1%
improvement of image correlation over training (p =
0.705), a 6% increase of threshold (p = 0.144), and 1%
reduction in accuracy over training (p = 0.646). Of note,
these results show an important dissociation between
different measures of performance, while most of the effects
are non-significant, non-learners showed worse perfor-
mance (i.e., higher thresholds and lower accuracy) but
improved classification images and faster reaction times.

Average classification images for each group are shown
in Figure 8. While in the first session the average images
appear similar between groups, by Day 10 the image
correlations were more pronounced for the learners
compared to the non-learners. We also looked at changes
in pixel intensity across the classification images for each
group (Figure 9). Non-learners more consistently priori-
tized a central area of the stimulus, while learners based
their decisions on a larger area of the stimulus as training
progressed. From Days 1 to 10, pixel intensity increased
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Figure 7. A comparison of learner and non-learner groups on the measures of (A) classification image strength, (B) threshold signal level,
(C) response accuracy on constant signal trials, and (D) reaction time on correct responses.

significantly in areas surrounding the center of the
stimulus for learners (see “Width” clusters 2 and 3 in
Figure 9, p = 0.010 and 0.017, respectively), as well as
more peripheral areas along the length of the stimulus
(“Length” clusters 3 and 4, p = 0.005 and p = 0.021). In
contrast, non-learners show no significant changes in pixel
intensity across training sessions or pixel locations. These
results show that an important aspect of learning was the
increased reliance upon the more peripheral parts of the
stimuli.

We also examined the extent to which subjects used the
white vs. the black pixels in the image to discriminate the

targets. To do this, we separately took image correlations
for the bright areas versus dark areas of the target
template. We found that all subjects in the learner group
improved their “dark” correlations during training (mean
improvement of 16.6%, p = 0.025), and 5 of 6 learners
also improved in “bright” correlation (mean improvement
of 8.2%, p = 0.011). In the non-learner group, 4 of 6
subjects improved in dark correlation (mean improvement
of 7.3%, p = 0.131), 1 improved in bright correlation
(mean decrement of —5.2%, p = 0.127), and no non-
learner improved in both correlation types simultaneously
(see Figure 10). These results suggest that one of the
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Figure 8. A comparison of image averages between learner and non-learner groups. The top row shows the average classification images
for each group. The bottom row removes pixels that on average were not significantly greater than the mean of the image’s distribution of
possible values (see Methods section).
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Figure 9. Changes in the length and width of classification images. Average pixel intensity is plotted for learners and non-learners on
Training Days 1 and 10, proceeding from the center of the image (1) to the edge (4). Images are folded along the orientation of the grating
(Width) or perpendicular to the orientation of the grating (Length) and intensities are averaged in bands that proceed along the grating’s
width or length, respectively.
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Figure 10. Changes in bright and dark correlations (comparing the classification image to bright and dark sections of the target template)

for learners and non-learners.

reasons why the non-learners might not have learned is
that they applied an inefficient strategy of concentrating
on the dark bands of the image at the expense of the white
bands (this can also be seen in Figure 9B where the non-
learners get worse at the Ist and 3rd bands, which are
white, and a little better at the 2nd band, which is dark).
On the other hand, the learners were able to improve their
performance on bands of both polarities as well as overall
achieving a wider and longer classification image.

We observed that on average non-learners started off a
little better on the task than the learners. Other studies
have also found that initial performance on a task can be
an important prediction of what subjects learn (Aberg &
Herzog, 2009). To address this point, we compared
baseline performance with metrics of performance
change. These ratios reveal that baseline threshold and
baseline accuracy are more predictive of overall learning
for the non-learner group than the learner group (Supple-
mentary Figure 2). Non-learners who had lower baseline
thresholds tended to show less learning, while learners
showed comparable levels of learning irrespective of
baseline performance.

The results of this study demonstrate that classification
images for the discrimination of an orientation pattern in
noise can be generated from a single session’s data and
successfully used to track perceptual learning. An advan-
tage of classification image analysis is that the primary
output of each session is an image, as opposed to a
numerical representation of percent correct or noise
threshold. This allows for a wide variety of image-based
analyses that enable us to examine the effects of

perceptual learning in greater detail than would otherwise
be possible. Thus, we could go above and beyond
confirming previous studies showing the orientation
specificity of learning to identify individual differences
of what subjects learned. For example, we observed that
subjects in the learner group learned to use pixels across a
wider area of the image, and, apposed to non-learners,
showed improvements in both the white and dark parts of
the image. These observations would not be evident
through analysis of standard performance measures.
Furthermore, we established orientation tuning curves for
each classification image, allowing us to examine not just
the intensity of observers’ mental templates but their
precision as well. These results show the advantages that
classification images have in understanding what subjects
learn (or do not learn) in the course of perceptual learning.

An important observation of our study is that measure-
ments of accuracy, signal level, reaction time, and image
correlation do not always track perfectly with one another,
and evaluating multiple measures of performance can be
diagnostic of different aspects of learning and of individ-
ual differences in strategies and what is learned. For
instance, while learners and non-learners show different
signal level changes across sessions, reaction times for the
two groups follow very similar trends. This benefit of
reaction time may reflect aspects of task-learning such as
learning the timing of the stimuli, how to press keys more
quickly, and generally becoming more comfortable with
the experimental setting. Furthermore, while in the
learners we found a general improvement in all metrics
of performance, in the non-learners and in individual
subjects we noticed several examples where thresholds
and accuracy decreased when there were improvements in
the classification images. These types of discrepancies
may indicate that the non-learners were in fact learning,
but that this learning involved trade-offs that privileged
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some aspects of the stimuli while neglecting others, such
as the observed shift in focus from the bright to the dark
regions of the image. Our results thus demonstrate that
different learning metrics can reveal (or cannot reveal)
different aspects of what subjects learn.

In order to generate sufficient data to resolve a
classification image in a single session, stimuli were
constructed with low dimensionality in mind. Stimulus
resolution was reduced to 16 x 16 pixels, minimizing the
number of data points comprising an individual stimulus.
M-sequences were used to ensure a low level of cross-
correlation in the set of noise masks being used. Pixel
substitution methods and an aliased square-wave target
were employed to eliminate shades of gray from all
stimuli, ensuring that each pixel of a stimulus would
contribute maximally to the final classification image.
Using these designer stimuli, the linear regression algo-
rithm was able to resolve a stable image in as few as
500 trials (Supplementary Figure 1). In this manner, a
classification image could easily be produced from 1 h’s
worth of data, allowing phenomena such as perceptual
learning to be examined with this technique.

Still, future further optimizations could be done to
achieve an even more efficient paradigm. For example,
our attempts to guarantee a low-dimensional stimulus set
may have been counterproductive to a certain extent. A set
of 256 unique noise masks was generated from the m-
sequence. This set was then duplicated to produce a total
of 1,024 masks. Half of these were then polarity-inverted
to minimize mean luminance perturbations in the noise
mask set. Further simulations suggest that the linear
regression algorithm does not perform well when a large
number of stimuli covary perfectly (as any given mask
would with its own duplicates and polarity-inverted
counterparts). Therefore, it may be possible to produce
even better classification images if this particular aspect of
our paradigm is discarded in favor of including a more
diverse mask set.

We find that subjects’ classification images improve
significantly over the course of training. Observers
demonstrate specificity for the trained stimulus consistent
with other measures of perceptual learning. The signifi-
cant decrease of threshold during training for the learner
subjects suggests either that the relevant features of the
template are strengthened or that internal noise is reduced
(Dosher & Lu, 1998). A further addition to the paradigm
that we introduce here would be to use a double pass
method (Gold, Bennett et al., 1999; Li et al., 2004), where
in essence each image with noise mask is presented twice,
to further characterize aspects of perceptual learning.
While there were some repetitions of stimuli in our
experiment, these were typically not presented at the
same signal level and this prevented us from reliably
measuring internal noise of the subjects in our study.

A previous study using classification images to study
perceptual learning (Dupuis-Roy & Gosselin, 2007) found
that perceptual learning could occur and classification
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images could be generated from trials in which no explicit
stimulus was presented (i.e., zero-signal trials). While this
is a method in which one could generate classification
images without any potential interference from the
presence of an actual stimulus, we had difficulty getting
subjects to perform well for zero-signal stimulus presen-
tations (unpublished pilot data). We found that subjects
reported a high degree of frustration with the task and
resorted to random guesses. Thus, we found it necessary
to insert a percentage of the target signal into the stimuli.
While there is a strong correlation between signal
percentage and final image strength, our split-session
analyses suggest that this is not a dependent relationship.

Other studies have also observed individual differences
in perceptual learning. For example, a recent study found
that initial performance on a task can be an important
predictor of the degree of specificity of the subsequent
learning (Aberg & Herzog, 2009). Classification images
give us another window into individual differences beyond
these numerical analyses. Examining changes in pixel
intensity in the classification images allows us to get an
idea of where subjects were focusing their attention as
they performed the task (Figure 9). Non-learners consis-
tently prioritized a narrower portion of the stimuli during
all sessions, while learners incorporated a larger area of
the stimulus as training continued. Numerical data
indicate that non-learners had lower baseline thresholds
and higher baseline performance and produced seemingly
“better” baseline images. However, it is clear from the
pixel intensity data that this is a byproduct of a lazier
perceptual strategy that produced stronger results in the
short term but failed to produce meaningful learning in the
long term.

Consistent with this finding, it is also clear from the
data that learners and non-learners employed different
strategies in regard to the bright and dark sections of the
target stimulus. Learners gradually emphasize dark por-
tions of the stimulus in addition to the bright, whereas
non-learners seem to trade one for the other. Whether this
strategic shortfall is the result of poor subject motivation
or differences in the visual system is unclear, but such
results point toward the richness of the classification
image technique.

Conclusions

We have demonstrated an efficient variation on classi-
fication image analysis that is appropriate for the study of
perceptual learning. The images produced from these
methods are sufficiently stable to demonstrate the effects
of perceptual learning on the detection of noisy oriented
gratings. Observers performing this task demonstrate a
clear improvement in the strength of the perceptual tem-
plate during training. This improvement shows specificity
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consistent with other perceptual learning paradigms. The
nature of the image-based output metric allows for a more
detailed data analysis than is possible with standard
performance metrics and can better reveal individual
subject differences in perceptual learning. However, while
classification images confer advantages in understanding
individual subject differences in learning, image-based
analysis of learning also poses analytic complexities and
there is a need to further develop appropriate metrics by
which to more closely examine and quantify subtleties of
what individuals learn.
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