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1 The Real Options Model

Johnson (2004) and Barinov (2008) develop and successfully test two related models that

predict and explain the negative relation between option-likeness of equity and expected

returns. The main idea of these models is that real options can transform firm-specific

uncertainty into lower systematic risk. In the Johnson setup, the natural empirical proxy

for uncertainty is the dispersion of analyst forecasts, which measures analyst disagreement.

In the Barinov model, the empirical proxy for uncertainty is idiosyncratic volatility. In this

section, I use the Johnson setup, but the model can be restated in terms of idiosyncratic

volatility. I extend the Johnson model by showing that high firm-specific uncertainty

means lower aggregate volatility risk (as Barinov, 2008, also does in his setup with growth

options instead of the option created by leverage).

The model is cast in terms of leverage; in the empirical tests in the paper I rely on the

strong empirical relation between profitability and leverage (as well as profitability and

other distress measures): Table 1 of the paper establishes that median leverage is 2.5 times

higher in the bottom profitability quintile than in the top profitability quintile. Therefore,

in ”highly levered”, ”distressed”, and ”unprofitable” firms are treated in the discussion

below as synonyms.

Empirical proxies for firm-specific uncertainty are highly correlated; while in the model

firm-specific uncertainty is uncertainty about the value of underlying assets, in empirical

tests I use idiosyncratic volatility of firm returns (i.e., standard deviation of the CAPM

residuals). Barinov (2008) has a formal proof that idiosyncratic volatility of firm returns

is monotonically related to uncertainty about the underlying asset of real options the firm

owns.

1.1 Leverage and Uncertainty in the Johnson Model

Consider a firm with unobservable true value of assets Ct that has issued risky debt with

the face value K. Asssume that the true value of assets follows

dCt = µCCtdt+ σCCtdWC (1)

Investors cannot observe the process Ct (the true value of assets) and observe Ut instead,

which is Ct contaminated by a stationary noise process ηt. Ut is given by

Ut = Ct · exp(ηt) (2)
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The noise process ηt is an unobservable stationary diffusion process

dηt = −κηtdt+ σηdWη (3)

In addition to Ut, investors observe the stochastic discount factor Λt that follows

dΛt = −rΛtdt+ σΛΛtdWΛ (4)

Johnson (2004) shows that in this economy St, the observable price of unlevered claim

on CT (firm’s assets)1, and Vt, the observed value of equity, follow

dSt = (r + πS)Stdt+ σCStdW̃C (5)

Vt = StΦ(d1)− exp(r(T − t))KΦ(d2) (6)

where πS = −ρCΛσCσΛ is the risk premium, Φ(·) is the normal cdf,

d1 =
log(S/K) + (r(T − t) + σ̃2/2)

σ̃
, d2 = d1 − σ̃ (7)

σ̃2 = ω + σ2
C(T − t) (8)

dW̃C is the posterior belief of investors about the process governing Ct given the signals

they have received, and ω reflects firm-specific uncertainty. Johnson (2004) also shows

that

dW̃C = F (X)(σCdWC + σηdWη) +G(X)dWΛ, (9)

where F (X) and G(X) are some functions of the model primitives κ, σV , σC , σΛ, ρCΛ.

(Explicit expressions of F (X) and G(X) are given in Johnson, 2004).

The expression (8) for the total volatility shows that in the model the uncertainty is

resolved all at once at the last instant, when ST jumps to VT . It is the reason why the

firm-specific uncertainty, which represents the jump risk for the underlying asset, is priced

only for the levered claim. Johnson (2004) notes that the fact that the risk measured by

ω is resolved by a jump means that this risk is truly idiosyncratic.

Proposition 1. The risk premium of the firm equals

πV = πS ·
∂V

∂S
· S
V

(10)

1Note that Ct is the true (unobservable) value of the underlying asset, and St is the observable value
of the underlying asset, which moves according to the information about the underlying asset investors
are able to filter out of the price and the economy structure.

2



and its derivatives with respect to firm-level uncertainty and the assets value have the

following signs:
∂πV
∂ω

= πS ·
∂

∂ω

(∂V
∂S
· S
V

)
< 0 (11)

∂πV
∂S

= πS ·
∂

∂S

(∂V
∂S
· S
V

)
< 0 (12)

∂2πV
∂ω∂S

= πS ·
∂2

∂ω∂S

(∂V
∂S
· S
V

)
> 0 (13)

Proof : See Section 2.

The sign of (11) implies that firm-specific uncertainty is negatively related to expected

returns, which is the main result established in Johnson (2004). The intuition for the sign is

that the elasticity of the call option with respect to the underlying asset value, Φ(d1)St/Vt,

decreases in uncertainty about the underlying asset, because more uncertainty about the

underlying asset means that its current value is less informative about the value of the

option at the expiration date. Therefore, the current value of the option responds less to

the same percentage change in the current value of the underlying asset if there is more

uncertainty about the underlying asset’s true value.

Johnson (2004) also notices that the effect of firm-specific uncertainty ω on the firm’s

expected returns should be stronger for highly levered firms. The intuition is that un-

certainty derives its pricing impact from the fact that a levered firm is a call option on

the assets, and therefore volatility should matter more for highly levered firms. In al-

gebraic terms this means that as the assets value increases (or as the face value of the

debt decreases, or, equivalently, as leverage decreases), the first derivative (11) becomes

less negative, i.e. (13) is positive. Evidently, as the face value of the debt and therefore

leverage reach zero, (11) also reaches zero.

Higher leverage in the Johnson model makes equity more risky by levering up its

beta, as the negative sign of (12) indicates, but the caveat is that (12) captures a partial

derivative effect. The empirical correlation between leverage and expected returns that

ignores (13) can become negative in the data if the cross effect captured by (13) is large

enough and if highly levered firms are disproportionately volatile. In other words, high

leverage per se makes the firm more risky, but the combination of high leverage and

high uncertainty makes the firm less risky for the reasons described in the previous two

paragraphs, and controlling for the cross-effect is vital for discovering the true positive

relation between leverage and expected returns.
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As mentioned in the introductory paragraphs, in the empirical tests I proxy for S by

profitability, based on a strong relation in the data between profitability and leverage, and

the proxy for ω is idiosyncratic volatility of firm returns, based on the result in Barinov

(2008) that establishes a monotonic theoretical relation between the two.

1.2 Extending the Johnson Model

In this subsection I extend the Johnson (2004) model to show that the expected returns

effects he finds (Proposition 1 above) arise because changes in firm-specific uncertainty

create changes in systematic risk, namely, in aggregate volatility risk.

Corollary 1. The equity beta equals

βV = βS ·
∂V

∂S
· S
V

(14)

and its derivatives have the following signs:

∂βV
∂ω

= βS ·
∂

∂ω

(∂V
∂S
· S
V

)
< 0 (15)

∂βV
∂S

= βS ·
∂

∂S

(∂V
∂S
· S
V

)
< 0 (16)

∂2βV
∂ω∂S

= βS ·
∂2

∂ω∂S

(∂V
∂S
· S
V

)
> 0 (17)

Proof : See Section 2.

Corollary 1 stresses the fact that while firm-specific uncertainty creates only idiosyn-

cratic risk at the level of the firm assets and does not change their systematic risk, this

idiosyncratic risk reduces the systematic risk of equity, which is a call option of the assets,

by making it less responsive to the changes in the assets value. This is the reason why

the idiosyncratic risk created by firm-specific uncertainty is diversifiable at the level of the

assets, but is not diversifiable at the level of firm equity.

Hypothesis 1a Future returns are negatively related to idiosyncratic volatility, and

this effect is stronger for distressed/unprofitable firms.

Hypothesis 1b Future returns are positively related to distress/profitability if id-

iosyncratic volatility is low/kept constant. If unprofitable/distressed firms are significantly

more volatile than profitable/financially healthy firms, then future returns are negatively
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related to distress/profitability. This negative relation is stronger in the high idiosyncratic

volatility subsample.

The negative correlation between firm-specific uncertainty and the exposure of the

firm’s equity to systematic risk is useful during periods of high aggregate volatility. These

periods usually coincide with the periods of high idiosyncratic volatility and high dispersion

of analyst forecasts (see Barinov, 2013, and references therein). The next proposition shows

that, all else equal, the increased uncertainty makes the risk premium of high uncertainty,

unprofitable/distressed firms increase less and makes their value drop less during periods

of aggregate volatility.

Proposition 2 The elasticity of the equity risk premium decreases (increases in the

absolute magnitude) as firm-specific uncertainty increases:

∂

∂ω

(∂πV
∂ω
· ω
πV

)
< 0 (18)

The second cross-derivative of the elasticity with respect to uncertainty and the assets

value is positive:
∂2

∂ω∂S

(∂πV
∂ω
· ω
πV

)
> 0 (19)

Similar statements are true with respect to market beta:

∂

∂ω

(∂βV
∂ω
· ω
πV

)
< 0 (20)

∂2

∂ω∂S

(∂βV
∂ω
· ω
πV

)
> 0 (21)

Proof : See Section 2.

Hypothesis 2a Market beta of firms with higher idiosyncratic volatility are more

procyclical, which makes them less risky in the Conditional CAPM sense, and this effect

is stronger for distressed/unprofitable firms.

Hypothesis 2b If unprofitable/distressed firms are significantly more volatile than

profitable/financially healthy firms, then market betas of more unprofitable/distressed firms

will be more procyclical. This relation is stronger in the high idiosyncratic volatility sub-

sample.

As Campbell (1993) and Chen (2002) show, investors require lower risk premium from

the stocks that react less negatively to aggregate volatility increases. Proposition 2 implies
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that the firm’s exposure to aggregate volatility risk decreases with firm-specific uncertainty,

since lower beta in bad periods of time (which are usually periods of high aggregate

volatility, as Barinov (2013), Bartram et al. (2016) and Herskovic et al. (2016) show)

implies a smaller increase in the cost of capital and consequently a smaller drop in the

present value of future cash flows, i.e., the value of equity. (Firms with procyclical (low

in recessions) betas can still have higher cost of capital in recessions than in expansions,

since the cost of capital is the market beta times the market risk premium, and the market

risk premium is higher in recessions).

Because the uncertainty is transformed into lower aggregate volatility risk through the

real option created by leverage, unprofitable/distressed firms with highest firm-specific

uncertainty have the most procyclical market betas and the best hedging ability against

aggregate volatility risk.

Similar to the previous section, the interaction between leverage and firm-specific un-

certainty in the previous paragraph suggests that if unprofitable/distressed firms are signif-

icantly more volatile than profitable/financially healthy firms, then unprofitable/distressed

firms can have more procyclical market beta and lower exposure to aggregate volatility

risk, and this effect will be stronger in the subsample with high firm-specific uncertainty.

Hypothesis 3a In cross-section, exposure to aggregate volatility risk decreases (beta

with respect to a portfolio tracking changes in aggregate volatility becomes more positive)

as idiosyncratic volatility increases. This decrease in risk exposure is stronger for dis-

tressed/unprofitable firms.

Hypothesis 3b If unprofitable/distressed firms are significantly more volatile than

profitable/financially healthy firms, then exposure to aggregate volatility risk of more un-

profitable/distressed firms will be smaller (and their beta with respect to a portfolio tracking

changes in aggregate volatility will be more positive). These relations are stronger in the

high idiosyncratic volatility subsample.

1.3 The Second Channel Linking Option-Likeness and Aggre-
gate Volatility Risk

Another effect that ties real options and aggregate volatility risk comes from the fact

that, all else equal, higher uncertainty means higher value of the real option2. When

2A recent paper by Grullon, Lyandres, and Zhdanov (2012) presents supporting empirical evidence.
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both aggregate volatility and firm-specific uncertainty increase, this effect makes the value

of the real option created by leverage increase in value (holding other effects fixed). In

Proposition 3, I show that, holding constant all other (usually negative) cash flow effects

of the aggregate volatility increase, the positive effect of uncertainty on the real option

value is larger for high uncertainty firms, especially if they are also distressed.

Proposition 3 The elasticity of the equity value with respect to firm-specific uncer-

tainty increases with the uncertainty:

∂

∂ω

(∂V
∂ω
· ω
V

)
> 0 (22)

The second cross-derivative of the elasticity with respect to uncertainty and the assets

value is negative:
∂2

∂ω∂S

(∂V
∂ω
· ω
V

)
< 0 (23)

Proof : See Section 2.

The second cross-derivative result is different from the well-known result from the op-

tions literature that vega (
∂V

∂ω
) reaches its maximum when the option is at the money.

Proposition 3 looks at the elasticity of the option’s/firm’s value with respect to the volatil-

ity parameter ω, and the elasticity is the vega times ω divided by the option’s/firm’s value.

Proposition 3 then shows that this elasticity behaves differently from vega.

In the paper, I define aggregate volatility factor, FVIX, as the portfolio that tracks

changes in expected aggregate volatility (changes in the VIX index). The positive exposure

to aggregate volatility factor is then desirable, because it means (relative) gains in response

to aggregate volatility increases. I can formulate the following empirical hypotheses, similar

to Hypothesis 3a and 3b above, but stemming from a different channel:

Hypothesis 4a In cross-section, exposure to aggregate volatility risk decreases and

FVIX beta becomes more positive as idiosyncratic volatility increases. This decrease in

risk exposure and increase in FVIX beta is stronger for distressed/unprofitable firms.

Hypothesis 4b If unprofitable/distressed firms are significantly more volatile than

profitable/financially healthy firms, then exposure to aggregate volatility risk of more un-

profitable/distressed firms will be smaller and their FVIX beta will be more positive. Both

effects will be stronger in the high idiosyncratic volatility subsample.
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I would like to stress that Propositions 2 and 3 are formulated in terms of partial

derivatives. It is beyond doubt that, as almost all risky assets, real options lose value

when the market goes down and aggregate volatility increases. During these periods, the

risk premium of real options also increases. Moreover, since a real option is a levered

claim on the underlying asset, the negative reaction of a real option to an increase in

aggregate volatility can be stronger than average. What Propositions 2 and 3 state is that

all else equal, firms with abundant real options and high uncertainty react to aggregate

volatility increases less negatively than other firms. That is, firms with abundant real

options and high uncertainty most likely have high market betas and, because changes in

aggregate volatility and the market return are strongly negatively correlated, their reaction

to aggregate volatility increases is very negative, but it is significantly less negative than

the reaction of other firms with the same market beta.

Using profitability as an empirical proxy for the real option created by leverage and

idiosyncratic volatility of firm returns as an empirical proxy for firm-specific uncertainty,

I can formulate the following empirical hypothesis:

Hypothesis 4c When aggregate volatility increases, unprofitable/distressed firms lose

value, but beat the CAPM, which is indicated by their positive FVIX beta. This effect is

stronger in the high idiosyncratic volatility subsample.

1.4 Leverage and Growth Options in One Model

The vast majority of firms have both debt and growth options. Therefore, for a typical firm

the firm-specific uncertainty should create the hedge against aggregate volatility risk both

through the above-described leverage channel and the growth options channel studied in

Barinov (2008) along similar lines and with similar results (e.g., Barinov (2008) shows in

his model that growth firms are less exposed to aggregate volatility risk, this exposure is

even smaller for volatile growth firms, and even zero-leverage firms with high idiosyncratic

volatility can have low exposure to aggregate volatility risk if the said firms have growth

options).

Leverage and market-to-book are strongly negatively correlated in the data, both me-

chanically via market cap and economically via the free cash flow story and the under-

investment story. Thus, the growth options channel will work, empirically, against the

mechanism described above: as Barinov (2008) suggests, growth firms are less exposed
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to aggregate volatility risk, but if distressed/uprofitable firms are more likely to be value

firms, they should be more exposed to aggregate volatility risk, while hypotheses 3b and 4b

above say otherwise. Still, one may wonder if both channels can coexist in my model. In

this subsection, for the sake of brevity, I will provide the intuition of why the conclusions

will be the same if we study both real options simultaneously.

There are two ways to introduce both growth options and leverage into one model.

First, one can assume that only assets in place are pledgable and leverage creates a call op-

tion on their value only, while growth options are written on some other ”future projects”.

If this is the case, the firm will consist of two separate real options. When aggregate

volatility and the firm-specific uncertainty simultaneously increase (as they tend to do),

the risk of both options will decrease, all else equal, and the value of both options will

increase. Hence, in the model with both leverage and growth options more firm-specific

uncertainty will still mean less aggregate volatility risk. More leverage will mean higher

relative weight of the option created by leverage and make that option more sensitive

to the changes in uncertainty. Thus, distressed/unproitable firms with large firm-specific

uncertainty will have lower aggregate volatility risk.

The second way to model leverage and growth options jointly is to assume that the

whole firm value is pledgable and leverage creates a call option on the sum of growth options

and assets in place. Assume for a minute that the firm has no assets in place and the call

option created by leverage is written on growth options only. All else equal, if uncertainty

increases, the risk of the growth options decreases and their value increases. The same

happens to the value of the firm, because growth options are in turn an underlying asset

for the call option created by leverage, and an increase in their value and decrease in their

risk means the same for the call option on them. On top of that, all else equal, higher

uncertainty would lower the risk of the call option created by leverage and increase its

value even if nothing happened to the growth options. Hence, the model is effectively

reduced to the model described above, with the only difference that S stands for the value

of growth options, but the results in the model above are preserved.

If I add assets in place back to this version of the model, the results are still similar.

If, all else equal, an increase in uncertainty lowers the risk of the mix of assets in place

and growth options and increases the total value of the mix (as Barinov, 2008, shows), the

equity value, i.e. the value of the call option on the mix, will go up, and the equity risk will
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go down. On top of that, all else equal, the equity value would increase with uncertainty

and the equity risk would decrease with uncertainty even if the risk and the value of the

mix stayed constant.

It is easy to see that one can introduce the recovery rate into the model without

changing the results. For example, it is possible to assume that only half of the growth

options’ value is recovered after the default, and the other half is either destroyed, or

accrues to shareholders. The asset-pricing implications of my model will still be the same

under both scenarios.

To sum up, I conclude that it is possible to unite the model in the sections above and

the model in Barinov (2008) into one model without changing any of the conclusions.

2 Proofs

Proposition 1. The risk premium of the firm equals

πV = πS ·
∂V

∂S
· S
V

(24)

and its derivatives with respect to firm-level uncertainty and the assets value have the

following signs:
∂πV
∂ω

= πS ·
∂

∂ω

(∂V
∂S
· S
V

)
< 0 (25)

∂πV
∂S

= πS ·
∂

∂S

(∂V
∂S
· S
V

)
< 0 (26)

∂2πV
∂ω∂S

= πS ·
∂2

∂ω∂S

(∂V
∂S
· S
V

)
> 0 (27)

Proof : The risk-premium equation (24) follows from a straightforward application of

Ito’s lemma and no-arbitrage condition to the Black-Scholes (1973) formula (6), which

gives the value of equity for a levered firm. The Ito’s lemma and no-arbitrage condition

applied to (6) yield

dVt/Vt = (r + πS · Φ(d1)
St
Vt

)dt+ σCΦ(d1)
St
Vt
dW̃C (28)

and the drift less the risk-free rate is, by definition, the risk premium.
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The fact that the first derivatives of the risk premium (25) and (26) are negative is

well-known. The exact expression and the reason why they are negative were first given

in appendix to Galai and Masulis (1976).

The expression for the second derivative (27) is complicated and can be signed only

by simulations. The simulations in Section 3 show that for all plausible parameter values

(27) is positive.

Corollary 1. The equity beta equals

βV = βS ·
∂V

∂S
· S
V
, (29)

and its derivatives have the following signs:

∂βV
∂ω

= βS ·
∂

∂ω

(∂V
∂S
· S
V

)
< 0 (30)

∂βV
∂S

= βS ·
∂

∂S

(∂V
∂S
· S
V

)
< 0 (31)

∂2βV
∂ω∂S

= βS ·
∂2

∂ω∂S

(∂V
∂S
· S
V

)
> 0 (32)

Proof : The Ito’s lemma implies that in discrete time

∆V =
∂V

∂S
∆S +

1

2
· ∂

2V

∂S2
· σ2S2∆t+

∂V

∂t
∆t (33)

Dividing both sides of (39) by V and using the definition of returns, I obtain that when

∆t→ 0

RV =
∆V

V
=
∂V

∂S
· S
V
· ∆S

S
=
∂V

∂S
· S
V
·RS (34)

By definition of beta

βV =
cov(RV , RM)

V ar(RM)
=
∂V

∂S
· S
V
· cov(RS, RM)

V ar(RM)
=
∂V

∂S
· S
V
· βS (35)

The rest of the proof copies the proof of Proposition 1.

Proposition 2 The elasticity of the equity risk premium decreases (increases in the

absolute magnitude) as firm-specific uncertainty increases:

∂

∂ω

(∂πV
∂ω
· ω
πV

)
< 0 (36)
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The second cross-derivative of the elasticity with respect to uncertainty and the assets

value is positive:
∂2

∂ω∂S

(∂πV
∂ω
· ω
πV

)
> 0 (37)

Similar statements are true with respect to market beta:

∂

∂ω

(∂βV
∂ω
· ω
πV

)
< 0 (38)

∂2

∂ω∂S

(∂βV
∂ω
· ω
πV

)
> 0 (39)

Proof : The analytical expressions for the derivatives are very complicated and cannot

be signed without simulations. The simulations in Section 3 show that for all reasonable

parameter values the signs of (36) and (37) are negative and positive, respectively.

Proposition 3 The elasticity of the equity value with respect to firm-specific uncer-

tainty increases with the uncertainty:

∂

∂ω

(∂V
∂ω
· ω
V

)
> 0 (40)

The second cross-derivative of the elasticity with respect to uncertainty and the assets

value is negative:
∂2

∂ω∂S

(∂V
∂ω
· ω
V

)
< 0 (41)

Proof : The analytical expressions for the derivatives are very complicated and cannot

be signed without simulations. The simulations in Section 3 show that for all reasonable

parameter values the signs of (40) and (41) are negative and positive, respectively.

3 Simulations

3.1 Parameter Values

I fix two sets of parameter values to calibrate my model. First, I look at the risk premium

and the risk-free rate. I set the risk free rate to 5% per year, close to its long-term average

in the data. I set the risk premium of the assets of the representative firm, πS, at 5% per

year also. This is at the lower end of the long-term average for the equity premium, but
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in the model the correct counterpart of the equity premium will be Φ(d1) ·S/V ·πS, which

is larger than 5% because equity is a levered claim on the assets.

I achieve πS = 5% by fixing the volatility of the pricing kernel, σΛ, at 40% per year, the

volatility of the assets, σS, at 20% per year, and the correlation between the assets and the

pricing kernel, ρSΛ, at -0.625, which yields the risk premium πS = −ρSΛσΛσS = 5%. All

simulations produce similar results for other combinations of the parameters values that

yield the risk premiums of 5%.

Second, I set the maturity (time to expiration) of the call option that represents equity

to four years. The four years can be thought of as the assumed average duration of debt.

Changing the time to expiration does not alter my results. Since my model is scale-

invariant, I fix the value of assets in place, S, at 100 and let the value of debt, K, which

is the strike price of the option, to vary from 0 to 120. When K = 0, leverage is zero.

When K = 120, leverage (debt over debt plus equity) is about 0.8. The leverage is roughly

proportional to K with some concavity if K is between 0 and 120.

The second parameter that I let vary is ω, the measure of uncertainty about the

firm’s assets. As ω varies from 1% to 64% per annum, the idiosyncratic volatility varies

between 15% and 100% per annum. In the sample period in the paper (1986-2017),

average idiosyncratic volatility (defined as average standard deviation of firm-level CAPM

residuals) is at roughly 2.8% per day, 44.5% per year and median idiosyncratic volatility

is at roughly 2% per day, 31% per year (10th percentile and 90th percentile are at about

10% and 90% per annum, respectively).

3.2 The Magnitude of the Uncertainty and Profitability Effects

The graph in the top left corner of Figure 1 shows the variation in the expected return

as a function of the uncertainty parameter, ω, and the value of the assets, K. First, I

notice that uncertainty (the theoretical counterpart of idiosyncratic volatility or analyst

disagreement) is always negatively related to returns. The uncertainty effect varies from

6% per year for highly levered firms (K = 100, leverage is 0.7) to only a few basis points

per year for low leverage firms (K = 15, leverage is 0.1).

The magnitude of the effect of uncertainty on expected returns (the uncertainty effect)

is comparable to empirical results on the analyst disagreement effect (Diether et al., 2002)

and the idiosyncratic volatility effect (Ang et al., 2006). Consistent with the empirical
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results in Johnson (2004) and Barinov (2013), the uncertainty effect is small unless the

firm is very highly levered.

Looking at the simulated risk premium along the other dimension, one can see that

holding uncertainty ω fixed, higher leverage leads to higher risk premium, but the effect is

muted if uncertainty is fixed at a higher level. It is easy to find two points on the plane so

that the one with higher leverage (and higher uncertainty) would have lower risk premium.

3.3 Simulations for Proposition 1

In Proposition 1, I claim that the profitability effect is stronger for high uncertainty firms.

Algebraically, that means that the second cross-derivative of the expected return with

respect to uncertainty, ω, and the value of the assets, S, is positive. The more valuable are

the assets (relative to the value of debt), the less levered the firm is and the less negative

is the uncertainty effect, which works through the option created by leverage. In the top

left corner of Figure 1, I look at the cross-derivative graph and, expectedly, find that the

derivative is positive everywhere.

3.4 Simulations for Proposition 2

Proposition 2 asserts that elasticity of the risk premium with respect to uncertainty de-

creases in uncertainty. I use this fact to state that the increase in the expected risk

premium in recessions, when uncertainty is high, is the smallest for unprofitable firms

with high idiosyncratic volatility. Proposition 2 implies that these firms have lower betas

in recessions and the value of these firms decreases the least when the economy slides into

recession.

In the simulations, I need to determine the sign of the derivative of the elasticity with

respect to uncertainty. The left graph in the middle of Figure 1 shows that the elasticity

indeed declines (increases in the absolute magnitude) in uncertainty for all values of ω and

K. Also from simulations (unplotted) I learn that the elasticity can reach -0.2. Given that

the 25 percentage points per annum increase in uncertainty is not uncommon in recessions

(see Table 1 in Barinov, 2013), the expected risk premium of high uncertainty growth

firms can easily be cut by 5 percentage points per annum in bad times compared to what

it could have been in the static CAPM.

The second assertion in Proposition 2 is that the elasticity of the risk premium with
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respect to uncertainty decreases in both uncertainty and leverage. That is, the second

cross-derivative of the elasticity with respect to the value of the assets, S, and uncertainty,

ω, is positive (low S means distress/high leverage).

In the right graph in the middle of Figure 1, I plot the cross-derivative of the elasticity

with respect to uncertainty and value of assets. I see in the graph that the derivative is

positive almost everywhere, but it turns negative for firms with very high uncertainty (ω

higher than 50% per annum) and very high leverage (higher than 0.5), clearly a small set

of firms (for comparison, as Table 1 in the paper shows, median leverage in the bottom

profitability quintile is 0.25). Even then, the graph of the elasticity itself (unreported)

shows that high uncertainty, high leverage firms do have the large negative elasticity of

the risk premium with respect to uncertainty, which is much higher than the elasticity of

most firms.

3.5 Simulations for Proposition 3

In Proposition 3, I look at elasticity of firm value with respect to uncertainty, which is al-

ways positive, because higher uncertainty increases the value of the option created by risky

debt. I claim that the elasticity increases with uncertainty and leverage. Algebraically,

that means that the derivative of the elasticity with respect to uncertainty, ω, is positive,

and the cross-derivative with respect to uncertainty and value of the assets, S, should

be negative. As mentioned above, this result is different from the well-known result that

option’s vega reaches its maximum, when the option is at the money, because Proposition

3 looks at elasticity of firm value (which is closer to return rather than change in value),

and vega is only a part of elasticity.

Economically, the sign of the first derivative means that, all else fixed, the value of high

uncertainty firms increases as uncertainty increases and the economy slides into recession.

According to the cross-derivative, the increase in the value of high uncertainty firms is even

stronger if these firms are also unprofitable/distressed. In my paper, I use Proposition 3

as another way to explain why, controlling for market beta, unprofitable/distressed firms

can be hedges against aggregate volatility risk, especially if they have high idiosyncratic

volatility.

In the bottom left graph in Figure 1, I plot the derivative of firm value elasticity with

respect to uncertainty and find that it is always positive. It the bottom right graph in
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Figure 1, I plot the cross-derivative of the elasticity with respect to uncertainty and the

value of the assets. This cross-derivative is also negative almost everywhere, as predicted.

The cross-derivative is positive for a small subset of firms with idiosyncratic volatility ex-

ceeding 60% per annum and leverage exceeding 0.65, but even for these firms the elasticity

of the firm value with respect to uncertainty is much higher than for the firms with low

leverage or low uncertainty. I conclude therefore that when uncertainty increases (and ev-

erything else remains the same), high uncertainty firms, unprofitable/distressed firms and

especially unprofitable/distressed firms with high uncertainty perform better than other

firms.

The graph of values of elasticity of the firm value with respect to idiosyncratic volatility

(unplotted) also suggests that the elasticity is substantial. The elasticity values of 0.15

and higher are not unusual and start at reasonable parameter values. The elasticity of

0.15 implies that the volatility increase in recessions can increase the firm value by more

than 4%, just because the option created by risky debt is more valuable in an uncertain

environment.
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Figure 1. Uncertainty, Leverage, and Expected Returns
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