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1 The Model

1.1 Cross-Sectional Effects

Consider a firm that consists of growth options, Pt, and assets in place, Bt. The growth

options are represented by a European call option, which gives the right to receive at time

T ST for price K. Both St, the price of the asset underlying the growth options, and Bt

follow geometric Brownian motions:

dSt = µSStdt+ σSStdWS + σIStdWI (1)

dBt = µBBtdt+ σBBtdWB (2)

The stochastic discount factor process is given by

dΛt = −rΛtdt+ σΛΛtdWΛ (3)

dWI is the purely idiosyncratic component of St and is assumed to be uncorrelated

with the pricing kernel and, for simplicity, with WS and WB, though relaxing the second

assumption will not change the results. I also assume for simplicity that there is no purely

idiosyncratic component in Bt (relaxing this assumption also does not change anything).

dWI represents firm-specific shocks to growth options value. While the part of dWS

that is orthogonal to the pricing kernel is also firm-specific, I need dWI to be able to

increase the variance of the firm-specific shocks without increasing the covariance of St

with the pricing kernel.

I do not assume anything about the correlation between WS and WB. The underly-

ing asset of growth options and assets in place in my model are driven by two different

processes, but these processes can be highly correlated.

The no-arbitrage condition and the definition of the pricing kernel imply that

dBt = (r + πB)Btdt+ σBBtdWB (4)

dSt = (r + πS)Stdt+ σSStdWS + σIStdWI (5)

where πB = −ρBΛσBσΛ and πS = −ρSΛσSσΛ are the risk premiums. The idiosyncratic risk

is not priced for the unlevered claim on the asset behind growth options and it will not be

priced for assets in place if I assume that they also carry some purely idiosyncratic risk.
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However, for growth options the idiosyncratic risk is priced:

Proposition 1. The value of the firm is given by

dVt/Vt = µV dt+ Φ(d1)
St

Vt
(σSdWS + σIdWI) + σB

Bt

Vt
dWB (6)

where µV = r + πB − (πB − πSΦ(d1)
St

Pt

) · Pt

Vt
(7)

d1 =
log(S/K) + (r + σ2

S/2 + σ2
I/2)(T − t)√

(σ2
S + σ2

I ) · (T − t)
(8)

If assets in place are riskier than growth options, πB − πSΦ(d1)St/Pt > 0, then the

expected rate of return to the firm (the drift in the firm value, µV ) decreases in idiosyncratic

risk, σI , and increases in the value of assets in place, B.

Proof : See Section 2.

The intuition of the proof is that the idiosyncratic risk discount consists of two parts

and relies on the existence of the value effect. First, an increase in idiosyncratic risk reduces

the expected return by reducing elasticity of the growth options value with respect to the

underlying asset value (Φ(d1)St/Pt). Second, an increase in idiosyncratic risk increases

the relative value of growth options (Pt/Vt) and makes the firm more growth-like, which

decreases expected returns if the value effect exists1

By definition, the beta of the option is determined by, first, how responsive the underly-

ing asset is to a percentage change in the risk factor and, second, how responsive the price

of the option is to a percentage change in the price of the underlying asset. Hence, the beta

of the option is equal to the product of the elasticity and the beta of the underlying asset.

The elasticity decreases as volatility increases because if volatility is high, a change in the

underlying asset price is less informative about its value at the expiration date. When

idiosyncratic volatility goes up, the elasticity declines and the beta of the underlying asset

stays constant, hence their product - the beta of growth options - decreases.

1The condition that assets in place are riskier than growth options is sufficient (but not necessary) for
the existence of the idiosyncratic volatility discount in my model. Zhang (2005) argues that assets in place
are riskier in recessions because of costly divesture. Campbell and Vuolteenaho (2004) that shows that
value firms have higher cash flow betas and growth firms have low cash flow betas, and the cash flow risk
earns a much higher risk premium. Barinov (2010) and this appendix (Proposition 4) show that growth
firms can be less risky than value firms because growth firms beat the CAPM when aggregate volatility
increases.
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The idiosyncratic risk in my model is idiosyncratic at the level of the underlying assets,

but its presence changes the systematic risk of growth options. If one pools the underlying

assets, the risk will be diversified away, and this is the reason it is not priced for the

unlevered claim on any of them. However, if one pools the underlying assets and then

creates an option on them, the decrease in the idiosyncratic volatility will lead to the

systematic risk of the option being greater than the systematic risk of the portfolio of

separate options on each of the underlying assets.

Corollary 1. Define IV ar as the variance of the part of the return generating process

(6), which is orthogonal to the pricing kernel. Then the idiosyncratic variance IV ar is

IV ar = σ2
S · Φ2(d1) · S

2

V 2
· (1− ρ2

SΛ) + σ2
B ·

B2

V 2
· (1− ρ2

BΛ)+

+ σ2
I · Φ2(d1) · S

2

V 2
+ σS · σB · Φ(d1) · S

V
· B
V
· (ρSB − ρBΛ · ρSΛ) (9)

I show that for all reasonable parameter values σI

∂IV ar

∂σI
> 0, (10)

which implies that my empirical measure of idiosyncratic volatility - the standard deviation

of Fama-French model residuals - is a noisy but valid proxy for σI .

Proof : See Section 3.3.

Corollary 1 shows that the idiosyncratic volatility depends positively on the idiosyn-

cratic risk parameter. It is also impacted by some other factors, which means that it is

a valid, although noisy, proxy for the idiosyncratic risk parameter. I do not claim that

idiosyncratic volatility is the best proxy for idiosyncratic risk. All I need to tie my model

to the data is that it is positively correlated with idiosyncratic risk, and Corollary 1 shows

that it should be true.

Leaning on Corollary 1, in the rest of the section I use the terms ”idiosyncratic volatil-

ity” and ”idiosyncratic risk” interchangeably.

Corollary 2. The expected return differential between assets in place and growth

options, πB − πSΦ(d1)St/Pt, is increasing in idiosyncratic risk.

Proof : Follows from the well-known fact that the option price elasticity with respect

to the price of the underlying asset, Φ(d1)St/Pt, is decreasing in volatility.
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Corollary 2 suggests a simple reason why in the rational world the value effect is higher

for high volatility firms, as Ali et al. (2003) show. High volatility reduces the expected

returns to growth options by reducing their elasticity with respect to the value of the

underlying asset (and therefore reducing their beta) and leaves assets in place unaffected.

Corollary 2 implies that the observed value effect can wholly be an idiosyncratic volatil-

ity phenomenon. The return differential between growth options and assets in place can

take different signs at different levels of idiosyncratic volatility. If the value effect is actu-

ally negative at zero idiosyncratic volatility, and positive at the majority of its empirically

plausible values, the value effect will be on average positive even though growth options are

inherently (absent idiosyncratic volatility) riskier than assets in place. In this case, the ob-

served part of the value effect will be created only by the interaction between idiosyncratic

volatility and growth options captured by my model.

Proposition 2. The effect of idiosyncratic volatility on returns,

∣∣∣∂µV∂σI

∣∣∣, is decreasing

in the value of assets in place, B.

Proof : See Section 2.

The main idea behind Proposition 2 is that without growth options or with very large

Bt idiosyncratic volatility will not have any impact on returns. As growth options take

a greater fraction of the firm, the impact of idiosyncratic volatility on returns becomes

stronger, since it works through growth options. Also, more idiosyncratic volatility makes

growth options less risky, while the risk of assets in place stays constant. It means a

wider expected return spread between growth options and assets in place. The positive

cross-derivative captures both effects.

Proposition 2 implies that the observed value effect can wholly be an idiosyncratic

volatility phenomenon. The return differential between growth options and assets in place

can take different signs at different levels of idiosyncratic volatility. If the value effect

is actually negative at zero idiosyncratic volatility, and positive at the majority of its

empirically plausible values, the value effect will be on average positive even though growth

options are inherently (absent idiosyncratic volatility) riskier than assets in place. In this

case, the observed part of the value effect will be created only by the interaction between

idiosyncratic volatility and growth options captured by my model.

The sign of the excess return derivative in Proposition 2 implies that in the cross-
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sectional regression the product of market-to-book and volatility is negatively related to

future returns. In portfolio sorts Proposition 2 predicts large and significant idiosyncratic

volatility discount for growth firms and no idiosyncratic volatility discount for value firms.

Proposition 2 also predicts stronger value effect for high volatility firms.

Hypothesis 1. The cross-sectional regression implied by my model is

Ret ≈ a− b ·M/B + c · (M/B)0 · IV ol − c ·M/B · IV ol + δZ, a, c > 0 (11)

where (M/B)0 is the market-to-book ratio for the firm with no growth options and Z are

other priced characteristics.

It implies that
∂Ret

∂M/B
≈ −b− c · IV ol < 0 (12)

∂Ret

∂IV ol
≈ −c · (M/B − (M/B)0) < 0 (13)

I predict that in cross-sectional regressions the coefficient of idiosyncratic volatility,

c · (M/B)0, is positive. The coefficient of the volatility product with market-to-book, c, is

negative. The ratio of the coefficients equals to (M/B)0, the market-to-book of the firm

with no growth options. For the firm with no growth options, as (13) shows, the two terms

cancel out and idiosyncratic volatility has no impact on returns. While the lowest possible

market-to-book is 1 in my model, in Hypothesis 1 I replace 1 with an unknown (M/B)0.

(M/B)0 is likely to be lower than 1, because book values lag market values and losses in

the market value may be unrecognized in the book value for some time.

Equation (11) divides the observed value effect into two parts. The first one is denoted

by b and represents the part of the value effect, which is unrelated to idiosyncratic volatility

and comes from the difference in expected returns to assets in place and growth options

absent idiosyncratic volatility. The second one is denoted c · IV ol and represents the

part of the value effect, which is driven by the interaction between growth options and

idiosyncratic volatility. My model makes no prediction about the magnitude of the first

part and even its sign.

The theoretical results in this section rely on the fact that growth options are call

options on the projects behind them. In theory, any option-like dimension of the firm can

be used to generate similar results, i.e. the idiosyncratic volatility discount that increases
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as the firm becomes more option-like. One well-known option-like dimension of the firm

is leverage, which can replace growth options in the discussion above.

Empirically, market-to-book and leverage are strongly inversely related. One reason is

the mechanical correlation created by the market value being in the numerator of market-

to-book and in the denominator of leverage. There are also several corporate finance

theories predicting that growth firms should choose lower leverage (e.g., the free cash flow

problem). Hence, in empirical tests the possible link between the idiosyncratic volatility

discount and leverage should work against finding any relation between the idiosyncratic

volatility discount and market-to-book.

1.2 The Idiosyncratic Volatility Hedging Channel

In the previous subsection I developed predictions about the impact of idiosyncratic volatil-

ity on the cross-section of returns. I derived from my model the three idiosyncratic

volatility effects: the idiosyncratic volatility discount, the stronger idiosyncratic volatility

discount for growth firms, and the higher value effect for high volatility firms. In this

subsection, I sketch the ICAPM-type explanation of why the link between idiosyncratic

volatility and expected returns cannot be captured by one-period models.

Campbell (1993) develops a model of aggregate volatility risk, where aggregate volatil-

ity increase means higher future risk premium. In Campbell (1993) the assets that react

less negatively to aggregate volatility increases, offer an important hedge against adverse

business-cycle shocks. These stocks earn a lower risk premium, because they provide

consumption when future investment opportunities become worse.

Chen (2002) develops a model offering another reason why the assets that react less

negatively to aggregate volatility increases can be valuable. In his model, investor care not

only about future investment opportunities, but also about future volatility. An increase

in expected aggregate volatility means the need to reduce current consumption in order to

build up precautionary savings. The stocks that do not go down as aggregate volatility goes

up provide consumption when it is most needed and therefore earn a lower risk premium.

My model goes further by predicting what types of firms will have the lowest, probably

negative, aggregate volatility risk. I show that the presence of idiosyncratic volatility

and its close time-series correlation with aggregate volatility2 creates the economy-wide

2See Campbell, Lettau, Malkiel, and Xu, 2001, and Goyal and Santa-Clara, 2003
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idiosyncratic volatility hedging channel that consists of two parts. One part comes from

the impact of idiosyncratic volatility on expected returns, and the other comes from the

impact of idiosyncratic volatility on the value of growth options. This subsection shows

that the idiosyncratic volatility hedging channel makes the prices of high volatility, growth,

and high volatility growth firms covary least negatively with aggregate volatility, which

means lower exposure to aggregate volatility risk.

In unreported findings I show that the idiosyncratic volatility of low and high volatility

firms respond to aggregate volatility movements by changing by the same percentage rather

than by the same amount. Therefore, the key variable in the time-series dimension is the

elasticity of risk premium with respect to volatility, instead of the derivative, which was

the focus of the cross-sectional analysis in the previous subsection.

Proposition 3 The elasticity of the risk premium in my model decreases (increases

in the absolute magnitude) as idiosyncratic volatility increases:

∂

∂σI
(
∂λV
∂σI
· σI
λV

) < 0 (14)

The elasticity of the risk premium in my model increases (decreases in the absolute mag-

nitude) as the value of assets in place increases:

∂

∂B
(
∂λV
∂σI
· σI
λV

) > 0 (15)

The second cross-derivative of the elasticity with respect to idiosyncratic volatility and

assets in place is positive:
∂2

∂σI∂B
(
∂λV
∂σI
· σI
λV

) > 0 (16)

Proof : See Section 2.

Proposition 3 summarizes the first part of the idiosyncratic volatility hedging channel.

As aggregate volatility increases, the future risk premium and idiosyncratic volatility also

increase. The previous subsection shows that, all else equal, high idiosyncratic volatility

means lower risk and lower expected returns. By Proposition 3, when the economy slides

into recession and idiosyncratic volatility of all firms increases, the future risk premium of

high volatility firms goes up less than the future risk premium of low volatility firms. The

impact on current stock prices is exactly opposite, because higher expected return means

lower current price, all else equal. So, Proposition 3 implies that when both aggregate
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volatility and idiosyncratic volatility increase in recessions, high idiosyncratic volatility

firms beat the CAPM, and low idiosyncratic volatility firms perform worse than the CAPM

prediction. The identical reasoning can be repeated for growth firms and high volatility

growth firms.

A 50% increase and even a 100% increase in idiosyncratic volatility is not uncommon

in recessions (see e.g., Figure 4 in Campbell, Lettau, Malkiel, and Xu, 2001). The simu-

lations in Section 3 show that the impact of such idiosyncratic volatility changes on the

risk premium is substantial. In the simulations, the risk premium elasticity with respect

to idiosyncratic volatility varies from zero for low volatility value firms to -0.5 for high

volatility firms. It means that, net of any other effects of the recession on the risk pre-

mium, in recessions the idiosyncratic volatility hedging channel can reduce the expected

returns to high volatility growth firms by a quarter or even a half.

Proposition 4 The elasticity of the firm value with respect to idiosyncratic volatility

increases with idiosyncratic volatility:

∂

∂σI
(
∂V

∂σI
· σI
V

) > 0 (17)

The elasticity of the firm value decreases in the value of assets in place:

∂

∂B
(
∂V

∂σI
· σI
V

) < 0 (18)

The second cross-derivative of the elasticity with respect to idiosyncratic volatility and

assets in place is negative:
∂2

∂σI∂B
(
∂V

∂σI
· σI
V

) < 0 (19)

Proof : See Section 2.

Proposition 4 summarizes the second part of the idiosyncratic volatility hedging chan-

nel. The value of growth options, like the value of any option, tends to increase with

volatility. As the economy enters the recession and volatility increases, growth options

will beat the assets with similar market beta. This hedging channel is naturally stronger

for growth firms, because their return is more affected by the changes in the growth options

value. This is a new explanation of why growth firms are less risky than value firms.

Based on simulations (see Section 3.6), I conclude that this hedging channel is also

stronger for high volatility firms than for low volatility firms and that it is the strongest
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for high volatility growth firms. The simulations also show that the firm value elasticity

with respect to idiosyncratic volatility is substantial. It varies from 0 for low volatility

value firms to -0.3 and higher for high volatility growth firms. Therefore, net of any other

(negative) cash flow effects of the recession, the increase in idiosyncratic volatility during

the recession can increase the value of high volatility growth firms by 15-20%.

The bottom line of Propositions 3 and 4 is that, controlling for the market risk, high

volatility, growth, and high volatility growth firms load most positively on changes in

aggregate volatility. Hence, these three types of firms hedge against aggregate volatility

risk. The reason is the idiosyncratic volatility channel, which predicts that the value of

volatile growth options goes up the most as aggregate volatility and idiosyncratic volatility

increase, and the expected risk premium of volatile growth options increases the least

during volatile times.

Hypothesis 2. High idiosyncratic volatility firms, growth firms, and especially high

idiosyncratic volatility firms hedge against aggregate volatility risk. Their betas with

respect to the aggregate volatility risk factor are negative and lower than those of low

volatility, value, and low volatility value firms.

The difference in the loadings on the aggregate volatility risk factor between high

and low volatility firms should totally explain the idiosyncratic volatility effect and the

stronger idiosyncratic volatility effect for growth firms. The aggregate volatility factor

should also significantly contribute to explaining the value effect and why it is stronger

for high volatility firms. I can also use Proposition 3 to test the hedging ability of high

volatility, growth, and high volatility growth firms against adverse business-cycle shocks

in a more conventional fashion. In the CAPM, lower risk premium means lower betas.

Proposition 3 can be rephrased in terms of betas to show that in the conditional CAPM

the betas of high volatility, growth, and high volatility growth firms are lower in recessions

than in booms (details are available from the author).

Theoretically, the ICAPM is a more fruitful framework to explain the three idiosyn-

cratic volatility effects than the conditional CAPM. The conditional CAPM assumes in-

vestors have no hedging demands and only care about the market risk. The idiosyncratic

volatility hedging channel in the conditional CAPM is limited to the negative correlation

between the market beta and the market risk premium, which produces negative uncon-

ditional CAPM alphas for high volatility, growth, and high volatility growth firms.
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Beyond that, in the ICAPM the hedging channel also means that these three types

of firms provide additional consumption when it is most needed to increase savings. The

reasons to increase savings after volatility increases are worse future investment opportu-

nities and lower future consumption (Campbell, 1993) and higher future volatility and the

precautionary motive (Chen, 2002). Also, the ICAPM captures the hedge coming from

the fact that the value of growth options increases with volatility.

As in the previous subsection, the results in this subsection can be reformulated using

any option-like dimension of the firm. The implication is that no matter which option-

like dimension of the firm (market-to-book, leverage, etc.) is creating the idiosyncratic

volatility discount, it should be explained by lower sensitivity of high volatility firms to

negative business-cycle news and their lower risk in recessions.

2 Proofs

This section collects the proofs of the propositions in Section 1. Some prepositions refer

to the simulations described in Section 3

Proposition 1. The value of the firm is given by

dVt/Vt = (r+πB−(πB−πSΦ(d1)
St

Pt

) ·Pt

Vt
)dt+Φ(d1)

St

Vt
(σSdWS +σIdWI)+σB

Bt

Vt
dWB (20)

where

d1 =
log(S/K) + (r + σ2

C/2 + σ2
I/2)(T − t)√

(σ2
C + σ2

I ) · (T − t)
(21)

The expected rate of return to the firm decreases in idiosyncratic risk, σI , and increases

in the value of assets in place, B.

Proof : Black and Scholes (1973) formula in my case yields

Pt = StΦ(d1)− exp(r(T − t))KΦ(d2) (22)

where Φ(·) is the normal cdf, d1 is as defined in (21), and d2 = d1 − σ̃.

Applying the Ito’s lemma and the no-arbitrage condition to the value of the firm,

Vt = Pt +Bt, I find that the value of the firm follows

dVt/Vt = (r + πS · Φ(d1)
St

Vt
+ πB

Bt

Vt
)dt+ Φ(d1)

St

Vt
(σSdWS + σIdWI) + σB

Bt

Vt
dWB (23)
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Then I rearrange the expression for the drift

µV = r + πSΦ(d1)
St

Vt
+ πB

Bt

Vt
= r + πB − [πB − πSΦ(d1)

St

Pt

] · Pt

Vt
(24)

Determining the sign of the drift’s derivatives with respect to idiosyncratic risk and

assets in place is now simple and intuitive. The term in the square brackets is positive if

assets in place earn higher returns than growth options, which is a sufficient condition to

derive the value effect. The changes in assets in place, Bt, influence only the denominator

of the last term in (24). As Bt increases, Vt increases as well, and the whole last term

decreases if (πB − πSΦ(d1)St/Pt) > 0, meaning that an increase in Bt causes an increase

in expected returns. Algebraically,

∂µV

∂B
=
Pt

V 2
t

· (πB − πSΦ(d1)
St

Pt

) > 0, (25)

An increase in idiosyncratic risk, σI , increases the price of growth options, Pt, and

their fraction in the value of the firm, Pt/Vt. An increase in idiosyncratic risk also leads

to a decrease in the option elasticity with respect to the price of the underlying asset,

Φ(d1)St/Pt, (see Galai and Masulis, 1976, for a proof). Therefore, both parts of the

last term in (24) increase as idiosyncratic risk increases, and expected returns decrease.

Algebraically,

∂µV

∂ω
= πS

∂(Φ(d1)St/Pt)

∂ω
· Pt

Vt
− (πB − πSΦ(d1)

St

Pt

) · Bt

V 2
t

· ∂Pt

∂ω
< 0 , (26)

where the first term captures the effect of idiosyncratic risk on the option elasticity, and

the second term captures the increase in the relative weight of growth options.

QED

Corollary 1. Define IV ar as the variance of the part of the return generating process

(6), which is orthogonal to the pricing kernel. Then the idiosyncratic variance IV ar is

IV ar = σ2
S · Φ2(d1) · S

2

V 2
· (1− ρ2

SΛ) + σ2
B ·

B2

V 2
· (1− ρ2

BΛ)+

+ σ2
I · Φ2(d1) · S

2

V 2
+ σS · σB · Φ(d1) · S

V
· B
V
· (ρSB − ρBΛ · ρSΛ) (27)

I show that for all reasonable parameter values σI

∂IV ar

∂σI
> 0, (28)
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which implies that my empirical measure of idiosyncratic volatility - the standard deviation

of Fama-French model residuals - is a noisy but valid proxy for σI .

Proof : The orthogonal to dWΛ part of any diffusion is dW• − ρ•Λ · dWΛ. Therefore,

(20) can be rewritten as

dVt/Vt = (r + πB − (πB − πSΦ(d1)
St

Pt

) · Pt

Vt
)dt+

+[Φ(d1)
St

Vt
· (σS(dWS − ρSΛdWΛ) + σIdWI) + σB

Bt

Vt
· (29)

·(dWB − ρBΛdWΛ)] + [σSΦ(d1)
St

Vt
· ρSΛ + σB

Bt

Vt
· ρBΛ]dWΛ

where the first square bracket contains the part orthogonal to dWΛ and the second square

bracket contains the part driven by dWΛ. The standard deviation of the first square bracket

is the model measure of idiosyncratic volatility, and its most natural empirical estimate is

the standard deviation of an asset-pricing model’s residuals (in the empirical part I choose

the Fama-French model).

Applying Fubini’s theorem and collecting terms yields, as claimed in Corollary 1, that

the idiosyncratic variance is

IV ar = σ2
S · Φ2(d1) · S

2

V 2
· (1− ρ2

SΛ) + σ2
B ·

B2

V 2
· (1− ρ2

BΛ)+

+ σ2
I · Φ2(d1) · S

2

V 2
+ σS · σB · Φ(d1) · S

V
· B
V
· (ρSB − ρBΛ · ρSΛ) (30)

The analytical expression for the derivative of IV ar wrt σI is complicated, and its sign

cannot be determined without simulations. The simulations in Section 3.3 show that at

all empirically plausible parameter values the idiosyncratic volatility increases with the

idiosyncratic risk parameter σI . The idiosyncratic volatility is also impacted by other

parameters, so it is a noisy, but valid proxy for σI .

QED.

Proposition 2. The effect of idiosyncratic risk on returns,

∣∣∣∂µV∂σI

∣∣∣, is increasing in

the value of assets in place B.

Proof :

∂2µV

∂σI∂B
= −πS

∂(Φ(d1)St/Pt)

∂σI
· Pt

V 2
t

+ (πB − πSΦ(d1)
St

Pt

) · B − P
V 3

> 0 (31)
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The first term is always positive, and the second term is positive if B > P and negative

otherwise. However, for small B the first term becomes relatively large. Simulations in

Section 3 show that the derivative is positive except for the parameter value that imply

total volatility of 70% per annum or more and and market-to-book higher than 5. The

simulations also show that for these extreme parameter values the expected return is about

the same as for the parameter values yielding the positive derivative.

QED

Proposition 3 The elasticity of the risk premium in my model decreases (increases

in the absolute magnitude) as idiosyncratic volatility increases:

∂

∂σI
(
∂λV
∂σI
· σI
λV

) < 0 (32)

The elasticity of the risk premium in my model increases (decreases in the absolute mag-

nitude) as the value of assets in place increases:

∂

∂B
(
∂λV
∂σI
· σI
λV

) > 0 (33)

The second cross-derivative of the elasticity with respect to idiosyncratic volatility and

assets in place is positive:
∂2

∂σI∂B
(
∂λV
∂σI
· σI
λV

) > 0 (34)

Proof : It turns out that the derivative in (33) is the easiest to sign:

∂

∂B
(
∂λV
∂σI
· σI
λV

) =
1

λ2
V

· ( ∂
2λV

∂σI∂B
· σI · λV −

∂λV
∂σI
· ∂λV
∂B
· σI) > 0 (35)

The derivative in the first term of (35) is positive at reasonable parameter values (see

Proposition 2) and the derivatives in the second term of (35) are positive and negative,

respectively (see Proposition 1). So, at reasonable parameter values (35) is a sum of two

positive terms.

∂

∂σI
(
∂λV
∂σI
· σI
λV

) =
1

λ2
V

· ((∂
2λV
∂σ2

I

· σI +
∂λV
∂σI

) · λV − (
∂λV
∂σI

)2 · σI) =

=
1

λV
· (∂

2λV
∂σ2

I

· σI +
∂λV
∂σI

(1− ∂λV
∂σI
· σI
λV

)) (36)
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The first term in (36) has an ambiguous sign and the second term is always negative.

Simulations in Section 3 show that the first term is positive but small for empirically

plausible parameters, and the overall sign of (32) is negative.

Taking the cross-derivative (34) is tedious and, as in the previous case, there is no

obvious way to sign it without simulations. The simulations in Section 3 show that at

reasonable parameter values it is positive.

QED

Proposition 4 The elasticity of the firm value with respect to idiosyncratic volatility

increases with idiosyncratic volatility:

∂

∂σI
(
∂V

∂σI
· σI
V

) > 0 (37)

The elasticity of the firm value decreases in the value of assets in place:

∂

∂B
(
∂V

∂σI
· σI
V

) < 0 (38)

The second cross-derivative of the elasticity with respect to idiosyncratic volatility and

assets in place is negative:
∂2

∂σI∂B
(
∂V

∂σI
· σI
V

) < 0 (39)

Proof : It turns out that the derivative in (38) is the easiest to sign. The value of

growth options increases in idiosyncratic volatility, and the effect of idiosyncratic volatility

is weaker if assets in place take a larger share of the firm value. Algebraically, the elasticity

is the firm value derivative with respect to idiosyncratic volatility scaled by the firm value.

The derivative is always positive and does not depend on the value of assets in place3. The

firm value increases in the value of assets in place, which makes the whole ratio (i.e., the

elasticity) decrease in assets in place.

The derivatives in (37) and (39) are complicated. The simulations in Section 3 show

that their values are always positive except for the extreme growth firms (in the model,

the market-to-book higher than 5 and annual total volatility higher than 50% per annum).

However, the elasticity for those firms is still much larger than the elasticity of most other

firms.

3The fact that the call option value increases in volatility is widely known in finance. The respective
derivative is called vega and equals to P · exp(−r · (T − t))φ(d1)

√
T − t.
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3 Simalations

3.1 Parameter Values

In the simulations, I fix two sets of parameter values. The first set is the moments of the

three processes: the pricing kernel, Λt, the value of the assets in place, Bt, and the value

of the asset behind the growth options, St. The values of the parameters are chosen so

that the value effect roughly matches its empirical magnitude (about 6% per year). In

the current setup, to keep things simple, I assume that the difference in expected returns

between Bt and St is large enough to produce the positive value effect. It turns out

that because the growth options are a highly levered claim on St, I have to assume quite

large difference in the expected returns to St and Bt. The way to avoid it is to formally

model the idiosyncratic volatility hedging channel, which I leave for future research. In

my world, the idiosyncratic volatility hedging channel is responsible for explaining why

the value effect can ever be positive, but the model is potentially open for incorporating

other explanations.

I fix the volatility of the pricing kernel, σΛ, at 50% per year, the volatility of the

asset behind the growth options, σS, at 10% per year, and the correlation between the

asset behind the growth options and the pricing kernel, ρSΛ, at -0.8, which yields the risk

premium πS = −ρSΛσΛσS = 4%. I also fix the volatility of the assets in place, σB, at

40% per year, and their correlation with the pricing kernel, ρBΛ, at -0.7, which yields the

risk premium πB = −ρBΛσΛσB = 14%. All simulations produce similar results for other

combinations of the parameters values that yield the risk premiums of 4% and 14%. In the

simulations of the idiosyncratic variance from Corollary 1, equation (8) or (36), I assume

that the correlation between St and Bt is 0.5, but setting it to another value does not

affect the results.

The second set of parameters describes the growth options. I assume that the current

value of the asset behind them is 100 and the strike price is 90. My model is scale-invariant,

so these values only mean that the asset is slightly in the money. The expiration period

is set at 4 years. In what follows, I will discuss how the change in the maturity and the

moneyness of the growth options affect my results. The overall conclusion is that my

results are robust to reasonable variations in the maturity and the moneyness.

The two other parameters that vary freely in my tests are σI , the volatility of the
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purely idiosyncratic part in St, and B, the value of the assets in place. Varying these

two parameters gives me a rich cross-section in terms of idiosyncratic volatility,
√
IV ar,

and market-to-book, V/B. As σI varies from 0% to 70% per annum, and B varies from

0 to 150, the idiosyncratic volatility varies between 20% and 80% per annum, and the

market-to-book varies from 1.5 to above 64.

3.2 The Magnitude of the Three Idiosyncratic Volatility Effects

The top figure in Figure 1 shows the variation in the expected return as a function of the

idiosyncratic volatility parameter, σI , and the value of the assets in place, B. First, I notice

that idiosyncratic volatility is always negatively related to returns. Consistent with what

my model predicts, the idiosyncratic volatility discount varies from 7% per year for growth

firms (B = 10, V/B ∈ [4, 7]) to 2% per year for value firms (B = 150, V/B ∈ [1.2, 1.4]).

The value effect varies with idiosyncratic volatility from 0.2% per year for low volatility

firms (σI = 5% per year,
√
IV ar ∈ [20%, 25%]) to 5.5% per year for high volatility firms

(σI = 70% per year,
√
IV ar ∈ [50%, 100%]).

Overall, my model produces numerically large effects of idiosyncratic volatility on ex-

pected returns. These effects are smaller than their empirical counterparts, because the

simulations do not account for the aggregate volatility risk. I also fix the baseline parame-

ters quite conservatively. For example, for some firms in the data the risk premium spread

between the assets in place and the asset behind the growth options can be larger, which

would magnify the idiosyncratic volatility effects.

In the bottom two graphs I look at the effect of varying the parameters of the growth

options on the three idiosyncratic volatility effects. In the bottom left graph I reproduce

the top graph with a higher strike price, K = 100, which makes the growth options exactly

at the money. As expected, the idiosyncratic volatility effects become stronger, because at-

the-money options are the most sensitive to volatility. The idiosyncratic volatility discount

now varies from 9% per year for growth firms to 2% per year for value firms. I also see

the negative value effect of -2% per year for low volatility firms. The value effect becomes

positive as idiosyncratic volatility goes up and reaches 6% per year for high volatility firms.

Naturally, if I push the growth options deeper in the money, the effect is the reverse

4The lowest possible value of market-to-book in my model is 1. The market value, or the firm value
Vt, differs from the book value, or the value of the assets in place Bt, by the always positive value of the
growth options, Pt.

16



of what is in the bottom left graph in Figure 1, i.e., the value effect for low volatility

firms increases, and the three idiosyncratic volatility effects decline. However, even if the

value of the asset behind the growth options exceeds the strike price by a factor of 1.5,

the idiosyncratic volatility effects are at least 3% per year.

In the bottom right graph, I reproduce the top graph with a shorter maturity of the

growth options equal to 2 years. It makes the idiosyncratic volatility effects stronger. The

reason is the slight convexity of expected return in idiosyncratic volatility that can be

seen in the top graph in Figure 1. If the total life-time volatility of the option is smaller,

the effect of the changes in it is stronger. With the maturity of the growth options equal

to 2 years the idiosyncratic volatility discount varies from 10% per year for growth firms

to 2.5% per year for value firms. The value effect changes from -3.5% per year for low

volatility firms to 5.5% per year for high volatility firms. If I increase the maturity to 8

years, the idiosyncratic volatility discount varies from 4% to 1.5%, and the value effect

varies from 6.5% to 4.5%.

The slight convexity of the graphs in idiosyncratic volatility does not contradict the

empirical finding that the idiosyncratic volatility discount is driven by the firms in the high-

est volatility quintile. Because idiosyncratic volatility in the data is extremely positively

skewed, the highest volatility quintile spans a huge spread in the idiosyncratic volatility,

about half of the values in the graph.

3.3 Simulations for Corollary 1

In Corollary 1 I claim that the idiosyncratic variance, IV ar, monotonically increases with

the idiosyncratic volatility parameter, σI . The idiosyncratic variance is defined as the

variance of the part of the firm value that is orthogonal to the pricing kernel. The idiosyn-

cratic volatility parameter measures the volatility of the purely idiosyncratic part of the

process for the asset behind the growth options.

The top graph in Figure 2 shows that the idiosyncratic variance indeed increases with

σI . The value of the assets in place is fixed at 50, which implies the market-to-book

between 1.6 and 2.2. The increase is quite strong and becomes stronger, as σI increases

and begins to take a larger fraction of the idiosyncratic variance.
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In unreported results, I tried the values of the assets in place between 10 and 150, which

spans the market-to-book values between 1.15 and 7, and the relation between IV ar and

σI never turned negative.

3.4 Simulations for Proposition 2

In Proposition 2 I claim that the idiosyncratic volatility discount increases with market-

to-book and the value effect increases with idiosyncratic volatility. Algebraically, it means

that the second cross-derivative of the expected return with respect to idiosyncratic volatil-

ity and the value of the assets in place is positive. The more assets in place the firm has,

the weaker is the negative relation between the expected return and the idiosyncratic

volatility, because the idiosyncratic volatility effects work through the growth options.

In Figure 1, I show that this assertion is true for all reasonable parameter values and the

highest volatility growth firms have the lowest expected returns. In the bottom of Figure

2, I look at the cross-derivative graph and, expectedly, find that the derivative is positive

almost everywhere. The exception is the bottom right corner, where the derivative dips to

zero. The corner is populated by the extremely high volatility firms (total volatility of more

than 70% per year) with extremely high market-to-book (more than 6). For these values,

which are, at least, quite uncommon empirically, the derivative can become negative and

the relations claimed in Proposition 2 can reverse. However, the rest of the bottom graph

in Figure 2 and the graphs in Figure 1 show that the claimed relations embrace almost all

empirically plausible parameter values.

3.5 Simulations for Proposition 3

Proposition 3 asserts that the elasticity of the risk premium with respect to idiosyncratic

volatility decreases in idiosyncratic volatility and market-to-book. I use this fact to state

that the increase in the expected risk premium in recessions, when idiosyncratic volatility

is high, is the smallest for high volatility, growth, and high volatility growth firms. Propo-

sition 3 implies that these firms have lower betas in recession and their value decreases the

least when the economy slides into recession. In the paper, I use this fact to predict that

these firms hedge against aggregate volatility risk.

In the simulations, I need to determine the sign of two derivatives of the elasticity -

one with respect to idiosyncratic volatility, and one with respect to idiosyncratic volatility
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and the value of the assets in place. I start with looking at the graph of the elasticity in

the top part of Figure 3.

The graph shows that indeed the elasticity generally declines (increases in the absolute

magnitude) in market-to-book and idiosyncratic volatility. The elasticity is the lowest for

high volatility growth firms. The value of the elasticity is substantial and can reach -0.5.

Given that the 50% increase in idiosyncratic volatility is not uncommon in recessions, the

expected risk premium of high volatility growth firms can easily be cut by a quarter in

bad times compared to what it could have been in the absence of idiosyncratic volatility.

I also see on the graph that the elasticity can increase (decrease in the absolute mag-

nitude) in idiosyncratic volatility as both idiosyncratic volatility and market-to-book are

high enough. In the bottom left graph, which shows the derivative of the elasticity with

respect to idiosyncratic volatility, I see that the derivative is negative in the bottom right

corner. The corner is populated by the firms with total volatility exceeding 50% per year

and market-to-book exceeding 5, which is quite rare empirically. Even for these firms, as

the top graph in Figure 3 shows, the elasticity remains very large, much larger than the

elasticity for the firms with more usual values of volatility and market-to-book (the center

of the graph).

In the bottom right graph I plot the cross-derivative of the elasticity with respect to

idiosyncratic volatility and market-to-book. Proposition 3 says that the derivative should

be positive, which is the sufficient condition for the elasticity being the highest for high

volatility growth firms. I see in the graph that the derivative turns negative for high

volatility growth firms. The region of the wrong sign is broader than in the bottom left

graph. The derivative can in fact be negative for total volatility of 45% per year and

market-to-book of 3.5, which is empirically plausible. However, the graph of the elasticity

itself shows that high volatility growth firms do have large negative elasticity, which is

much higher than the elasticity of most firms.

3.6 Simulations for Proposition 4

In Proposition 4 I look at the elasticity of the firm value with respect to idiosyncratic

volatility, which is always positive, because higher idiosyncratic volatility increases the

value of growth options. I claim that the elasticity is the highest for high volatility, growth,

and especially high volatility growth firms. Algebraically, it means that the derivative of
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the elasticity with respect to idiosyncratic volatility is positive, and the cross-derivative

with respect to idiosyncratic volatility and the value of the assets in place should be

negative5. Economically, it means that the value of high volatility, growth, and high

volatility growth firms increases, as the idiosyncratic volatility increases and the economy

slides into recession. In the paper, I use this fact as another way to explain why these

firms hedge against aggregate volatility risk.

The top graph in Figure 4 plots the elasticity of the firm value with respect to idiosyn-

cratic volatility. The elasticity is substantial and increases with idiosyncratic volatility and

the value of assets in place. The elasticity values of 0.3 and higher are not unusual and

start at the parameter values implying total volatility of 40% and market-to-book of 2.5.

The elasticity of 0.3 implies that the volatility increase in recessions can increase the firm

value by 15%, just because growth options are more valuable in a volatile environment.

In the bottom left graph I plot the derivative of the elasticity with respect to idiosyn-

cratic volatility and find that it is always positive. It the bottom right part I plot the

derivative of the elasticity with respect to idiosyncratic volatility and the value of the as-

sets in place. The derivative does become negative in the bottom right corner, populated

by the firms with extremely high volatility and extremely high market-to-book. The area

of the wrong sign is populated by the firms with total volatility higher than 50% per year

and market-to-book exceeding 4, which is quite unusual empirically. However, the top

graph shows that even the wrong sign of the second derivative does not really compromise

the conclusion of Proposition 4 that the firm value of high volatility growth firms responds

most positively to volatility increases.

5The fact that the derivative with respect to the value of the assets in place is negative was proven in
Section 2
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Figure 1. Expected Return as a Function of Idiosyncratic Volatility and the
Value of Assets in Place.
The figures show the expected return, µV , for the firm in my model on the vertical axis.
Idiosyncratic volatility, σI , is plotted on the left axis and the value of assets in place, B,
are on the right axis. The top figure shows the expected return for the baseline values of
the parameters S = 100, K = 90, T − t = 4, r = 5%, σS = 10%, σB = 40%, σΛ = 50%,
ρSΛ = −0.8, ρBΛ = −0.7, ρSB = 0.5. The two bottom figures show the effect of setting
K = 100 (left) or T − t = 2 (right).
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Figure 2. Idiosyncratic Variance, (27), and the Derivative of the Expected
Return with respect to Idiosyncratic Volatility and the Value of Assets in
Place, (31).
The top figure plots the idiosyncratic variance, IV ar, of the firm’s return as a function of
σI . The idiosyncratic variance is defined as the variance of the part of the firm value process
that is orthogonal to the pricing kernel. σI measures the volatility of the idiosyncratic
part in the process for the asset behind the growth options. The bottom figure plots the
derivative (31) as a function of σI and the value of the assets in place B. Other parameters
are at the baseline values S = 100, K = 90, T − t = 4, r = 5%, σS = 10%, σB = 40%,
σΛ = 50%, ρSΛ = −0.8, ρBΛ = −0.7, ρSB = 0.5. In the top figure B is fixed at 50.
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Figure 3. Risk Premium Elasticity with respect to Idiosyncratic Volatility
The top figure plots the risk premium elasticity as a function of idiosyncratic volatility,
σI , and the value of assets in place, B. The bottom left figure plots the derivative of
the elasticity with respect to idiosyncratic volatility, (32). The bottom right figure plots
the second cross-derivative of the elasticity with respect to idiosyncratic volatility and
the value of assets in place, (34). Other parameters are at the baseline values S = 100,
K = 90, T − t = 4, r = 5%, σS = 10%, σB = 40%, σΛ = 50%, ρSΛ = −0.8, ρBΛ = −0.7,
ρSB = 0.5.
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Figure 4. Firm Value Elasticity with respect to Idiosyncratic Volatility
The top figure plots the firm value elasticity as a function of idiosyncratic volatility, σI , and
the value of assets in place, B. The bottom left figure plots the derivative of the elasticity
with respect to idiosyncratic volatility, (37). The bottom right figure plots the second
cross-derivative of the elasticity with respect to idiosyncratic volatility and the value of
assets in place, (39). Other parameters are at the baseline values S = 100, K = 90,
T − t = 4, r = 5%, σS = 10%, σB = 40%, σΛ = 50%, ρSΛ = −0.8, ρBΛ = −0.7, ρSB = 0.5.
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