Profitability Anomaly and Aggregate Volatility Risk

Alexander Barinov

School of Business Administration University of California Riverside

August 10, 2016

Profitability Anomaly

- Profitability anomaly: high ROA firms beat low ROA firms in terms of future returns (see, e.g., Haugen and Baker, JFE 1996)
- Recent development: Fama and French (JFE 2015) suggest a five-factor model instead of the three-factor one
- The profitability factor is one of the two factors they add
- Other papers like Hou, Xue, and Zhang (RFS 2015) also suggest factor models with profitability factor

Sources of Profitability Anomaly

- On the surface, the profitability anomaly looks puzzling: why would highly profitable, successful firms be high-risk ones, and unprofitable, distressed firms be low-risk ones?
- Mispricing explanation comes to mind: probably investors do not pay enough attention to profitability and do not realize at first how good/bad profitable/unprofitable firms are
- "Q-theory approach" high-risk firms have high cost of capital, thus they will undertake only the most profitable projects and have high profitability
- Fama and French (JFE 2015): the positive link between ROA and future returns follows directly from the dividend discounting model plus clean surplus accounting

Profitability Anomaly and Risk

- It is plausible that the profitability is risk, but the current literature does not say which risk is that
- If you hold high ROA firms, what is the bad thing that tends to happen to you in bad periods of time?
- The fact that the profitability anomaly follows from an accounting equality (FF 2015) implies that rational and behavioral explanations are essentially indistinguishable

Profitability Anomaly and Volatility Risk

- This paper suggests that low ROA firms do abnormally well when market volatility increases, and high ROA firms do abnormally poorly then
- Low ROA firms are distressed and their equity is like a call option on the assets: volatility is their friend
- Low ROA do lose when volatility goes up, because when volatility is up, market is down
- But, when volatility goes up, low ROA firms lose less than what their market beta implies

Johnson (JF 2004) Model

$$\beta_E = E(E, A) \cdot \beta_A, \qquad \frac{\partial E(E, A)}{\partial AD} < 0$$

- Consider firm equity E as an option on its assets A (the strike is the nominal value of debt)
- As disagreement about the assets increases, the beta of the assets does not change
- The elasticity of equity value wrt assets value decreases, since assets value is less "informative" about what the value of equity will be at "expiration"
- Hence, higher disagreement (about assets value) means lower systematic risk (of equity)
- But: the effect seems to be in the betas, why do we still see it in the alphas?

Alexander Barinov (UCR)

Profitability Anomaly and Aggregate Volati

August 10, 2016 6 / 24

Extending the Johnson Model

- Both idiosyncratic volatility and aggregate volatility are high in recessions
- All else constant, higher idiosyncratic volatility has two effects, both stronger for firms with more option-like equity:
 - Risk exposure of option-like equity decreases
 - Value of option-like equity increases
- Therefore, distressed firms are hedges against aggregate volatility risk
- In volatile periods, they still lose, but much less than what their beta would imply.

Alexander Barinov (UCR)

Profitability Anomaly and Aggregate Volati

August 10, 2016 7 / 24

Aggregate Volatility Risk

- Volatility increase means worse future investment opportunities (Campbell, 1993)
- Volatility increase means the need to increase precautionary savings (Chen, 2002)
- Firms with most positive return sensitivity to aggregate volatility changes have lower expected returns (Ang et al, 2006)

Aggregate Volatility

- Aggregate volatility is measured by VIX index (old definition, current ticker VXO) from CBOE
- VIX index is defined as the implied volatility of S&P100 one-month near-the-money options
- Innovations to expected aggregate volatility proxied by daily change in VIX
- Sample: January 1986 December 2014 (VIX availability)

FVIX Factor

- FVIX mimics daily changes in VIX
- I regress daily changes in VIX on excess returns to five quintile portfolios sorted on prior month sensitivity to VIX changes
- The fitted part of the regression less the constant is the FVIX factor
- The correlation between FVIX and the change in VIX is 0.71

-

イロト イポト イラト イラト

More about the FVIX Factor

- Negative FVIX beta is volatility risk (losing money when volatility increases)
- FVIX factor loses 1.34% per month, t-statistic -4.28 - FVIX hedges against volatility risk and has negative market beta
- CAPM alpha of FVIX is -47 bp per month, t-statistic -4.47
- Using other base assets for factor mimicking does not change the results

Necessary Conditions

- My explanation of the profitability anomaly assumes that low ROA firms are close to bankruptcy and high ROA firms are very far from it
- My explanation also needs significant idiosyncratic volatility / disagreement for low ROA firms
- If their IVol/AD are low, economy-wide shifts in IVol/AD will not affect them much, and the hedging mechanisms will not work
- The data confirm that both distress and IVol/AD are negatively associated with ROA

-

Profitability and Distress

	Low	Prof2	Prof3	Prof4	High	L-H
Lev	0.253	0.269	0.238	0.179	0.102	0.151
t-stat	9.49	15.2	14.3	14.1	16.5	6.69
O-Score	-0.623	-1.758	-1.918	-2.157	-2.362	1.739
t-stat	-7.42	-25.4	-25.4	-24.0	-38.2	20.9
-Z-Score	-2.753	-3.039	-3.378	-3.870	-4.687	1.934
t-stat	-46.0	-74.4	-51.1	-39.0	-45.9	21.4
Cred	12.718	10.410	9.169	8.006	8.139	4.579
Rating	BB-	BBB-	BBB	BBB+	BBB+	
t-stat	100.2	36.0	33.1	35.9	36.7	28.7
-DD	-4.587	-5.879	-6.863	-7.636	-8.153	3.567
t-stat	-17.7	-18.6	-20.3	-23.0	-22.1	20.3
EDP	0.033	0.020	0.017	0.016	0.017	0.016
t-stat	16.8	18.5	20.2	21.0	21.5	10.8

Alexander Barinov (UCR)

• • • • • • • • • • • •

Profitability and Idiosyncratic Volatility

	Low	Prof2	Prof3	Prof4	High	L-H
IVol	0.023	0.018	0.017	0.017	0.018	0.005
t-stat	21.0	25.8	25.6	26.4	29.7	7.89
Disp	0.145	0.060	0.038	0.031	0.030	0.115
t-stat	11.1	13.1	16.0	16.4	17.6	9.75
CVEarn	1.851	0.894	0.538	0.458	0.480	1.372
t-stat	17.5	13.3	21.4	29.8	28.0	13.5
CVCFO	1.498	1.095	0.899	0.788	0.740	0.757
t-stat	16.8	33.7	46.4	48.9	43.5	8.45
Error	0.332	0.161	0.112	0.087	0.082	0.250
t-stat	10.1	14.1	10.2	18.7	22.5	8.35

A = A = A = A = A = A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Volatility Risk Explains Profitability Factor

Panel A. RMW on FVIX

	Raw	CAPM	ICAPM	FF	FF4	Carhart	FF5
α	0.362	0.482	0.119	0.413	0.180	0.374	0.134
t-stat	2.41	3.35	0.70	3.05	1.44	2.84	1.13
β_{MKT}		-0.184	-1.236	-0.102	-0.836	-0.089	-0.832
t-stat		-3.84	-3.55	-2.18	-5.18	-2.19	-4.99
$eta_{\it SMB}$				-0.309	-0.220	-0.312	-0.222
t-stat				-3.29	-2.81	-3.20	-2.71
$m{eta}_{HML}$				0.208	0.170	0.225	0.189
t-stat				2.26	2.18	2.58	2.52
$eta_{\textit{Mom}}$						0.048	0.054
t-stat						1.02	1.27
β_{FVIX}			-0.789		-0.536		-0.543
t-stat			-3.15		-4.58		-4.55

Alexander Barinov (UCR)

Profitability Anomaly and Aggregate Volati

August 10, 2016 15 / 24

-

< ロ > < 同 > < 回 > < 回 > < 回 > <

Profitability Factor Does Not Explain FVIX

Panel B. FVIX on RMW

	Raw	CAPM	FF	+RMW	+CMA	Carhart	+RMW	+CMA
α	-1.342	-0.468	-0.445	-0.357	-0.300	-0.453	-0.371	-0.314
t-stat	-4.28	-4.47	-3.69	-3.49	-3.59	-3.68	-3.58	-3.73
β_{MKT}		-1.333	-1.370	-1.391	-1.410	-1.367	-1.387	-1.405
t-stat		-36.0	-32.8	-38.4	-48.2	-32.1	-37.5	-47.3
β_{SMB}			0.165	0.100	0.102	0.165	0.097	0.098
t-stat			4.72	3.72	3.77	4.89	3.78	3.89
β_{HML}			-0.071	-0.027	0.043	-0.068	-0.019	0.062
t-stat			-1.32	-0.55	0.60	-1.30	-0.38	0.85
β_{Mom}						0.010	0.021	0.030
t-stat						0.58	1.36	1.91
β_{RMW}				-0.211	-0.236		-0.216	-0.246
t-stat				-4.62	-5.16		-4.75	-5.25
β_{CMA}					-0.157			-0.174
t-stat					-2.24			-2.43

Alexander Barinov (UCR)

Profitability Anomaly and Aggregate Volati

-

イロト イポト イヨト イヨト

FVIX in Profitability Sorts

	Low	Prof2	Prof3	Prof4	High	H-L
α_{CAPM}	-0.366	-0.055	0.007	0.017	0.200	0.566
t-stat	-1.85	-0.52	0.09	0.19	2.22	2.44
$\alpha_{\textit{ICAPM}}$	0.078	0.006	0.124	-0.057	0.078	0.000
t-stat	0.51	0.06	1.34	-0.56	0.82	0.00
β_{FVIX}	0.960	0.121	0.227	-0.169	-0.265	-1.226
t-stat	3.09	1.14	3.11	-1.98	-3.78	-3.40
α_{FF}	-0.228	-0.076	0.032	0.055	0.245	0.473
t-stat	-1.50	-0.75	0.36	0.64	3.04	2.38
α_{FF4}	-0.013	-0.099	0.104	-0.004	0.158	0.170
t-stat	-0.09	-0.91	1.17	-0.04	1.79	0.89
β _{FVIX}	0.495	-0.064	0.140	-0.143	-0.199	-0.694
t-stat	2.35	-0.60	2.00	-1.75	-2.36	-2.57

Alexander Barinov (UCR)

FVIX in Gross Profitability Sorts

	Low	GProf2	GProf3	GProf4	High	H-L
α_{CAPM}	-0.272	0.020	-0.101	0.130	0.198	0.469
t-stat	-1.93	0.20	-0.77	1.60	2.10	2.48
lpha icapm	-0.063	0.181	-0.029	0.065	0.057	0.120
t-stat	-0.46	1.73	-0.25	0.82	0.55	0.65
β _{FVIX}	0.426	0.331	0.149	-0.146	-0.304	-0.729
t-stat	2.66	2.87	1.43	-2.06	-3.01	-3.04
α_{FF}	-0.252	0.083	-0.010	0.176	0.223	0.475
t-stat	-1.79	0.80	-0.10	2.32	2.35	2.56
α_{FF4}	-0.114	0.174	0.027	0.088	0.098	0.211
t-stat	-0.77	1.58	0.28	1.12	0.91	1.09
β_{FVIX}	0.289	0.192	0.081	-0.204	-0.285	-0.574
t-stat	1.67	2.29	0.86	-2.52	-2.14	-2.07

э

< ロ > < 同 > < 回 > < 回 >

Cross-Sectional Regressions

Panel A. Price > 5

Panel B. All Firms

	1	2	3	4		1	2	3	4
Beta	0.070	-0.001	0.033	-0.007	Beta	0.051	0.005	0.031	0.003
t-stat	0.60	-0.03	0.28	-0.22	t-stat	0.48	0.21	0.28	0.12
Size	-0.536	-0.237	-0.387	-0.186	Size	-0.893	-0.820	-0.722	-0.741
t-stat	-2.38	-0.96	-1.71	-0.74	t-stat	-3.32	-2.54	-2.41	-1.91
MB	-0.855	-0.373	-0.816	-0.273	MB	-0.858	-0.443	-0.861	-0.504
t-stat	-3.99	-1.15	-4.19	-0.99	t-stat	-3.96	-1.32	-4.21	-1.49
Mom	1.269	1.035	1.214	0.978	Mom	0.968	0.618	0.925	0.545
t-stat	5.64	2.66	5.34	2.49	t-stat	3.86	1.35	3.69	1.18
Rev	-1.837	-1.140	-1.860	-1.109	Rev	-2.519	-1.783	-2.536	-1.779
t-stat	-10.0	-4.69	-10.0	-4.60	t-stat	-11.1	-5.95	-11.1	-5.90
Prof	0.532	0.314			Prof	0.416	0.181		
t-stat	3.31	1.21			t-stat	2.19	0.55		
GProf			0.615	0.367	GProf			0.495	0.131
t-stat			4.37	1.63	t-stat			3.36	0.72
γ vix		-0.239		-0.206	γ vix		-0.189		-0.196
t-stat		-2.23		-2.04	t-stat		-1.96		-1.99

Alexander Barinov (UCR)

-

イロト イポト イヨト イヨト

Profitability and Volatility Risk: Recap

- FVIX explains the alpha of the new Fama-French profitability factor (RMW), but not the other way around
- FVIX also explains the returns in the sorts on profitability and gross profitability
- Since the explanation leans on the option-likeness of distressed firms, FVIX expectedly helps more on the short side (unprofitable firms)

・ロッ ・ 一 ・ ・ ヨッ ・ ・ ・ ・ ・

20/24

Hypotheses Development

- My explanation of the profitability anomaly leans on the option-likeness of distressed firms and the fact that low ROA firms tend to be distressed
- Hence, the profitability anomaly should be stronger for distressed firms
- Volatility of volatile firms is more responsive, in absolute magnitude, to market-wide volatility shifts
- The hedging power of option-like equity is stronger if the equity (or assets) are volatile
- Hence, there will be more profitability anomaly for volatile firms and this regularity will be explained by FVIX

Profitability Anomaly across O-Score Quintiles

	Low	02	O 3	04	High	H-L
lphaCAPM	-0.080	0.041	0.127	0.152	0.680	0.760
t-stat	-0.56	0.27	0.78	0.86	2.27	2.98
$lpha_{\it ICAPM}$	-0.248	-0.299	-0.252	-0.236	0.136	0.385
t-stat	-1.59	-1.72	-1.39	-1.25	0.46	1.48
β_{FVIX}	-0.358	-0.726	-0.809	-0.828	-1.160	-0.801
t-stat	-1.73	-3.90	-4.05	-3.22	-3.18	-3.62

- Profitability anomaly exists only in top two distressed firms quintiles (much stronger in the top quintile)
- FVIX explains it everywhere, including the top quintile, and also explain the top-minus-bottom quintile spread in profitability anomaly

Profitability Anomaly across IVol Quintiles

	Low	IVol2	IVol3	IVol4	High	H-L
lphaCAPM	0.073	0.326	0.186	0.241	0.918	0.846
t-stat	0.36	1.60	0.76	0.86	2.96	2.19
$lpha_{\it ICAPM}$	-0.016	0.244	0.006	-0.038	0.337	0.353
t-stat	-0.06	1.15	0.03	-0.13	1.13	0.78
eta_{FVIX}	-0.190	-0.175	-0.383	-0.595	-1.242	-1.052
t-stat	-0.79	-0.99	-1.55	-1.96	-2.08	-1.60

- Similarly, profitability anomaly exists only in the top IVol quintile, and FVIX explains why
- One does not want to short low ROA firms if they are volatile and/or distressed, because such firms are good hedges against VIX increases

Alexander Barinov (UCR)

Conclusion

- Profitability factor is driven by volatility risk
- Low ROA firms are distressed, their equity is option-like
- Their risk does not increase as much and their value does not drop as much when market becomes more volatile
- Consistent with that, the high-minus-low ROA strategy has higher alphas in distressed and volatile subsamples, and this regularity is explained by FVIX
- So, we finally know which exact risk the profitability factor stands for

-

< D > < P > < E > < E</p>