Appendices For "Estimating the Cost of Equity Capital for Insurance Firms with Multi-period Asset Pricing Models"

Alexander Barinov ${ }^{1}$

Jianren Xu^{*}, ${ }^{2}$

Steven W. Pottier ${ }^{3}$

Appendix A: Augmented Fama-French and AFM Models

Fama and French $(1995,1996)$ argue that $S M B$ and $H M L$ can pick up additional risk not picked up by the market beta and thus the three-factor Fama-French model (henceforth FF3) can be viewed as an empirical version of the intertemporal CAPM (ICAPM). ${ }^{4}$ In a recent paper, Fama and French (2015) suggest two more factors, $R M W$ and $C M A$, to augment the initial version of their model in order to explain recently discovered deviations from its predictions. The five-factor version of the Fama-French model (henceforth FF5) is quickly becoming the new standard benchmark model in finance. Following the trend, the FF5 model is used as a benchmark model in our paper.

While the precise economic nature of the risks that are allegedly behind SMB and HML remains elusive, and many papers contest the ICAPM interpretation of the Fama-French models, favoring the mispricing nature of SMB and HML (Lakonishok, Shleifer, and Vishny, 1994; Daniel and Titman, 1997), it is still possible that SMB and HML (and perhaps the newer factors of $R M W$

[^0]and CMA) can partly pick up the additional risks identified in the conditional CAPM (CCAPM) and the two-factor ICAPM with the market and volatility risk factors.

Table 1A adds FVIX to FF5 and finds that its beta is still negative and significant for all insurance companies and property-liability (P/L) insurance companies. The FVIX beta is smaller than in the ICAPM (see Table 2 in the paper), suggesting that there is some overlap between F VIX and $S M B / H M L / R M W / C M A$ (which is not surprising, because Barinov, 2011, finds that FVIX can at least partially explain the value effect, and Barinov, 2015, finds an even stronger overlap between RMW and FVIX). Likewise, the change in the alpha between FF5 and FF5 augmented with FVIX (FF6) is smaller than the change in the alpha between CAPM and ICAPM in Table 2, once again confirming the overlap between $F V I X$ and $R M W / H M L$. It is interesting though that the alphas in the ICAPM (Table 2 in the paper) and FF6 (Table 1A) are very similar (for all insurers and P / L insurers), suggesting that cost of equity (COE) estimates from ICAPM and FF6 will be similar (these models see about the same amount of risk in insurance companies). Thus, it seems that while the four Fama-French factors (SMB, HML, RMW, and CMA) overlap with FVIX, at least for the insurance industry as a whole and P / L insurers in particular they do not have much of explanatory power of their own that goes beyond the overlap. The reverse, however, is not true: the FF5 and FF6 alphas are quite different (see Table 1A), and so are COE estimates from FF5 and FF6 (see Table 15A). Thus, FVIX does have independent explanatory power that goes beyond its overlap with $R M W$ and $H M L$.

Overall, Table 1A shows that all insurance companies taken together and property-liability companies in particular trail not only the CAPM but also the FF5 model when market volatility unexpectedly increases, which makes them riskier than what CAPM and FF5 indicate.

Life insurers represent a special case, because for them FVIX becomes insignificant in FF6, and the ICAPM alpha in Table 2 in the paper is larger (less negative) than in FF5 and FF6. Thus,
in the case of life insurers $S M B / H M L / R M W / C M A$ seem to dominate $F V I X$. In untabulated results, we have looked into this and found out that the cause of $F V I X$ beta insignificance is the overlap between HML and FVIX: if we drop SMB from FF6, the FVIX beta barely changes; but if we drop HML, the FVIX beta goes back to almost its ICAPM value. Hence, we conclude that in the case of life insurers $H M L$ is a (probably empirically superior) substitute to $F V I X$, which does not change the central message of the ICAPM analysis: insurance companies are riskier than what the CAPM suggests, because insurance companies underperform in high volatility periods, and HML, which is related to volatility risk as Barinov (2011) shows, picks up this effect.

Table 1A also considers the Adrian, Friedman, and Muir (2016) model (henceforth the AFM model), which adds to the three traditional Fama-French factors ($R M-R F, S M B$, and $H M L$) two more factors based on the performance of the financial industry. One factor is $F R O E$, which is the return differential between top and bottom ROE quintiles formed using only financial firms, and the other is $S P R E A D$, which is the return differential between financial and non-financial firms. Adrian et al. (2016) argue that performance of the financial industry affects the whole economy and thus the shocks to financial industry are not diversifiable, in contrast to other industry-wide shocks.

Table 1A shows that insurance firms are positively exposed to both FROE and SPREAD (the SPREAD exposure is somewhat tautological, since $S P R E A D$ is long in all insurance firms, among other financial firms). Adding $F R O E$ and $S P R E A D$ also makes the HML beta of insurers much smaller and increases the AFM model's alpha compared to the FF5 model (higher alpha implies smaller expected return / cost of capital, because all asset pricing models split the in-sample average return into the alpha and the part explained by the factors, i.e., expected return). Again, in a sense, the AFM model is explaining the insurance industry returns by using them on the righthand side as well, so the move of the alpha towards zero is at least partly mechanical.

The rightmost column of Table 1A in each panel adds the FVIX factor to the AFM model (the result is the AFM6 model) and finds the FVIX betas are smaller than in the FF6 model (see the second column of each panel in Table 1A) and the ICAPM (see Table 2 in the paper), but all insurance firms and P / L insurers still have a significant exposure to volatility risk, and that makes the alpha of insurance companies smaller (more negative) (in AFM6 column) and their cost of capital greater than what the AFM model estimates, indicating that FVIX contributes to the COE estimates even controlling for the five factors in the AFM model.

In Table 2A, we try adding the four business cycle variables in the Fama-French five-factor model (conditional FF5 or C-FF5). We also make SMB, HML, RMW, and CMA betas time-varying, because untabulated analysis shows that the expected returns (and therefore risk) of these factors are also predictable by business cycle variables (in particular, the expected return of both SMB and HML seems high when the yield curve is steeper, i.e., when TERM is high, consistent with Hahn and Lee, 2006). We start with the "kitchen sink" approach in the middle column of each vertical panel, and then eliminate insignificant variables until we end up with the set of conditioning variables that are uniformly significant in all or almost all panels.

In the leftmost column in each panel (Conditional CAPM plus the four Fama-French factors), the market beta still looks countercyclical, though the results are weaker (the slopes on $D I V_{t-1} *(R M-R F)$ are significantly positive for all insurers and life insurers, but not for P / L insurers, and the slope on $T B_{t-1} *(R M-R F)$ is negative, but loses significance for all and P / L insurers, but not for life insurers). The alphas in the leftmost columns are more negative than the FF5 alphas from Table 2 in the paper, which implies that the market beta of insurance companies is still countercyclical even after controlling for the four Fama-French factors.

There are also signs of countercyclicality in the SMB beta and procyclicality in the HML and CMA betas, while the $R M W$ beta delivers a split message. On the balance, it seems that the
procyclical betas win in the C-FF5 model, since it has a higher (more positive) alpha and thus should generate lower cost of capital than FF5.

Appendix B: Liquidity, Liquidity Risk, and Coskewness

Several papers in the insurance literature (Jacoby et al., 2000; Wen et al., 2008) have brought up liquidity and skewness as potential determinants of expected returns (cost of capital) of insurance companies. In Table 3A, we attempt to add the respective factors to our analysis by constructing new factors that capture those variables. Just like what Fama and French (2015) did in the case of SMB, HML, RMW, and CMA and following the literature (see below), we form these factors as long-short portfolios that buy/short top/bottom quintile from the sorts of all firms in the market on the characteristic in question. ${ }^{5}$

For liquidity, we use two characteristics: Zero, the fraction of no-trade (zero return, zero trading volume) days, which is a catch-all trading cost measure suggested by Lesmond et al. (1999), and Amihud, the price impact measure from Amihud (2002). Lesmond et al. argued that firms with higher trading costs will see more days when investors perceive the costs of trading to be higher than benefits and refrain from trading. Amihud suggested averaging the ratio of absolute value of return to dollar trading volume over a month or a year (we use a year) to gauge by how much, on average, a trade of a given size (say, \$1 million) moves the prices against the person trading (a large buy order, for example, makes prices increase and the buyer has to pay a higher price as a result).

The first panel of Table 3A reports the alphas of all insurers and two subgroups of P/L and life insurers for the baseline models (CAPM, FF5, ICAPM, and FF6), effectively collecting this

[^1]information from Table 2 in the paper and Table 1A. The alphas are important, because the change in them, once we start adding more factors, will be the gauge of the economic importance of these factors. Any asset-pricing model partitions in-sample average return into the alpha (abnormal return) and the rest (expected return or cost of equity). Since the average return is the same (as long as the sample does not change), the change in the alpha has to equal the negative of the change in expected return.

Panel B of Table 3A adds the liquidity factor based on the no-trade measure (Zero) into the four models after which the columns are named and reports the alpha and the loading on the liquidity factor (all other betas are not reported for brevity). Panel B reveals three main results. First, in all models all groups of insurers load positively on the liquidity factor, suggesting that insurance companies are likely to be among the firms the factor buys (illiquid firms). Second, the liquidity factor is largely subsumed by $S M B, H M L, R M W$, and $C M A$: as one goes from CAPM/ICAPM to FF5/FF6, the liquidity factor beta shrinks in 3-5 times and generally loses significance. Third, consistent with the above, adding the liquidity factor to CAPM/ICAPM changes the alpha (and hence, COE estimates) by economically sizeable $10-20$ bp per month (1.22.4\% per year), but adding it to FF5/FF6 changes the alpha and COE by at most 3 bp per month, which is economically small.

Panel C replaces the Zero liquidity factor by Amihud liquidity factor and finds even weaker results. The Amihud factor is rarely significant, the signs of the loadings alternate in different models, and even when the Amihud factor is significant (CAPM/ICAPM for life insurers), controlling for SMB, HML, RMW, and CMA effectively reduces it to zero. Consequently, the difference between alphas in Panels A and C is just a few bps, suggesting that controlling for the Amihud factor does not materially change COE estimates for insurance companies.

Summing up the evidence in Panels B and C, we conclude that liquidity has limited explanatory power for insurers' cost of equity, especially after we control for $S M B, H M L, R M W$, and CMA, which are part of one of our benchmark models (FF5). Thus, we do not feel the need to further include liquidity factors in our analysis.

Panel D studies liquidity risk, which is a different concept. While liquidity refers to costs of trading that have to be compensated in the before-cost returns (i.e., the returns all asset-pricing literature uses), liquidity risk is a risk in the ICAPM sense and refers to losses during periods of market illiquidity. In their influential paper, Pastor and Stambaugh (2003) suggest their own price impact measure, compute it for each firm-month, and then average across all firms in each month. This series of monthly market-wide average of price impact is their liquidity measure, and the shocks to this series are liquidity shocks (constructed so that a positive shock means an increase in liquidity).

Panel D uses the Pastor-Stambaugh factor ($P S$), which is the return differential between firms with highest and lowest historical liquidity betas (high liquidity beta implies steep losses in response to liquidity decreases, i.e., liquidity risk). ${ }^{6}$ Panel D reveals that while the factor loadings of insurance firms on the PS factor are uniformly negative (suggesting that insurers are hedges against liquidity risk), these loadings are insignificant, and controlling for the PS factor has little influence on alphas and hence on the cost of equity estimates.

Panel E looks at the role of skewness, which is known to be high in insurers' returns due to catastrophic losses. When it comes to measuring systematic risk though, the correct variable to look at is coskewness (covariance of stock returns of a portfolio with squared market returns),

[^2]because it measures the contribution of the asset to the skewness of a well-diversified portfolio. ${ }^{7}$ We measure coskewness betas for each firm-month using the formula in Harvey and Siddique (2000):
\[

$$
\begin{equation*}
\beta_{\text {Skew }}=\frac{E\left(\epsilon_{i t} \cdot \epsilon_{M t}^{2}\right)}{\sqrt{E\left(\epsilon_{i t}^{2}\right) \cdot E\left(\epsilon_{M t}^{2}\right)}} \tag{1}
\end{equation*}
$$

\]

where $\epsilon_{i t}=R_{i t}-R F_{t}-\alpha-\beta \cdot\left(R M_{t}-R F_{t}\right)$, and $\epsilon_{M t}$ is the deviation of the market return from the long-run average. To form our coskewness factor (Skew), we sort all firms in the market on the historical coskewness betas and go long/short in the top/bottom quintile.

Panel E reveals that insurance companies have positive and significant exposure to the coskewness factor, indicating their exposure to the risk picked up by coskewness. However, the loading on the coskewness factor drastically decreases once we control for $S M B, H M L, R M W$, CMA, and FVIX. Further, the alphas of FF6 in Panel A and the seven-factor model of FF6 plus Skew in Panel E differ by $1.5-5$ bp per month, suggesting that the coskewness factor is economically insignificant once the other market-wide factors are controlled for.

Appendix C: Cross-Sectional Tests and GRS Tests of the Models

Cross-Sectional Test of the Models Used in the Paper

In this part we perform the cross-sectional test of the four main models (CAPM, FF5, CCAPM, and ICAPM) using industry portfolios as our cross-section. Table 4A presents the estimates from the second stage regression of returns on past betas and reports Fama-MacBeth (1973) t-statistics. The test follows the standard procedure: we first estimate the average betas (market beta, FVIX beta, etc.) for each industry portfolio formed as in Fama and French (1997)

[^3]and then regress $t+1$ returns to the 30 industry portfolios on time t estimates of the betas. The time t betas are estimated individually for each firm in the industry portfolio using $t-59$ to t returns (at least 36 valid observations are required); the estimates are then trimmed at 1% and 99% in each month and averaged within each industry portfolio.

The main finding from Table 4A is that all the models except for ICAPM do not do a good job in the cross-section in our sample period (1986-2014, determined by the availability of FVIX). Our tests lack power to state that any of the betas (including market beta, SMB beta, HML beta, $R M W$ beta, and CMA beta) are priced. FVIX is a fortunate exception with a t-statistic of -2.16 . The scaled factors from CCAPM ($D E F_{t-1} *(R M-R F), D I V_{t-1} *(R M-R F)$, and $\left.T E R M_{t-1} *(R M-R F)\right)$ come close to 10% significance, but are not there. Therefore, we do not implement the standard errors corrections from Kan, Robotti, and Shanken (2013) - these corrections account for the estimation error and model misspecification error and always make the t-statistics smaller, and we already do not have any significant numbers in Table 4A, including the Fama-French five factor betas. In other words, using Kan, Robotti, and Shanken (2013) corrections will only exacerbate the conclusion that none of the factors in these tested models (except for FVIX) explain the crosssection of industry returns.

The insignificance of most factors in cross-sectional tests is a common problem that plagues those tests (see the results of testing many competing models in Kan, Robotti, and Shanken, 2013, and Lewellen, Nagel, and Shanken, 2010) and makes many asset-pricing papers starting with Fama and French (1993) revert to time-series regressions and alphas on the suspicion that cross-sectional regressions simply lack power to reject the null that an important factor is not priced. We also go this route in the paper.

Lewellen, Nagel, and Shanken (2010) suggest that asset pricing models should be evaluated on two "common sense" metrics. First, the risk premiums estimated from the second-
stage regressions such as the ones in Table 4A have to be equal to the average risk premiums to the factors we observe in the sample. For example (and this is where almost all models fail), the slope on the market beta in the cross-sectional regression should be equal to the market risk premium (the difference between the average market return and the average risk-free rate). In 1986-2014, the average market risk premium is 0.656% per month (roughly 8% APR). This is somewhat high by historical standards and is probably driven by the sharp run-up in the market during the 1990s.

Second, Lewellen, Nagel, and Shanken (2010) suggest paying a close attention to the intercept. By definition, the intercept is the expected return to an asset with all betas equal to zero, that is, the risk-free rate. In our sample, the risk-free rate is 0.29% per month (roughly $3.5 \% \mathrm{APR}$). This is somewhat low by historical standards and is probably driven by the zero interest rates in 2008-2014.

If a model estimates, for example, the risk-free rate to be 15% APR and the market risk premium to be 1%, this model is bad no matter what the R-squared is, because such a model just does not make sense. In Table 4A this is what happens to both the CAPM and the FF5 model. Both estimate the risk-free rate at roughly 10% APR and the market risk premium is estimated to be at least twice smaller than it really is.

The ICAPM in the fourth column produces the most realistic estimates. While the risk-free rate is still too high, the observed average risk-free rate is now within the confidence interval, and the market risk premium estimate (0.717% per month) is almost exactly equal to its in-sample average (0.656% per month). The risk premium of $F V I X$ estimated from the cross-sectional regression (-1.166% per month) is also close to the average FVIX return (-1.342% per month). The CCAPM in the third column produces an even more realistic estimate of the risk-free rate, but the market risk premium is too low (similar to FF5). Hence, on this "common sense" metric (realistic
estimates of the market risk premium and the risk-free rate) the models rank as ICAPM, then CCAPM, then FF5, and then CAPM.

If one orders the models by the cross-sectional R -squared in the last row, the CCAPM comes out on top, followed by the FF5 model and the ICAPM. We do not believe, however, that R-squared is a good measure to compare the models on. First, as Lewellen, Nagel, and Shanken (2010) argue, if the model produces obviously biased estimates of the risk-free rate and risk premiums, it is a bad model regardless of the goodness of fit. Second, all asset-pricing tests mean to analyze the drivers of expected return, but use realized returns instead, since expected return is unobservable. Realized return is expected return plus the news component (in the case of the industry portfolios Table 4A is looking at, it is industry news). So, the model will not have a perfect fit even if it is 100% correct, because a perfect fit (R -squared $=100 \%$) is equivalent to industry news being non-existent (which is obviously false) or risk factors completely capturing them (which should not happen if the factors are truly economy-wide). Third, another reason why crosssectional R-squared might be inappropriate to compare models is due to what Lewellen, Nagel, and Shanken (2010) discuss as "factor structure" - the returns to size-sorted portfolios, for example, can be very well explained, in terms of R-squared, by a size factor or something even remotely correlated with it. Likewise, if $H M L$ (or any other factor) is tilted towards a certain industry, its betas will be explaining the cross-section of realized returns to industry portfolios "better" in terms of R-squared due to their ability to pick up the industry-specific shocks to the industry/industries that the factor is tilted towards. (Again, this problem would not exist if we could observe expected returns and regress them on the factors/factor betas, but we can only observe realized returns).

In terms of the problem at hand (cost of equity estimation), we are also interested in expected returns (same thing as COE) and not that interested in the ability of the factors/factor
betas to pick up industry-specific shocks. If these shocks are random and zero-mean, tracking them will increase the R-squared, but will not increase the expected return/COE estimate. Hence, we are interested mostly in the intercept in the second-stage regressions in Table 4A and in the intercept (aka alpha) from the first-stage factor regressions like the ones we report in the paper (Table 2 for example).

GRS test of the Models Used in the Paper

To make sure that the results in Panels B and C of Table 1 in the paper are not specific to the industry portfolios, we repeat the test suggested by Gibbons, Ross, and Shanken (1989), known as the GRS test in the asset-pricing literature, for several other salient portfolio sets. In particular, we look at five-by-five double sorts on size and market-to-book, five-by-five sorts on size and momentum (momentum is one of the most well-known anomalies; the momentum factor is used in another popular benchmark model originating from Carhart, 1997), and five-by-five sorts on size and long-term reversal, as well as five-by-five sorts on size and profitability and size and investment (profitability and investment are the two new factors in the five-factor model by Fama and French, 2015). ${ }^{8}$

Table 5A presents the test of the hypothesis that the alphas of the 25 portfolios (named in the panel heading) are jointly zero in the models named in the top row of each panel (failure to reject the null indicates the model is a good one based on GRS test). Since the portfolios represent important anomalies that have defied explanation, all models are rejected in almost all cases (the only exception is Panel C, in which FF5, ICAPM and CCAPM, but not CAPM and FF3, seem to explain the alphas of size-reversal sorts relatively well).

8 All portfolio returns are from \quad Ken
http:/mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. French’s data library at

We notice also that CCAPM always has a smaller GRS statistic than CAPM and FF3, which means it produces, on average, smaller alphas (in Panel E, size-investment sorts, CCAPM and FF3 are tied). ICAPM is a bit behind CCAPM in terms of GRS test, but usually ahead of CAPM and FF3.

FF5 model is usually somewhat ahead of all other models, both because it is being fitted to the sorts that its factors largely come from, and because it has five factors as compared, say, to two factors in the ICAPM. Hence, the results of GRS test that uses the 30 industry portfolios are largely robust to using other portfolios to perform the test.

The next table, Table 6A, performs an analogue of the GRS test that tests the null hypothesis that all $F V I X$ betas (or all slopes on $D E F_{t-1} *(R M-R F)$, or all slopes on $D I V_{t-1} *(R M-$ $R F)$, etc.) are jointly equal to zero in a particular portfolio set. Rejection of the null hypothesis indicates the factor is an important factor significantly related to portfolio returns. We find that $F V I X$ betas from ICAPM and the slope on $D E F_{t-1} *(R M-R F)$ from CCAPM are significant for all portfolios sets, and the rest of the CCAPM variables are significant for most of them, thus confirming that the results in Panel C of Table 1 in the paper, where we perform the same test with the 30 industry portfolios, are robust to using other portfolio sets.

Insurance and Financial Industry Factors: Cross-Sectional Test

In the second to fourth columns of Table 7A we perform the cross-sectional Fama-MacBeth regression that attempts to use the returns to the insurance industry as a factor for a full crosssection of firms (the first column reports the cross-sectional regression for the FF5 model as a benchmark). For each firm in the CRSP universe, we regress returns between $t-59$ and t on $R M$ $R F, S M B, H M L, R M W$, and $C M A$ and the returns to one of the insurance portfolios we use in the paper (all the publicly traded insurers, INS, property-liability insurers, PL, or life insurers, Life). In the second stage, the $t+1$ returns to the 25 Fama and French (1992) size/book-to-market (size-

BM) portfolios (Panel A) or the 30 Fama and French (1997) industry portfolios (Panel B), are regressed, in cross-section, on time t estimates of the betas from $t-59$ to t, as described above.

The main result in Panel A is that adding the insurance factors does not change much either in terms of the intercept (the risk-free rate is still being estimated at unreasonably high values that exceed 1% per month), or the market risk premium, or the R-squared. Also, none of the insurance factor betas are statistically significant and their estimated risk premiums controlling for the FamaFrench five factors are small (just like their small Fama-French alphas in Table 2 (FF5 column) in the paper).

The two rightmost columns add the Adrian et al. (2016) financial industry factors instead of the insurance factors: first, to the three-factor Fama-French model, as Adrian et al. (2016) do (AFM column), and then to the FF5 model (FF5+AFM column). The only marginally significant beta is the FROE beta in the AFM model, but it has the wrong sign, because, first by construction, the average return to $F R O E$ is positive, and, second, the slope on the beta in cross-sectional regressions should equal the risk premium earned by the factor, so in our case if the AFM model had had a good fit, the slope on the FROE beta should have been positive. The intercepts of the AFM and FF5+AFM models are also very close to the intercept of the FF5 model, implying that FROE and SPREAD do not improve the goodness of fit of the models. The increases in the Rsquared we observe comparing the AFM and FF5+AFM models with the FF5 model are likely to be driven by the wrong sign of $F R O E$ beta.

In Panel B, we redid the analysis again with the 30 industry portfolios. The results are very similar and even worse for the insurance factors: their risk premiums are now estimated to be much lower, and the risk premium of the Life factor flips its sign. All other factors ($R M-R F, S M B, H M L$, $R M W$, and CMA) still lack significance, and the same is true about $F R O E$ and $S P R E A D$. The AFM model is very close to the FF5 model in terms of R-squared, and the FF5+AFM model has a better

R-squared, but worse (larger) intercept, which represents an unrealistically high estimate of the risk-free rate (0.815% per month, roughly 10% per year in the case of the FF5+AFM model).

Since the Fama-French factors are insignificant, we also tried dropping (some of) them and adding the insurance factors or AFM factors to the CAPM/FF3 (results not tabulated). In general, that would bias the test in favor of finding that the insurance factors matter - any diversified portfolio that is significantly correlated with either of the four Fama-French factors (SMB, HML, RMW, and CMA) (and, according to Table 2 in the paper, our insurance factors have significant $S M B, H M L$, and $R M W$ betas) can act as their proxy and seem to matter in addition to the market factor even if it has no additional information compared to $S M B$, $H M L$, or $R M W$ and thus is not priced controlling for those factors. However, Table 7A suggests that the four Fama-French factors are themselves not priced in our sample period, so the overlap between them and the insurance factors is less of a concern. Indeed, when we add the insurance factors to the CAPM, we find that they still do not price the five-by-five size-BM sorts or the 30 industry portfolios. None of the insurance/AFM factors is significant and what is even worse, the intercept (that estimates the risk-free/zero-beta rate) becomes noticeably larger and goes further into the implausible territory when we add the insurance/AFM factors to the CAPM/FF3.

We also tried extending the sample to 1963 to run the analyses in both Panels A and B in Table 7A (the start of Compustat data) to gain more power. We did achieve significance for the HML beta and marginal significance (along with a positive coefficient) for the SMB beta, but the betas of the insurance/AFM factors are still insignificant even in the longer sample, often negative, and adding them has a small effect on the R-squared and makes the intercept somewhat greater (that is, makes the overestimation of the risk-free rate slightly worse).

Insurance and Financial Industry Factors: GRS Test

Columns 2-4 of Table 8A test for the joint insignificance of alphas from time-series regressions with insurance factors on the left-hand side using the GRS test (column 1 of Table 8A performs the GRS test for the FF5 model as a benchmark). The point of Table 8A is the comparison of the FF5 model (first column) with the FF5 model augmented, in turn, by each of the insurance factors, as well as with the AFM and FF5+AFM models.

One can see from Panel A of Table 8A that adding the insurance factors does not change the test statistic in a material way, which implies that the effect of adding either of the insurance factors on the alphas of the 25 size-BM sorted portfolios is minimal and insurance factors are effectively not priced. This is not surprising, since, as we show in Table 2 in the paper, none of the insurance portfolios (all the publicly traded insurers, P/L insurers, or life insurers), now used as factors, have a significant alpha in the FF5 model. Hence, controlling for $R M-R F, S M B, H M L$, $R M W$, and CMA, the risk premium of the insurance factors is essentially zero, and no matter whether some portfolios in the size-BM sorts load significantly on them or not, adding the insurance factors should not change the alphas of these size-BM portfolios (and it does not, as evidenced in Panel A of Table 8A).

In the subsequent panels of Table 8A, we also repeat the GRS test for the FF5 model and the FF5 model augmented with the insurance factors using four more portfolio sets, which are five-by-five sorts on size and other salient variables (momentum, long-term reversal, profitability, or investment). For all portfolio sets in the four panels B-E, adding the insurance factors either makes the GRS test statistics bigger, indicating that the insurance factors make the model fit worse, not better (size-momentum and size-reversal sorts) or does not affect the GRS test statistic at all, indicating that the insurance factors are useless (size-investment sorts).

Finally, in the two rightmost columns of each panel, we perform the GRS test for the AFM and FF5+AFM models. We observe that the AFM model is behind the FF5 model in terms of the

GRS test statistic (which implies that the AFM model has larger pricing errors) and the FF5+AFM model generates GRS test statistics that are very close to the ones from FF5 (or FF5 augmented with an insurance factor). We conclude that the two financial industry factors suggested in Adrian et al. (2016), $F R O E$ and $S P R E A D$, are close in their performance to the insurance factors - they do not add much to the explanatory power of the FF5 model and are largely unpriced.

Overall, our conclusion from both the cross-sectional Fama-MacBeth regressions and the time-series GRS tests is that the insurance and financial industry factors do not contribute to explaining the cross-section of returns in a material way, because they are industry-specific factors that can be diversified away if an investor invests in multiple industries. This is also consistent with related evidence in the paper (Tables 4-6), where we consider other potential insurance-industry-specific factors.

Appendix D: Other Types of Insurers

The insurance industry includes other types of companies with arguably very different risks and operating characteristics from the P / L and life insurance companies. In this section, we apply the same tests in Tables 2 and 3 in the paper to the other types of insurers and investigate whether the results are consistent with the P / L and life insurers that are usually considered to represent the insurance industry. Since the monthly average numbers of surety insurers, title insurers, pension, health, welfare funds, and other insurance carriers are very small (low teens for surety insurers and single digits for others), we put these insurers together as a combined category (other insurers). ${ }^{9}$ Therefore we divide the insurance industry into four major groups, namely, property-liability (P/L)

[^4]insurers (SIC codes 6330-6331), life insurers (6310-6311), accident and health (A/H) insurers (6320-6329), and other insurers (all other firms with 6300-6399).

We run the four asset pricing models (CAPM, FF5, CCAPM, and ICAPM as shown in Table 2 in the paper) as well as the AFM model (in Table 1A) on A/H insurers and other insurers in addition to all insurers, P / L insurers, and life insurers. The additional results are reported in Table 9A.

The results in Table 9A are consistent with the results of all, P / L, and life insurers reported in Table 2 in the paper and Table 1A. The CCAPM regression results in Panel A indicate that the beta of A / H insurers significantly increases with the dividend yield (DIV), and significantly decreases with the Treasury bill rate (TB) and term premium (TERM). Since dividend yield is higher and Treasury bill rate is lower in recessions, the significant coefficients on DIV and $T B$ indicate that the beta of A / H insurance companies is countercyclical, which makes them riskier than what the CAPM would suggest. However, the significantly negative coefficient on TERM indicates that A / H insurers may have procyclical beta, since term premium is higher in recessions. When confronted with such conflicting evidence, we can compare the alpha in the CAPM and CCAPM column. We observe that it decreases by economically non-negligible 14.4 bp per month (1.73\% per year) as we go from the CAPM to CCAPM. Hence, the CCAPM discovers more risk in insurance companies than CAPM, and for that to be true, the beta of the insurance companies has to be countercyclical (representing additional risk). Furthermore, a formal test of countercyclical or procyclical beta is performed in Panels C and D of Table 9A.

In Panel B, dividend yield and Treasury bill rate stay as the significant drivers of the risk of other insurers, and the signs suggest the countercyclicality of beta; DEF and TERM are insignificant, but the signs also indicate the countercyclicality of other insurers' beta.

The ICAPM column in Panels A and B of Table 9A adds FVIX, the volatility risk factor mimicking the changes in VIX (the expected market volatility). The negative and significant FVIX betas of A / H and other insurers suggest that when VIX increases unexpectedly, these insurance firms tend to have worse returns than firms with comparable CAPM betas, which makes A/H and other insurance companies riskier than what the CAPM estimates. The significant negative coefficients on FVIX are also observed for all, P/L, and life insurers in Table 2 in the paper.

It is interesting that in Panel A (A/H insurers) ICAPM produces the lowest (more negative) alpha, implying that the ICAPM generates higher COE and sees more risks (using two factors, RM-RF and FVIX) than the Fama-French five-factor model for accident and health insurers. In Panel B, the ICAPM has the second most negative alpha, but it still captures more risks than the five-factor AFM model.

Following Petkova and Zhang (2005), we also estimate the average betas of A / H insurers and other insurers in economic expansions and recessions. Expansions and recessions are defined as the periods with low and high expected market risk premium, respectively. The results are reported in Panels C and D of Table 9A, which have the same layout as Table 3 in the paper. We find that, based on both methods to classify expansions and recessions (expected market riskpremium above/below its historical median value or within the top/bottom quintile), A / H insurers and other insurers have significantly higher average betas in recessions, indicating that these two subgroups of insurers, in addition to P / L and life insurance subgroups shown in Table 3 in the paper, have strongly countercyclical betas (which makes them riskier than what the CAPM suggests). Thus, even though not all signs on the macroeconomic/business cycle variables in Panels A and B of Table 9A agree, the average predicted betas show strong evidence that, consistent with all, P / L, and life insurers, A / H and other insurance companies have higher risk
exposure in bad times, which is undesirable from investors' point of view and leads investors to demand higher cost of equity.

Appendix E: FVIX Exposures of 48 Fama-French (1997) Industry Portfolios

The question of how the other industries do in terms of volatility risk exposure, is an interesting one. In Table 10A we investigate the 48 industry portfolios from Fama and French (1997). The portfolios span the whole economy and include insurance and related industries (the bottom panel). We find that while negative FVIX betas dominate our sample (higher volatility is generally bad for everyone), roughly a third of $F V I X$ betas are positive, and the average $F V I X$ beta across all 48 industries is only -0.141 (compared to -0.866 for the insurance industry). We also notice that the FVIX beta of the insurance industry is the $5^{\text {th }}$ most negative (behind Food, Soda, Beer, and Smoke in the top panel). Hence, the insurance industry does differ from an average industry.

Appendix F: More Details on Underwriting Cycles and the Intertemporal CAPM

In addition to the average combined ratio documented in Section V of the paper, we have experimented with another insurance-specific variable-total catastrophic losses to create the ICAPM factor. In this section, we demonstrate the results of the factor-mimicking regressions for both candidate insurance-specific variables (cat losses and the combined ratio) on the base assets, analyze the alphas and betas of the factor-mimicking portfolios in the CAPM, FF3, Carhart (1997), and FF5 models, and explore the regressions that try to add the factor-mimicking portfolio for inflation-adjusted catastrophic losses (in addition to change in combined ratio in Table 6 in the
paper) to the models (CAPM, ICAPM, FF5, and FF5 augmented with FVIX (FF6)) we use in the paper.

Table 11A presents the results of factor-mimicking regressions on the base assets. The factor-mimicking regressions attempt to create a tradable portfolio that would correlate well with shocks to total catastrophic losses or average combined ratio. Since catastrophic losses are largely unpredictable and their autocorrelation is low, we treat the values of catastrophic losses as shocks. For combined ratio, a much more persistent variable with autocorrelation close to 1 , we use its changes as a proxy for shocks.

Lamont (2001) suggests that the optimal base assets should have the richest possible variation in the sensitivity with respect to the variable being mimicked. Therefore, we choose quintiles based on historical sensitivity to catastrophic losses or change in combined ratio. In each firm-quarter (insurance-specific/underwriting cycle variables such as catastrophic losses and combined ratio are collected quarterly) for every stock traded in the US market and listed on CRSP, we perform regressions of excess stock returns on $R M-R F, S M B, H M L$, and either inflationadjusted catastrophic losses (CatLoss) or change in combined ratio (\triangle CombRat). The slope on CatLoss or Δ CombRat is our measure of historical stock sensitivity to catastrophic losses or change in combined ratio.

The regressions use quarterly returns and the most recent 20 quarters of data (that is, in quarter t we use data from quarters $t-1$ to $t-20$) and omit stocks with less than 12 non-missing returns between $t-1$ and $t-20$.

To obtain the base assets for mimicking catastrophic losses or change in combined ratio, we sort all firms on CRSP on the historical stock sensitivity to catastrophic losses or change in combined ratio in five quintile portfolios. To minimize the impact of micro-cap stocks, we use NYSE breakpoints to form the quintiles and omit from the sample stocks those priced below $\$ 5$ at
the quintile formation date. Table 11A performs the standard factor mimicking regression with CatLoss (columns 1 and 2) or CombRat (columns 3 and 4) on the left-hand side and excess returns to value-weighted and equal-weighted quintile portfolios based on the historical stock sensitivity to catastrophic losses and change in combined ratio on the right-hand side, respectively. ${ }^{10}$

Table 11A shows that creating the factor-mimicking portfolio for either variable has limited success, because total catastrophic losses and shocks to average combined ratio seem to be unrelated to returns of any of the historical sensitivity quintiles. That is to say, when the insurance industry suffers a shock, the rest of the economy seems largely unaffected, consistent with similar findings in Table 4 of the paper that insurance-specific variables that drive the underwriting cycles do not predict the market risk premium. Consequently, the R-squared of the factor-mimicking regressions is only a few percent. ${ }^{11}$

Tables 12A and 13A look at the alphas and betas of the factor-mimicking portfolios constructed in Table 11A in the CAPM, FF3, Carhart, and FF5 models. The factor-mimicking portfolios are the fitted part from the regressions in Table 11A less the constant. The factormimicking regressions in Table 11A are performed at the quarterly frequency, since this is the frequency at which total catastrophic losses and average combined ratio are reported. However, the factor-mimicking portfolio returns are monthly, because returns to the base assets (stock sorted on historical stock sensitivity to catastrophic losses or change in combined ratio) are also available at the monthly frequency, and the factor-mimicking portfolio just multiplies them by the slopes from Table 11A.

[^5]We observe, first of all, that the alphas uniformly have the correct negative sign (the portfolios are constructed so that they win when total catastrophic losses or average combined ratio increases and insurance companies lose, and thus can be regarded as a hedge). However, the alphas are economically negligible (less than 1 bp per month) and mostly statistically insignificant for the factor-mimicking portfolio for CatLoss (see Table 12A); the alphas are economically small (1-3 bp per month on average) and all statistically insignificant for the factor-mimicking portfolio for Δ CombRat (see Table 13A). We conclude that investors are not willing to give up a significant return for a hedge against potential problems in the insurance industry, allegedly because the insurance industry losses do not impact the economy as a whole and the vast majority of investors are not materially affected by them, and also because the industry-specific risks can be diversified away.

The observation that the alphas of the factor-mimicking portfolios that track shocks to insurance-industry-specific variables are small is an important one. The alpha measures the unique risk captured by the factor (controlling for the other factors used in the alpha estimation). In terms of cost of capital, the alpha is the potential marginal contribution of the factor. Low-alpha factors (such as the factor-mimicking portfolios on catastrophic losses and changes in combined ratio in Tables 12A and 13A) have little chance to contribute materially to the cost of capital estimates if added into a factor model.

The betas of the factor-mimicking portfolios in Tables 12A and 13A are surprisingly significant, but numerically small. While the significance creates an (allegedly misleading) impression that shocks to the insurance variables are related to market-wide factors ($R M-R F, S M B$, HML, and sometimes CMA and $R M W$), the relation is economically negligible.

Table 14A contains regressions that try to add the value-weighted factor-mimicking portfolio for inflation-adjusted catastrophic losses (FCatLoss) to the models we use in the paper
(CAPM, ICAPM, FF5, and FF6) and thus repeats Table 6 in the paper replacing the factor that mimics combined ratio with the factor mimicking catastrophic losses. The results of estimating the models used in the paper are in columns 1, 4, 7, and 10. The factor is added to the models in columns $2,5,8$, and 11 . In columns $3,6,9$, and 12 the factor is replaced by the variable the factor mimics (catastrophic losses, CatLoss). The left-hand side variable is the value-weighted returns to all publicly traded insurance companies. Changing it to equal-weighted returns or dividing the sample into P / L insurers and life insurers does not materially change the results. ${ }^{12}$

Similar to the results reported in Table 6 in the paper when adding the factor-mimicking portfolio for changes in combined ratio, in columns 8 and 11 of Table 14A we observe that the betas of all insurance companies with respect to the FCatLoss factor lose significance after we control for the factors our main analysis uses (RM-RF, SMB, HML, CMA, and $R M W$, or these factors plus $F V I X$). We checked (columns 9 and 12 of Table 14A) that the insignificant betas are not an artefact of our factor-mimicking procedure by replacing the factor-mimicking portfolio with catastrophic losses, which still produces insignificant loadings. In addition, we observe that the impact on the alphas of adding FCatLoss to models other than CAPM (namely, ICAPM, FF5, and FF5+FVIX) is minor, consistent with our findings regarding changes in combined ratio in Table 6 in the paper. In conclusion, adding the insurance industry factor-mimicking portfolios as insurance-specific factors does not change estimated cost of equity. The economic reason is that shocks specific to the insurance industry do not affect the economy as a whole and can be diversified away by investors who invest in many industries. Therefore, these shocks do not represent priced risks and should not be expected to affect the cost of equity of insurance companies (even if the shocks do affect their cash flows).

[^6]
Appendix G: Cost of Equity Estimation from Augmented Fama-French and AFM Models and from Sum-beta Approach

In addition to the cost of equity capital estimated based on the four main models (CAPM, FF5, CCAPM, and ICAPM) in Table 7 in the paper, we estimate the value-weighted average COE using the AFM model and Fama-French five-factor model augmented with FVIX (FF6) for each of the 18 sample years (1997-2014) and 18 years combined. The results are presented in columns 5 and 6 in Table 15A in Panels A, B, and C for all publicly-traded insurance companies and the two major subgroups (P / L insurers and life insurers), respectively. For comparison purposes, the COE estimates from CAPM, FF5, CCAPM, and ICAPM are reported in columns 1-4 (same as Table 7 in the paper).

We document that the COE estimates from the AFM model are higher than the CAPM estimates, but they are lower than the FF5 estimates on average for all, P/L, and life insurance companies. It suggests that the financial industry factors (FROE and SPREAD) do not reflect as much risk as $R M W$ and CMA for insurers. This is not surprising because the financial industry factors, similar to the insurance factors, are industry-specific factors that can be diversified away if the marginal financial portfolio investor also invests in many other industries. As a matter of fact, in untabulated results, we show that FROE has insignificant alpha controlling for FF5 factors and SPREAD's alpha even has the "wrong" sign (implying that higher SPREAD beta means low expected return/COE, but by construction of SPREAD it should be the opposite). It indicates that adding the financial industry factors does not help in or even mislead (given the significant SPREAD betas for various groups of insurers in Tables 1A and 9A) the cost of equity estimation for insurance companies.

We find that the COE estimates from FF6 are even higher than those from FF5 on average for all insurance companies and the two subgroups. It suggests that FVIX contributes to COE estimation even controlling for $S M B, H M L, R M W$, and $C M A$. Hence, it confirms the claim in Appendix A that FVIX has independent explanatory power that goes beyond its overlap with RMW and $H M L$. The average COE for the 18 -year period estimated from FF6 is $13.490 \%, 12.607 \%$, and 15.688\% per annum for all insurers, P/L insurers, and life insurers, respectively, as compared to $12.662 \%, 11.312 \%$, and 15.366% per annum from FF5. For all insurance companies and the two subgroups, ICAPM generates very similar COE estimates to those from FF6, indicating that ICAPM finds about the same amount of risk in insurance companies during our sample period on average as FF6. It confirms our conclusion in Appendix A that SMB, HML, RMW, and CMA do not have much of explanatory power of their own for insurers beyond the overlap with FVIX.

Furthermore, following Cummins and Phillips (2005) we estimate the COE using the sumbeta approach (Dimson, 1979) based on all the six models mentioned above (CAPM, FF5, CCAPM, ICAPM, AFM, and FF6). The idea of Dimson is that for thinly traded stocks, the information in the market return can be incorporated into stock prices with a delay, and thus one should regress the stock returns on the market return from the same period t and also on the market return from period $t-1$. The market beta is then the sum of the slopes on those two market returns.

For CAPM, FF5, ICAPM, AFM, and FF6, the estimated sum-beta coefficients are obtained similarly by adding the slopes on the contemporaneous and lagged factor returns from these models. Then the sum-beta COE is calculated by summing the products of the estimated sum-beta coefficients multiplied by long-term factor risk premiums, plus the risk-free rate (more details on the estimation window and factor risk premiums are in Estimation Methods subsection in Section VI in the paper). For CCAPM the sum-beta COE is computed by summing the product of the predicted contemporaneous beta with predicted contemporaneous market risk premium and the
product of the predicted lagged beta with predicted lagged market risk premium, plus current riskfree rate. The sum-beta version of COE estimates is reported in columns 7-12 in Table 15A based on different models for all insurance companies (Panel A), P/L insurers (Panel B), and life insurers (Panel C). The presented COE estimates are value-weighted averages across all firms for each of the 18 sample years (1997-2014) and 18 years combined.

The COE estimates based on the sum-beta approach are similar to those estimated without the sum-beta approach. For all insurance companies and the P/L subgroup the difference between the usual and sum-beta COE estimates is small across all models (generally under 1\% per annum). For life insurers, the difference is more material (over 3\% for FF5, ICAPM, and FF6). Moreover, we still find the ICAPM cost of equity estimates higher than those from the CAPM, AFM, and FF5 models.

Appendix H: Equal-Weighted Returns of Insurers

We have been using value-weighted returns of insurance companies throughout the paper and Online Appendices. As an additional robustness check, we replicated Tables 2, 3, 6, and 7 in the paper using equal-weighted insurer returns and report them in Tables 16A, 17A, 18A, and 19A, respectively.

Table 16A re-runs Table 2 in the paper using equal-weighted returns and fits several factor models to all insurers, P/L insurers, and life insurers, respectively. We find the following. First, the FVIX beta is still significant, though numerically smaller, for all insurers and P/L insurers, and and insignificant (as compared to marginally significant at 10% in Table 2) for life insurers. Second, the market beta of insurance companies is still countercyclical, positively related to dividend yield (DIV) and negatively related to Treasury bill rate. For life insurers, a positive dependence of the beta on default premium (DEF) and negative dependence on term premium
(TERM) are added. Third, the equal-weighted CCAPM and ICAPM alphas are again significantly smaller than the CAPM alphas, implying that those models find additional sources of risk and will generate higher cost of capital estimates, though in equal-weighted returns, in contrast to valueweighted returns, the FF5 model sometimes generates even lower alphas (and finds even more risk) than the ICAPM.

Table 17A repeats Table 3 in the paper using equal-weighted returns and tabulates the market betas of the three groups of insurers (all, P/L, and life) in expansions and recessions. The differences in the betas recessions vs. expansions (the ultimate proof of the insurers' betas countercyclicality) are very close in Table 3 in the paper and Table 17A.

Table 18A repeats Table 6 and considers adding the change in combined ratio ($4 C O m b R a t$) and its factor-mimicking portfolio (FCombRat) to the CAPM, FF5, ICAPM, and FF6 models. Both $\Delta C o m b R a t$ and FCombRat are still insignificant even when equal-weighted returns to all the publicly traded insurers are used on the left-hand side, and adding them to the models does not materially change the alphas or the FVIX betas.

We estimate the equal-weighted cost of equity for all, P / L, and life insurers and report the results in Table 19A. The equal-weighted COE estimates are usually lower than the valueweighted, but the difference is small with generally less than 1% on average across all models except for those from the ICAPM. The equal-weighted ICAPM COE estimates are about 3\% lower than those value-weighted for all insurance companies and P / L insurers and 1.5% lower for life insurers on average. The lower equal-weighted COE can be due to the following reasons. First, the market betas across models are mostly lower in Table 16A (based on equal-weighted returns) than in Table 2 in the paper (based on value-weighted returns). Second, even though the insurer equalweighted returns are higher than value-weighted returns (see Table 1 in the paper), the difference is smaller than the difference between the equal-weighted and value-weighted alphas. As a result,
the equal-weighted COE estimates should turn out to be smaller than those value-weighted. Third, according to Table 4 in Adrian et al. (2016) (the mean of) FSMB (the return differential between the small financial and big financial firms) is less than zero, suggesting that the size effect is negative for financial firms, and consequently, small financial firms have lower COE. Since equalweighted returns give more weights to small firms, the equal-weighted COE is lower. Further, for the ICAPM specifically, comparing Table 16A and Table 2 in the paper, we find that the FVIX betas are less than half in size using equal-weighted than value-weighted returns, indicating a lower explanatory power for equal-weighted than value-weighted returns. However, the ICAPM generates low COE estimates right before the Great Recession in 2008 and high estimates after it (well reflecting the reality), while the other models do not. In sum, even though the ICAPM is weaker when using equal-weighted insurer returns, our central message does not change: the ICAPM produces higher COE estimates than the CAPM and the insurance companies are exposed to the market volatility risk.

We also replicated all the other tables in the paper and most of the tables in Online Appendices using insurer equal-weighted returns (results not tabulated to save space) and find that the results with equal-weighted returns are qualitatively similar to the results with value-weighted returns that we usually report.

References

Adrian, T., E. Friedman, and T. Muir, 2016, The Cost of Capital of the Financial Sector, working paper, Federal Reserve Bank of New York.
Amihud, Y., 2002, Illiquidity and Stock Returns: Cross-Section and Time Series Effects, Journal of Financial Markets, 5: 31-56.
Barinov, A., 2011, Idiosyncratic Volatility, Growth Options, and the Cross-Section of Returns, working paper, University of California, Riverside.
Barinov, A., 2015, Profitability Anomaly and Aggregate Volatility Risk, working paper, University of California, Riverside.
Carhart, M.M., 1997, On Persistence in Mutual Fund Performance, Journal of Finance, 52: 57-82.
Cummins, J.D., and R.D. Phillips, 2005, Estimating the Cost of Equity Capital for Property-Liability Insurers, Journal
of Risk and Insurance, 72: 441-478.
Daniel, K., and S. Titman, 1997, Evidence on the Characteristics of Cross Sectional Variation in Stock Returns, The Journal of Finance, 52: 1-33.
Dimson, E., 1979, Risk Measurement when Shares are Subject to Infrequent Trading, Journal of Financial Economics, 7: 197-226.
Fama, E.F., and K.R. French, 1992, The Cross-Section of Expected Stock Returns, Journal of Finance, 47: 427-465.
Fama, E.F., and K.R. French, 1993, Common Risk Factors in the Returns on Stocks and Bonds, Journal of Financial Economics, 33: 3-56.
Fama, E.F., and K.R. French, 1995, Size and Book-to-Market Factors in Earnings and Returns, Journal of Finance, 50: 131-155.
Fama, E.F., and K.R. French, 1996, Multifactor Explanations of Asset Pricing Anomalies, Journal of Finance, 51: 5584.

Fama, E.F., and K.R. French, 1997, Industry Costs of Equity, Journal of Financial Economics, 43: 153-193.
Fama, E.F., and K.R. French, 2002, The Equity Premium, Journal of Finance, 57: 637-659.
Fama, E.F., and K.R. French, 2015, A Five-Factor Asset Pricing Model, Journal of Financial Economics, 116: 1-22.
Fama, E.F., and J.D. Macbeth, 1973, Risk, Return and Equilibrium: Empirical Tests, Journal of Political Economy, 81: 607-636.
Gibbons, M.R., S.A. Ross, and J. Shanken, 1989, A Test of the Efficiency of a Given Portfolio, Econometrica, 57: 1121-1152.
Hahn, J., and H.Lee, 2006, Interpreting the Predictive Power of the Consumption-Wealth Ratio, Journal of Empirical Finance, 13: 183-202.
Harvey, C. R., and A. Siddique, 2000, Conditional Skewness in Asset Pricing Tests, Journal of Finance, 55: 12631295.

Jacoby, G., D. J. Fowler, and A. A. Gottesman, 2000, The Capital Asset Pricing Model and the Liquidity Effect: A Theoretical Approach, Journal of Financial Markets, 3: 69-81.
Kan, R., C. Robotti, and J. Shanken, 2013, Pricing Model Performance and the Two-Pass Cross-Sectional Regression Methodology, Journal of Finance, 68: 2617-2649.
Lakonishok, J., A. Shleifer, and R. Vishny, 1994, Contrarian Investment, Extrapolation, and Risk, Journal of Finance, 49: 1541-1578.
Lamont, O.A., 2001, Economic Tracking Portfolios, Journal of Econometrics, 105: 161-184.
Lesmond, D. A., J. Ogden, and C. Trzcinka, 1999, A New Estimate of Transaction Costs, Review of Financial Studies, 12: 1113-1141.
Lewellen, J.W., S. Nagel, and J. Shanken, 2010, A Skeptical Appraisal of Asset Pricing Tests, Journal of Financial Economics, 96: 175-194.
Pastor, L. and R.F. Stambaugh, 2003, Liquidity Risk and Expected Stock Returns, Journal of Political Economy, 111: 642-685.
Petkova, R., and L. Zhang, 2005, Is Value Riskier than Growth? Journal of Financial Economics, 78: 187-202.
Wen, M., A.D. Martin, G. Lai, and T.J. O’Brien, 2008, Estimating the Cost of Equity for Property-Liability Insurance Companies, Journal of Risk and Insurance, 75: 101-124.

Table 1A. Fama-French Five-Factor and AFM Models Augmented by Volatility Risk Factor

	Panel A. All Insurers				Panel B. P/L Insurers				Panel C. Life Insurers			
	FF5	FF6	AFM	AFM6	FF5	FF6	AFM	AFM6	FF5	FF6	AFM	AFM6
RM-RF	$\begin{aligned} & 1.03^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.39 * * \\ & (0.18) \end{aligned}$	$\begin{aligned} & 0.89^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.45^{* * *} \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.90^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 0.75^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.13 \\ & (0.15) \end{aligned}$	$\begin{aligned} & 1.35^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 1.43^{* * *} \\ & (0.28) \end{aligned}$	$\begin{aligned} & 1.24^{* * *} \\ & (0.05) \end{aligned}$	$\begin{aligned} & 1.62^{* * *} \\ & (0.22) \end{aligned}$
SMB	$\begin{aligned} & -0.13^{* *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.08 \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.08^{* *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & -0.04 \\ & (0.04) \end{aligned}$	$\begin{aligned} & -0.29^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.22^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.22^{* * *} \\ & (0.05) \end{aligned}$	$\begin{aligned} & -0.16^{* * *} \\ & (0.05) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.15^{* *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.07) \end{aligned}$
HML	$\begin{aligned} & 0.59 * * * \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.60^{* * *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.10^{*} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.09^{*} \\ & (0.05) \end{aligned}$	$\begin{aligned} & 0.50^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.51^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.04 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 1.10^{* * *} \\ & (0.11) \end{aligned}$	$\begin{aligned} & 1.10^{* * *} \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.44^{* * *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & 0.45^{* * *} \\ & (0.09) \end{aligned}$
RMW	$\begin{aligned} & 0.25^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.15^{*} \\ & (0.08) \end{aligned}$			$\begin{aligned} & 0.20^{* *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & 0.07 \\ & (0.09) \end{aligned}$			$\begin{aligned} & 0.03 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.04 \\ & (0.12) \end{aligned}$		
CMA	$\begin{aligned} & -0.09 \\ & (0.11) \end{aligned}$	$\begin{aligned} & -0.14 \\ & (0.11) \end{aligned}$			$\begin{aligned} & -0.02 \\ & (0.12) \end{aligned}$	$\begin{aligned} & -0.08 \\ & (0.12) \end{aligned}$			$\begin{aligned} & -0.31^{* *} \\ & (0.16) \end{aligned}$	$\begin{aligned} & -0.30^{*} \\ & (0.16) \end{aligned}$		
FROE			$\begin{aligned} & 0.05^{* * *} \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.04 * * \\ & (0.02) \end{aligned}$			$\begin{aligned} & 0.05^{* *} \\ & (0.02) \end{aligned}$	$\begin{aligned} & 0.04^{*} \\ & (0.02) \end{aligned}$			$\begin{aligned} & 0.03 \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.04 \\ & (0.03) \end{aligned}$
SPREAD			$\begin{aligned} & 0.67 * * * \\ & (0.05) \end{aligned}$	$\begin{aligned} & 0.65 * * * \\ & (0.05) \end{aligned}$			$\begin{aligned} & 0.66 * * * \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.63^{* * *} \\ & (0.05) \end{aligned}$			$\begin{aligned} & 0.71^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.73^{* * *} \\ & (0.08) \end{aligned}$
FVIX		$\begin{aligned} & -0.45^{* * *} \\ & (0.13) \end{aligned}$		$\begin{aligned} & -0.32^{* * *} \\ & (0.09) \end{aligned}$		$\begin{aligned} & -0.62^{* * *} \\ & (0.14) \end{aligned}$		$\begin{aligned} & -0.46 * * * \\ & (0.11) \end{aligned}$		$\begin{aligned} & 0.05 \\ & (0.19) \end{aligned}$		$\begin{aligned} & 0.28^{*} \\ & (0.16) \end{aligned}$
Alpha	$\begin{aligned} & -0.24 \\ & (0.16) \end{aligned}$	$\begin{aligned} & -0.40^{* *} \\ & (0.16) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.00 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.15 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.18 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.41^{* *} \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.15) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.17 \\ & (0.15) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.30 \\ & (0.24) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.29 \\ & (0.24) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.19 \\ & (0.21) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.06 \\ & (0.22) \end{aligned}$
Adj R-sq	0.714	0.726	0.821	0.827	0.600	0.626	0.721	0.736	0.685	0.685	0.745	0.747
Obs	348	347	348	347	348	347	348	347	348	347	348	347

Note: This table shows the regression results based on Fama-French five-factor model (FF5), FF5 augmented with the volatility risk factor FVIX (FF6), Adrian, Friedman, and Muir (2016) model (AFM), and AFM augmented with FVIX (AFM6) for all the publicly traded insurance companies, P/L insurers, and life insurers The insurance portfolio returns are value-weighted. $R M-R F$ is the market risk premium, SMB is the difference in the returns of small and large portfolios, and $H M L$ is the difference in the returns of high and low book-to-market portfolios. RMW is the difference in the returns of robust and weak (high and low) operating profitability portfolios, and CMA is the difference in the returns of conservative and aggressive (low and high) investment portfolios. FROE is the return spread between high and low ROE financial firms, and SPREAD is the return spread between financial and non-financial firms. FVIX is the factor-mimicking portfolio that mimics the changes in VIX index, which measures the implied volatility of the S\&P100 stock index options. Obs reports the number of months in the regressions. Standard errors appear in brackets. $* * *, * *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 2A. Conditional Fama-French Five-Factor Model

	Panel A. All Insurers			Panel B. P/L Insurers			Panel C. Life Insurers		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
RM-RF	$\begin{aligned} & \hline 0.97 * * * \\ & (0.17) \end{aligned}$	$\begin{aligned} & 1.30^{* * *} \\ & (0.18) \end{aligned}$	$\begin{aligned} & 1.25^{* * *} \\ & (0.15) \end{aligned}$	$\begin{aligned} & 0.87 * * * \\ & (0.19) \end{aligned}$	$\begin{aligned} & 1.27^{* * *} \\ & (0.21) \end{aligned}$	$\begin{aligned} & 1.11^{* * *} \\ & (0.17) \end{aligned}$	$\begin{aligned} & 1.18^{* * *} \\ & (0.23) \end{aligned}$	$\begin{aligned} & 1.39^{* * *} \\ & (0.27) \end{aligned}$	$\begin{aligned} & 1.90^{* * *} \\ & (0.23) \end{aligned}$
$D E F_{t-1} *$ (RM-RF)	$\begin{aligned} & -0.01 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.12) \end{aligned}$		$\begin{aligned} & -0.10 \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.13 \\ & (0.14) \end{aligned}$		$\begin{aligned} & 0.49 * * * \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.67^{* * *} \\ & (0.18) \end{aligned}$	
$D I V_{t-1} *(R M-R F)$	$\begin{aligned} & 0.14^{* *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.12 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.04 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.00 \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.17^{*} \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.01 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 0.23 * * \\ & (0.09) \end{aligned}$
$T B_{t-1} *(R M-R F)$	$\begin{aligned} & -0.36 \\ & (0.35) \end{aligned}$	$\begin{aligned} & -0.33 \\ & (0.35) \end{aligned}$	$\begin{aligned} & -0.29 \\ & (0.31) \end{aligned}$	$\begin{aligned} & -0.11 \\ & (0.39) \end{aligned}$	$\begin{aligned} & -0.23 \\ & (0.41) \end{aligned}$	$\begin{aligned} & 0.00 \\ & (0.36) \end{aligned}$	$\begin{aligned} & -1.51^{* * *} \\ & (0.48) \end{aligned}$	$\begin{aligned} & -1.25^{* *} \\ & (0.53) \end{aligned}$	$\begin{aligned} & -2.24^{* * *} \\ & (0.48) \end{aligned}$
TERM $_{t-1}{ }^{*}(R M-R F)$	$\begin{aligned} & -0.10 \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.18^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.16^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.07 \\ & (0.07) \end{aligned}$	$\begin{aligned} & -0.19 * * \\ & (0.07) \end{aligned}$	$\begin{aligned} & -0.16^{* *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & -0.23^{* * *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.29 * * * \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.32^{* * *} \\ & (0.09) \end{aligned}$
SMB	$\begin{aligned} & -0.15^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.39 \\ & (0.28) \end{aligned}$	$\begin{aligned} & -0.38^{* *} \\ & (0.15) \end{aligned}$	$\begin{aligned} & -0.29 * * * \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.45 \\ & (0.32) \end{aligned}$	$\begin{aligned} & -0.43^{* *} \\ & (0.17) \end{aligned}$	$\begin{aligned} & -0.02 \\ & (0.08) \end{aligned}$	$\begin{aligned} & -0.48 \\ & (0.41) \end{aligned}$	$\begin{aligned} & -0.63^{* * *} \\ & (0.23) \end{aligned}$
$D E F_{t-1} * S M B$		$\begin{aligned} & 0.06 \\ & (0.15) \end{aligned}$			$\begin{aligned} & 0.01 \\ & (0.17) \end{aligned}$			$\begin{aligned} & 0.19 \\ & (0.22) \end{aligned}$	
DIV ${ }_{\text {t-1 }} * S M B$		$\begin{aligned} & 0.03 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 0.03 \\ & (0.07) \end{aligned}$		$\begin{aligned} & 0.03 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.08) \end{aligned}$		$\begin{aligned} & 0.10 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.10) \end{aligned}$
$T B_{t-1} * S M B$		$\begin{aligned} & -0.03 \\ & (0.56) \end{aligned}$			$\begin{aligned} & -0.03 \\ & (0.64) \end{aligned}$			$\begin{aligned} & -0.40 \\ & (0.83) \end{aligned}$	
TERM $_{t-1} * S M B$		$\begin{aligned} & 0.08 \\ & (0.09) \end{aligned}$	$\begin{aligned} & 0.09^{*} \\ & (0.05) \end{aligned}$		$\begin{aligned} & 0.04 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (0.06) \end{aligned}$		$\begin{aligned} & 0.12 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 0.19 * * \\ & (0.08) \end{aligned}$
HML	$\begin{aligned} & 0.59 * * * \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.72^{* *} \\ & (0.36) \end{aligned}$	$\begin{aligned} & 0.76 * * * \\ & (0.13) \end{aligned}$	$\begin{aligned} & 0.55^{* * *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & 0.59 \\ & (0.42) \end{aligned}$	$\begin{aligned} & 0.83^{* * *} \\ & (0.14) \end{aligned}$	$\begin{aligned} & 0.80^{* * *} \\ & (0.11) \end{aligned}$	$\begin{aligned} & 1.79^{* * *} \\ & (0.54) \end{aligned}$	$\begin{aligned} & 0.85^{* * *} \\ & (0.19) \end{aligned}$
$D E F_{t-1} * H M L$		$\begin{aligned} & 0.04 \\ & (0.15) \end{aligned}$			$\begin{aligned} & 0.19 \\ & (0.18) \end{aligned}$			$\begin{aligned} & -0.53 * * \\ & (0.23) \end{aligned}$	
$D I V_{t-1} * H M L$		$\begin{aligned} & -0.07 \\ & (0.14) \end{aligned}$			$\begin{aligned} & -0.12 \\ & (0.15) \end{aligned}$			$\begin{aligned} & 0.28 \\ & (0.20) \end{aligned}$	
$T B_{t-1} * H M L$		$\begin{aligned} & -0.03 \\ & (0.75) \end{aligned}$			$\begin{aligned} & 0.34 \\ & (0.85) \end{aligned}$			$\begin{aligned} & -2.58^{* *} \\ & (1.10) \end{aligned}$	
TERM ${ }_{t-1} * H M L$		$\begin{aligned} & -0.08 \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.17^{* * *} \\ & (0.06) \end{aligned}$		$\begin{aligned} & -0.11 \\ & (0.15) \end{aligned}$	$\begin{aligned} & -0.25 * * * \\ & (0.07) \end{aligned}$		$\begin{aligned} & -0.29 \\ & (0.19) \end{aligned}$	$\begin{aligned} & 0.01 \\ & (0.10) \end{aligned}$
RMW	$\begin{aligned} & 0.18^{* *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & 0.79 * \\ & (0.44) \end{aligned}$	$\begin{aligned} & 0.78^{* *} \\ & (0.37) \end{aligned}$	$\begin{aligned} & 0.12 \\ & (0.10) \end{aligned}$	$\begin{aligned} & 0.76 \\ & (0.50) \end{aligned}$	$\begin{aligned} & 0.69 * \\ & (0.42) \end{aligned}$	$\begin{aligned} & 0.08 \\ & (0.12) \end{aligned}$	$\begin{aligned} & 0.32 \\ & (0.64) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.57) \end{aligned}$
$D E F_{t-1} * R M W$		$\begin{aligned} & 0.08 \\ & (0.23) \end{aligned}$			$\begin{aligned} & -0.06 \\ & (0.26) \end{aligned}$			$\begin{aligned} & 0.33 \\ & (0.34) \end{aligned}$	
$D I V_{t-1} * R M W$		$\begin{aligned} & -0.50^{* * *} \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.43 * * * \\ & (0.12) \end{aligned}$		$\begin{aligned} & -0.34^{* *} \\ & (0.15) \end{aligned}$	$\begin{aligned} & -0.31^{* *} \\ & (0.14) \end{aligned}$		$\begin{aligned} & -0.62^{* * *} \\ & (0.19) \end{aligned}$	$\begin{aligned} & -0.37^{* *} \\ & (0.19) \end{aligned}$
$T B_{t-1} * R M W$		$\begin{aligned} & 0.10 \\ & (0.83) \end{aligned}$	$\begin{aligned} & -0.06 \\ & (0.76) \end{aligned}$		$\begin{aligned} & -0.22 \\ & (0.95) \end{aligned}$	$\begin{aligned} & -0.23 \\ & (0.87) \end{aligned}$		$\begin{aligned} & 0.88 \\ & (1.23) \end{aligned}$	$\begin{aligned} & 0.48 \\ & (1.18) \end{aligned}$
TERM $_{t-1} * R M W$		$\begin{aligned} & -0.04 \\ & (0.14) \end{aligned}$	$\begin{aligned} & -0.04 \\ & (0.13) \end{aligned}$		$\begin{aligned} & -0.14 \\ & (0.16) \end{aligned}$	$\begin{aligned} & -0.13 \\ & (0.15) \end{aligned}$		$\begin{aligned} & 0.13 \\ & (0.20) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.20) \end{aligned}$
CMA	$\begin{aligned} & -0.10 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 1.59^{* * *} \\ & (0.49) \end{aligned}$	$\begin{aligned} & 1.07 * * * \\ & (0.24) \end{aligned}$	$\begin{aligned} & -0.02 \\ & (0.13) \end{aligned}$	$\begin{aligned} & 1.69^{* * *} \\ & (0.57) \end{aligned}$	$\begin{aligned} & 1.15^{* * *} \\ & (0.27) \end{aligned}$	$\begin{aligned} & -0.24 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 0.87 \\ & (0.73) \end{aligned}$	$\begin{aligned} & 0.72 * \\ & (0.37) \end{aligned}$
$D E F_{t-1}^{*} C M A$		$\begin{aligned} & 0.15 \\ & (0.30) \end{aligned}$			$\begin{aligned} & 0.15 \\ & (0.34) \end{aligned}$			$\begin{aligned} & 0.06 \\ & (0.44) \end{aligned}$	
$D I V_{t-1} * C M A$		$\begin{aligned} & -0.35^{* *} \\ & (0.17) \end{aligned}$	$\begin{aligned} & -0.50^{* * *} \\ & (0.11) \end{aligned}$		$\begin{aligned} & -0.27 \\ & (0.19) \end{aligned}$	$\begin{aligned} & -0.43^{* * *} \\ & (0.13) \end{aligned}$		$\begin{aligned} & -0.67^{* * *} \\ & (0.25) \end{aligned}$	$\begin{aligned} & -0.60^{* * *} \\ & (0.17) \end{aligned}$
$T B_{t-1} * C M A$		$\begin{aligned} & -2.17 * * \\ & (1.04) \end{aligned}$	$\begin{aligned} & -0.79^{*} \\ & (0.48) \end{aligned}$		$\begin{aligned} & -2.70 * * \\ & (1.19) \end{aligned}$	$\begin{aligned} & -1.15^{* *} \\ & (0.54) \end{aligned}$		$\begin{aligned} & 0.69 \\ & (1.54) \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.74) \end{aligned}$
TERM $_{t-1}{ }^{*} C M A$		$\begin{aligned} & -0.38^{* *} \\ & (0.18) \end{aligned}$			$\begin{aligned} & -0.41^{* *} \\ & (0.20) \end{aligned}$			$\begin{aligned} & -0.01 \\ & (0.26) \end{aligned}$	
Alpha	$\begin{aligned} & -0.27^{*} \\ & (0.16) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.15) \end{aligned}$	$\begin{aligned} & -0.01 \\ & (0.15) \end{aligned}$	$\begin{aligned} & -0.24 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.08 \\ & (0.17) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.17) \end{aligned}$	$\begin{aligned} & -0.27 \\ & (0.22) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.11 \\ & (0.22) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.17 \\ & (0.23) \\ & \hline \end{aligned}$
Adj R-sq	0.718	0.775	0.774	0.610	0.674	0.673	0.725	0.755	0.731
Obs	347	347	347	347	347	347	347	347	347

Note: This table shows the conditional Fama-French five-factor model regression results for all the publicly traded insurance companies, P / L insurers, and life insurers. The insurance portfolio returns are value-weighted. $R M-R F$ is the market risk premium, $S M B$ is the difference in the returns of small and large portfolios, HML is the difference in the returns of high and low book-to-market portfolios, $R M W$ is the difference in the returns of robust and weak operating profitability portfolios, and CMA is the difference in the returns of conservative and aggressive investment portfolios. $D E F$ is default spread, $D I V$ is dividend yield, $T B$ is the 30-day Treasury bill rate, and $T E R M$ is term spread. Obs reports the number of months in the regressions. Standard errors appear in brackets. $* * *, * *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 3A. Liquidity, Liquidity Risk, Coskewness

	All Insurers				P/L Insurers				Life Insurers			
	CAPM	FF5	ICAPM	FF6	CAPM	FF5	ICAPM	FF6	CAPM	FF5	ICAPM	FF6
Alpha	$\begin{aligned} & 0.048 \\ & (0.185) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.238 \\ & (0.159) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.369 * * \\ & (0.183) \end{aligned}$	$\begin{aligned} & -0.399 * * \\ & (0.161) \\ & \hline \end{aligned}$		Baselin -0.179 (0.179)	$\begin{aligned} & \text { Models } \\ & -0.435^{* *} \\ & (0.195) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.406^{* *} \\ & (0.179) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.029 \\ & (0.271) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.296 \\ & (0.236) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.191 \\ & (0.286) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.287 \\ & (0.245) \end{aligned}$
Alpha Zero	$\begin{aligned} & -0.154 \\ & (0.179) \\ & 0.371^{* * *} \\ & (0.059) \end{aligned}$	$\begin{aligned} & -0.249 \\ & (0.159) \\ & 0.091 \\ & (0.060) \end{aligned}$	$\begin{aligned} & -0.520^{* * *} \\ & (0.177) \\ & 0.335^{* * *} \\ & (0.056) \end{aligned}$	$\begin{aligned} & \text { Panel B. Ad } \\ & -0.419 * * \\ & (0.161) \\ & 0.109^{*} \\ & (0.059) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Liquidity l } \\ & -0.095 \\ & (0.198) \\ & 0.319^{* * *} \\ & (0.066) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { actor Ba } \\ & -0.186 \\ & (0.180) \\ & 0.058 \\ & (0.068) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ed on No-T } 1 \\ & -0.558^{* * *} \\ & (0.191) \\ & 0.272^{* * *} \\ & (0.061) \end{aligned}$	$\begin{aligned} & \text { Ide Days (Z } \\ & -0.421^{* *} \\ & (0.179) \\ & 0.080 \\ & (0.066) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.313 \\ & (0.262) \\ & 0.521^{* * *} \\ & (0.087) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.313 \\ & (0.236) \\ & 0.139 \\ & (0.089) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.421 \\ & (0.276) \\ & 0.510^{* * *} \\ & (0.087) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.311 \\ & (0.245) \\ & 0.137 \\ & (0.090) \\ & \hline \end{aligned}$
Alpha Amihud	$\begin{aligned} & 0.048 \\ & (0.187) \\ & 0.000 \\ & (0.074) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.224 \\ & (0.159) \\ & -0.079 \\ & (0.067) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.411^{* *} \\ & (0.187) \\ & 0.086 \\ & (0.070) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Panel C. Add } \\ & -0.387^{* *} \\ & (0.162) \\ & -0.049 \\ & (0.066) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Liquidity } \mathbf{F} \\ & 0.106 \\ & (0.203) \\ & -0.081 \\ & (0.080) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { actor Bas } \\ & -0.164 \\ & (0.180) \\ & -0.085 \\ & (0.075) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { d on Price } \\ & -0.445^{* *} \\ & (0.198) \\ & 0.020 \\ & (0.074) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { npact (Ami } \\ & -0.394^{* *} \\ & (0.180) \\ & -0.045 \\ & (0.074) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.110 \\ & (0.272) \\ & 0.241^{* *} \\ & (0.107) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.298 \\ & (0.237) \\ & 0.012 \\ & (0.099) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.330 \\ & (0.288) \\ & 0.284^{* * *} \\ & (0.108) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.288 \\ & (0.246) \\ & 0.005 \\ & (0.101) \\ & \hline \end{aligned}$
Alpha PS	$\begin{aligned} & 0.081 \\ & (0.186) \\ & -0.078 \\ & (0.048) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.218 \\ & (0.160) \\ & -0.042 \\ & (0.039) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.338^{*} \\ & (0.185) \\ & -0.062 \\ & (0.045) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Panel D. } \\ & -0.381^{* *} \\ & (0.162) \\ & -0.037 \\ & (0.039) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { g Pastor-- } \\ & 0.116 \\ & (0.202) \\ & -0.091^{*} \\ & (0.052) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ambaugh } \\ & -0.150 \\ & (0.180) \\ & -0.062 \\ & (0.044) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Liquidity } \mathbf{l} \\ & -0.401^{* *} \\ & (0.196) \\ & -0.072 \\ & (0.048) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { k Factor }(\boldsymbol{F} \\ & -0.378^{* *} \\ & (0.180) \\ & -0.055 \\ & (0.043) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.007 \\ & (0.272) \\ & -0.087 \\ & (0.070) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.283 \\ & (0.238) \\ & -0.028 \\ & (0.059) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.152 \\ & (0.288) \\ & -0.081 \\ & (0.070) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.272 \\ & (0.247) \\ & -0.029 \\ & (0.059) \\ & \hline \end{aligned}$
Alpha Skew	$\begin{aligned} & -0.133 \\ & (0.174) \\ & 0.740^{* * *} \\ & (0.099) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.275^{*} \\ & (0.158) \\ & 0.294^{* * *} \\ & (0.096) \end{aligned}$	$\begin{aligned} & -0.433^{* *} \\ & (0.174) \\ & 0.611^{* * *} \\ & (0.098) \end{aligned}$	$\begin{aligned} & -0.420^{* * *} \\ & (0.159) \\ & 0.259^{* * *} \\ & (0.095) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E. Adding } \\ & -0.075 \\ & (0.195) \\ & 0.627 * * * \\ & (0.111) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Coskewn } \\ & -0.205 \\ & (0.179) \\ & 0.204^{*} \\ & (0.110) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ss Factor } \\ & -0.483^{* *} \\ & (0.190) \\ & 0.453^{* * *} \\ & (0.107) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { (ew) } \\ & -0.419^{* *} \\ & (0.179) \\ & 0.153 \\ & (0.107) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.317 \\ & (0.250) \\ & 1.176^{* * *} \\ & (0.143) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.378 \\ & (0.230) \\ & 0.647 * * * \\ & (0.141) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.316 \\ & (0.263) \\ & 1.181^{* * *} \\ & (0.147) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.340 \\ & (0.238) \\ & 0.660^{* * *} \\ & (0.142) \\ & \hline \end{aligned}$

Note: This table shows the alphas for all the publicly traded insurance companies, P/L insurers, and life insurers from CAPM, FF5, ICAPM, and FF6, as well as liquidity factor betas (Panels B and C), liquidity risk loadings (Panel D), and coskewness factor loadings (Panel E). The models to which the liquidity/liquidity risk/coskewness factors are added are named in the heading of each column. The factors are added to the models one-by-one. The liquidity factors are the long-short portfolios that buy firms that are most frequently non-traded (Panel B) or have the highest price impact (Panel C) and short firms that are least frequently non-traded or have the lowest price impact. The liquidity risk factor (Pastor-Stambaugh factor) buys firms with the highest and shorts firms with the lowest historical return sensitivity to market liquidity shocks. The coskewness factor buys/shorts firms in the top/bottom coskewness quintile, and coskewness is defined, as in Harvey and Siddique (2000), the term proportional to covariance between firm-specific return shock with squared market return. Standard errors appear in brackets. $* * *$, $* *$, and * denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 4A. Fama-MacBeth Regressions for 30 Industry Portfolios

	CAPM	FF5	CCAPM	ICAPM
Intercept	0.949	0.764	0.569	0.618
t-stat	3.52	2.50	2.13	2.26
$R M$-RF beta	0.192	0.007	0.395	0.717
t-stat	0.56	0.02	1.26	2.04
SMB beta		0.335		
t-stat		1.45		
$H M L$ beta		0.289		
t-stat		1.30		
$R M W$ beta		0.154		
t-stat	-0.093			
$C M A$ beta	-0.54			
t-stat				-1.166
$F V I X$ beta			0.615	
t-stat			1.44	
$D E F_{t-1} *(R M-R F)$			1.039	
t-stat			0.36	
$D I V_{t-1} *(R M-R F)$			0.38	
t-stat				1.37
$T B_{t-1} *(R M-R F)$				0.293
t-stat			0.341	0.225
$T E R M_{t-1} *(R M-R F)$				
t-stat				
R-sq				

Note: The table reports the results of cross-sectional portfolio regressions run each month (1986-2014). It presents the estimates from the second stage regression of portfolio returns on past betas and reports Fama-MacBeth (1973) t statistics. The portfolios are the 30 industry portfolios from Fama and French (1997), and the portfolio returns are downloaded from Fen library data at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The regressions run portfolio returns from $t+1$ on the portfolio-level betas from t. The betas are estimated for each individual firm using data from the previous 60 months, then trimmed at 1% and 99% to eliminate outliers, and then averaged across all firms within the portfolio.

Table 5A. GRS Test for Alternative Portfolio Sets

Panel A. 25 Size/market-to-book sorted portfolios					
	CAPM	FF3	ICAPM	CCAPM	FF5
Stat	4.757	4.738	5.037	4.259	3.698
p-value	0.000	0.000	0.000	0.000	0.000

	Panel B. 25 Size/momentum sorted portfolios				
	CAPM	FF3	ICAPM	CCAPM	FF5
Stat	2.868	2.963	2.632	2.292	2.396
p-value	0.000	0.000	0.000	0.001	0.000

Panel C. 25 Size/reversal sorted portfolios

	CAPM	FF3	ICAPM	CCAPM	FF5
Stat	1.803	1.758	1.542	1.342	1.175
p-value	0.012	0.015	0.050	0.131	0.259

Panel D. 25 Size/profitability sorted portfolios

	CAPM	FF3	ICAPM	CCAPM	FF5
Stat	2.18	2.142	1.923	1.889	1.512
p-value	0.001	0.001	0.006	0.007	0.058

Panel E. 25 Size/investment sorted portfolios

	CAPM	FF3	ICAPM	CCAPM	FF5
Stat	3.533	3.447	3.680	3.469	2.348
p-value	0.000	0.000	0.000	0.000	0.000

Note: The table reports the results of the test with the null hypothesis that the alphas of all portfolios mentioned in the panel name are jointly zero in the time-series full-sample model named in the column heading. For example, the top left cell performs, in full 1986-2014 sample, 25 regressions of excess returns to each of the portfolios from five-byfive annual sorts on size and book-to-market on excess market return, and tests if all 25 intercepts are jointly zero. The returns to the portfolio sets, the detailed descriptions of the sorting variables, and the sorting procedure are available from Ken French's data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Table 6A. Joint Significance of the ICAPM/CCAPM factors for Alternative Portfolio Sets

	Panel A. 25 Size/market-to-book sorted portfolios				
	$F V I X$	$D E F_{t-1}$	$D I V_{t-1}$	TB $_{t-1}$	TERM $_{t-1}$
Stat	8.875	3.982	1.095	1.550	2.047
p-value	0.000	0.000	0.346	0.048	0.003

Panel B. 25 Size/momentum sorted portfolios

	$F V I X$	$D E F_{t-1}$	$D I V_{t-1}$	BB $_{t-1}$	TERM $_{t-1}$
Stat	9.157	5.743	2.518	2.029	1.040
p-value	0.000	0.000	0.000	0.003	0.414

	Panel C. 25 Size/reversal sorted portfolios				
	$F V I X$	$D E F_{t-1}$	$D I V_{t-1}$	TB $_{t-1}$	TERM $_{t-1}$
Stat	6.969	3.417	0.569	0.268	0.162
p-value	0.000	0.000	0.954	1.000	1.000

Panel D. 25 Size/profitability sorted portfolios

	$F V I X$	$D E F_{t-1}$	$D I V_{t-1}$	TB $_{t-1}$	TERM $_{t-1}$
Stat	8.311	3.602	3.051	2.342	0.497
p-value	0.000	0.000	0.000	0.000	0.981

Panel E. 25 Size/investment sorted portfolios

	Panel E. 25 Size/investment sorted portfolios				
	FVIX	$D E F_{t-1}$	$D I V_{t-1}$	TB $_{t-1}$	TERM $_{t-1}$
Stat	7.626	2.525	2.901	2.925	0.824
p-value	0.000	0.000	0.000	0.000	0.710

Note: The table reports the results of the test with the null hypothesis that the FVIX betas (from ICAPM) or the interaction terms of the other four variables ($D E F, D I V, T B$, and $T E R M$) with excess market return (from CCAPM) of all portfolios mentioned in the panel name are jointly zero. For example, the top right cell performs, in full 1986-2014 sample, 25 regressions of excess returns to each of the portfolios from five-by-five annual sorts on size and book-tomarket on excess market return and its pairwise interactions with $D E F_{t-1}, D I V_{t-1}, T B_{t-1}$, and $T E R M_{t-1}$, and tests if all 25 slopes on $(R M-R F) * T E R M_{t-1}$ are jointly zero. The returns to the portfolio sets, the detailed descriptions of the sorting variables, and the sorting procedure are available from Ken French's data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Table 7A. Fama-MacBeth Regressions with Insurance and Financial Industry Factors

	Panel A. 25 Size-BM Portfolios					
	FF5	FF5+INS	FF5+PL	FF5+Life	AFM	FF5+AFM
Intercept	1.156	1.245	1.267	1.160	1.249	1.085
t-stat	4.53	4.89	4.95	4.59	4.31	3.90
$R M-R F$ beta	-0.042	-0.144	-0.145	-0.023	-0.227	-0.008
t-stat	-0.13	-0.46	-0.46	-0.07	-0.67	-0.03
SMB beta	0.013	0.014	0.001	0.019	0.004	0.020
t-stat	0.08	0.08	0.01	0.11	0.02	0.10
HML beta	0.209	0.211	0.233	0.253	0.119	0.131
t-stat	1.06	1.08	1.21	1.28	0.61	0.68
RMW beta	0.182	0.220	0.241	0.202		0.143
t-stat	1.39	1.64	1.83	1.49		0.95
CMA beta	0.009	0.046	0.037	0.056		-0.018
t-stat	0.06	0.34	0.27	0.41		-0.13
INS beta		0.346				
t-stat		1.20				
PL beta			0.527			
t-stat			1.46			
Life beta				0.095		
t-stat				0.26		
FROE beta					-1.012	-0.651
t-stat					-1.69	-0.92
SPREAD beta					0.014	0.345
t-stat					0.06	1.40
R-sq	0.472	0.507	0.509	0.505	0.539	0.595

	FF5	Panel B. 30 Industry Portfolios			AFM	FF5+AFM
		FF5+INS	FF5+PL	FF5+Life		
Intercept	0.764	0.754	0.721	0.812	0.648	0.815
t-stat	2.50	2.53	2.48	2.67	1.93	2.64
$R M-R F$ beta	0.007	0.002	0.035	-0.042	0.242	-0.132
t-stat	0.02	0.01	0.10	-0.11	0.57	-0.34
SMB beta	0.335	0.380	0.350	0.388	0.119	0.462
t-stat	1.45	1.67	1.54	1.66	0.49	1.89
HML beta	0.289	0.241	0.295	0.268	0.188	0.190
t-stat	1.30	1.04	1.31	1.16	0.76	0.83
RMW beta	0.154	0.099	0.102	0.085		-0.017
t-stat	1.21	0.78	0.81	0.64		-0.12
CMA beta	-0.093	-0.023	-0.042	-0.097		0.025
t-stat	-0.54	-0.12	-0.23	-0.52		0.12
INS beta		0.025				
t-stat		0.07				
PL beta			0.204			
t-stat			0.42			
Life beta				-0.374		
t-stat				-0.77		
FROE beta					0.700	0.291
t-stat					1.02	0.35
SPREAD beta					-0.336	-0.066
t-stat					-1.25	-0.23
R-sq	0.355	0.401	0.403	0.398	0.361	0.445

Note: The table reports the results of cross-sectional portfolio regressions run each month (1986-2014). It presents the estimates from the second stage regression of portfolio returns on past betas and reports Fama-MacBeth (1973) t-statistics. FF5 is FamaFrench five-factor model in Fama and French (2015) and AFM is the model in Adrian, Friedman, and Muir (2016). In Panel A, the portfolios are five-by-five annual sorts on size and book-to-market, as in Fama and French (1993). In Panel B, the portfolios are the 30 industry portfolios from Fama and French (1997). INS (PL or Life) factor is the value-weighted returns to all publicly traded (P / L or life) insurance companies. The portfolio returns are downloaded from Ken French's data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The regressions run portfolio returns from $t+1$ on the portfolio-level betas from t. The betas are estimated for each individual firm using data from the previous 60 months, then trimmed at 1% and 99% to eliminate outliers, and then averaged across all firms within the portfolio.

Table 8A. GRS Test with Insurance Factors, Alternative Portfolio Sets

	Panel A. 25 Size/market-to-book sorted portfolios					
	FF5	FF5+INS	FF5+PL	FF5+Life	AFM	FF5+AFM
Stat	3.698	3.586	3.62	3.658	4.254	3.463
p-value	0.000	0.000	0.000	0.000	0.000	0.000

Panel B. 25 Size/momentum sorted portfolios

	FF5	FF5+INS	FF5+PL	FF5+Life	AFM	FF5+AFM
Stat	2.396	2.466	2.449	2.429	2.781	2.305
p-value	0.000	0.000	0.000	0.000	0.000	0.001

Panel C. 25 Size/reversal sorted portfolios

	FF5	FF5+INS	FF5+PL	FF5+Life	AFM	FF5+AFM
Stat	1.175	1.215	1.207	1.192	1.728	1.276
p-value	0.259	0.222	0.230	0.243	0.018	0.174

Panel D. 25 Size/profitability sorted portfolios

	FF5	FF5+INS	FF5+PL	FF5+Life	AFM	FF5+AFM
Stat	1.512	1.215	1.207	1.192	1.831	1.406
p-value	0.058	0.222	0.230	0.243	0.010	0.097

Panel E. 25 Size/investment sorted portfolios

	FF5	FF5+INS	FF5+PL	FF5+Life	AFM	FF5+AFM
Stat	2.348	2.254	2.281	2.324	3.073	2.214
p-value	0.000	0.001	0.001	0.000	0.000	0.001

Note: The table reports the results of the test with the null hypothesis that the alphas of all portfolios mentioned in the panel name are jointly zero in the model named in the column heading. For example, the top left cell performs, in full 1986-2014 sample, 25 regressions of excess returns to each of the portfolios from five-by-five annual sorts on size and book-to-market on excess market return, SMB, HML, RMW, and CMA (FF5), and tests if all 25 intercepts are jointly zero. The cell next to it adds the value-weighted return to all publicly traded insurance companies (INS factor) to FF5, re-estimates the 25 regressions and again tests if all intercepts are jointly zero. The next two cells in Panel A replace INS factor by value-weighted returns to P / L and life insurers ($P L$ factor and Life factor), redo the regressions, and perform the same test. The last two cells in Panel A replace FF5 in the first cell with AFM model and FF5 augmented with the additional AFM factors ($F R O E$ and $S P R E A D$), redo the regressions, and perform the same test. The returns to the portfolio sets, the detailed descriptions of the sorting variables, and the sorting procedure are available from Ken French's data library at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Table 9A. Other Types of Insurers

	Panel A. Accident and Health Insurers						Panel B. All Other Insurers			
	CAPM	FF5	AFM	CCAPM	ICAPM	CAPM	FF5	AFM	CCAPM	ICAPM
RM-RF	$\begin{aligned} & \hline 0.90^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & \hline 1.03^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & \hline 0.90^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & \hline 0.65^{* *} \\ & (0.27) \end{aligned}$	$\begin{aligned} & \hline-0.21 \\ & (0.25) \end{aligned}$	$\begin{aligned} & \hline 1.11^{* * *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & \hline 1.31^{* * *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & \hline 1.12^{* * *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & \hline 0.29 \\ & (0.33) \end{aligned}$	$\begin{aligned} & \hline 0.17 \\ & (0.32) \end{aligned}$
SMB		$\begin{aligned} & 0.05 \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.00 \\ & (0.08) \end{aligned}$				$\begin{aligned} & 0.28^{* * *} \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.31^{* * *} \\ & (0.10) \end{aligned}$		
HML		$\begin{aligned} & 0.55^{* * *} \\ & (0.12) \end{aligned}$	$\begin{aligned} & 0.04 \\ & (0.11) \end{aligned}$				$\begin{aligned} & 0.73^{* * *} \\ & (0.14) \end{aligned}$	$\begin{aligned} & 0.36 * * * \\ & (0.13) \end{aligned}$		
RMW		$\begin{aligned} & 0.50^{* * *} \\ & (0.12) \end{aligned}$					$\begin{aligned} & 0.45^{* * *} \\ & (0.15) \end{aligned}$			
CMA		$\begin{aligned} & -0.33^{* *} \\ & (0.17) \end{aligned}$					$\begin{aligned} & 0.17 \\ & (0.20) \end{aligned}$			
FROE			$\begin{aligned} & 0.04 \\ & (0.04) \end{aligned}$					$\begin{aligned} & 0.08^{*} \\ & (0.04) \end{aligned}$		
SPREAD			$\begin{aligned} & 0.62^{* * *} \\ & (0.09) \end{aligned}$					$\begin{aligned} & 0.73^{* * *} \\ & (0.11) \end{aligned}$		
FVIX					$\begin{aligned} & -0.84^{* * *} \\ & (0.18) \end{aligned}$					$\begin{aligned} & -0.70^{* * *} \\ & (0.23) \end{aligned}$
$D E F_{t-1} *(R M-R F)$				$\begin{aligned} & 0.14 \\ & (0.12) \end{aligned}$					$\begin{aligned} & 0.03 \\ & (0.15) \end{aligned}$	
$D I V_{t-1} *(R M-R F)$				$\begin{aligned} & 0.35^{* * *} \\ & (0.10) \end{aligned}$					$\begin{aligned} & 0.49 * * * \\ & (0.12) \end{aligned}$	
$T B_{t-1} *(R M-R F)$				$\begin{aligned} & -1.33^{* *} \\ & (0.56) \end{aligned}$					$\begin{aligned} & -1.17^{*} \\ & (0.69) \end{aligned}$	
$\operatorname{TERM}_{t-1} *(R M-R F)$				$\begin{aligned} & -0.22^{* *} \\ & (0.10) \end{aligned}$					$\begin{aligned} & 0.02 \\ & (0.13) \end{aligned}$	
Alpha	$\begin{aligned} & 0.16 \\ & (0.26) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.13 \\ & (0.25) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.24) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.26) \\ & \hline \end{aligned}$	$\begin{gathered} -0.24 \\ (0.27) \\ \hline \end{gathered}$	$\begin{aligned} & 0.03 \\ & (0.33) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.52^{*} \\ & (0.31) \\ & \hline \end{aligned}$	$\begin{gathered} -0.14 \\ (0.28) \\ \hline \end{gathered}$	$\begin{aligned} & -0.17 \\ & (0.32) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.30 \\ & (0.34) \\ & \hline \end{aligned}$
Adj R-sq	0.415	0.507	0.539	0.444	0.448	0.406	0.522	0.573	0.454	0.420
Obs	348	348	348	347	347	348	348	348	347	347

Panel C. Accident and Health Insurers Betas	Recessions	Expansion	Difference
Median as cutoff point	$1.049^{* * *}$	$0.773^{* * *}$	$0.276^{* * *}$
	(0.014)	(0.014)	(0.020)
Top and bottom 25\% as cutoff point	$1.123^{* * *}$	$0.684^{* * *}$	$0.439^{* * *}$
	(0.021)	(0.021)	(0.030)
Panel D. All Other Insurers Betas	Recessions	Expansion	Difference
Median as cutoff point	$1.332^{* * *}$	$0.942^{* * *}$	$0.390^{* * *}$
	(0.023)	(0.023)	(0.032)
Top and bottom 25\% as cutoff point	$1.407^{* * *}$	$0.788^{* * *}$	$0.618^{* * *}$
	(0.030)	(0.030)	(0.042)

Note: Panels A and B show the regression results based on CAPM, FF5, AFM, CCAPM, and ICAPM for Accident and Health insurers (A/H insurers, SIC codes 6320-6329) and All Other Insurers (any insurers that are not P/L insurers (6330-6331), life insurers (6310-6311), or A/H insurers). The insurance portfolio returns are value-weighted. $R M-R F$ is the market risk premium, $S M B$ is the difference in the returns of small and large portfolios, and $H M L$ is the difference in the returns of high and low book-to-market portfolios. RMW is the difference in the returns of robust and weak (high and low) operating profitability portfolios, and CMA is the difference in the returns of conservative and aggressive (low and high) investment portfolios. FROE is the return spread between high and low ROE financial firms, and $S P R E A D$ is the return spread between financial and non-financial firms. $D E F$ is default spread, DIV is dividend yield, TB is the 30-day Treasury bill rate, and TERM is term spread. FVIX is the factormimicking portfolio that mimics the changes in VIX index, which measures the implied volatility of the S\&P100 stock index options. Panels C and D label the month as expansion or recession based on whether the predicted market risk premium is below or above in-sample median (median as cutoff point), or whether the predicted market risk premium is in the bottom or top quartile of its in-sample distribution (top and bottom 25% as cutoff point). We measure expected market risk premium as the fitted part of the regression $R M_{t}-R F_{t}=b_{i 0}+b_{i 1} D E F_{t-1}+b_{i 2} D I V_{t-1}+b_{i 3} T E R M_{t-1}+b_{i 4} T B_{t-1}+\varepsilon$. Obs reports the number of months in the regressions. Standard errors appear in brackets. $* * *$, $* *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 10A. FVIX Exposures of 48 Fama-French (1997) Industry Portfolios

	Agric-RF	Food-RF	Soda-RF	Beer-RF	Smoke- RF	Toys-RF	Fun-RF	Books- RF	Hshld- RF	Clths-RF
RM-RF	0.689**	-0.685***	-0.462	-0.808***	-0.756**	0.750***	1.914***	0.998***	0.023	0.379
	(0.287)	(0.178)	(0.313)	(0.214)	(0.327)	(0.257)	(0.247)	(0.181)	(0.165)	(0.235)
FVIX	-0.064	-0.964***	-0.968***	-1.086***	-1.041***	-0.221	0.429**	-0.018	-0.519***	-0.538***
	(0.210)	(0.130)	(0.229)	(0.157)	(0.239)	(0.188)	(0.180)	(0.133)	(0.121)	(0.172)
Alpha	0.206	-0.012	-0.082	0.066	0.316	-0.244	0.251	-0.158	0.001	-0.143
	(0.309)	(0.192)	(0.337)	(0.231)	(0.351)	(0.277)	(0.265)	(0.195)	(0.178)	(0.252)
Adj R-sq Obs	0.292	0.446	0.310	0.393	0.209	0.486	0.632	0.646	0.529	0.562
	347	347	347	347	347	347	347	347	347	347
	Hlth-RF	MedEq- $\mathbf{R F}$	Drugs- RF	Chems- $\mathbf{R F}$	Rubbr- RF	Txtls-RF	BldMt- $\mathbf{R F}$	Cnstr-RF	Steel-RF	FabPr- $\mathbf{R F}$
RM-RF	0.404	0.911***	-0.161	0.787***	0.974***	1.313***	0.700***	1.143***	2.667***	1.580***
	(0.286)	(0.181)	(0.184)	(0.183)	(0.204)	(0.323)	(0.204)	(0.240)	(0.255)	(0.282)
FVIX	-0.332	0.042	-0.675***	-0.190	-0.065	0.086	-0.331**	-0.048	0.914***	0.383*
	(0.209)	(0.132)	(0.135)	(0.133)	(0.149)	(0.236)	(0.149)	(0.175)	(0.187)	(0.206)
Alpha	-0.079	0.303	0.144	0.040	0.074	0.036	-0.116	-0.151	0.022	-0.072
	(0.308)	(0.195)	(0.198)	(0.196)	(0.220)	(0.348)	(0.219)	(0.258)	(0.275)	(0.303)
Adj R-sq	0.336	0.561	0.499	0.652	0.607	0.440	0.645	0.593	0.657	0.454
Obs	347	347	347	347	347	347	347	347	347	347
	Mach-RF	ElcEq- $\mathbf{R F}$	Autos- RF	Aero-RF	Ships-RF	Guns-RF	Gold-RF	Mines- RF	Coal-RF	Oil-RF
RM-RF	1.632***	0.968***	1.532***	0.030	0.690**	-0.448	0.838	1.514***	2.132***	0.194
	(0.189)	(0.177)	(0.278)	(0.217)	(0.316)	(0.297)	(0.568)	(0.330)	(0.530)	(0.226)
FVIX	0.275**	-0.205	0.198	-0.739***	-0.275	-0.772***	0.328	0.315	0.755*	-0.387**
	(0.138)	(0.129)	(0.203)	(0.158)	(0.231)	(0.217)	(0.416)	(0.241)	(0.388)	(0.165)
Alpha	0.101	0.071	-0.142	-0.167	-0.078	0.118	0.112	0.327	0.561	0.145
	(0.203)	(0.190)	(0.299)	(0.233)	(0.341)	(0.319)	(0.612)	(0.355)	(0.571)	(0.243)
Adj R-sq	0.723	0.739	0.544	0.569	0.390	0.201	0.024	0.388	0.209	0.367
Obs	347	347	347	347	347	347	347	347	347	347
	Util-RF	Telcm- RF	PerSv- RF	BusSv- $\mathbf{R F}$	Comps- RF	Chips- $\mathbf{R F}$	LabEq- $\mathbf{R F}$	Paper- RF	Boxes- RF	Trans- RF
RM-RF	-0.358*	0.543***	0.382	2.100***	2.805***	2.795***	2.469***	0.415**	0.425*	0.313*
	(0.183)	(0.162)	(0.234)	(0.167)	(0.257)	(0.241)	(0.201)	(0.185)	(0.228)	(0.175)
FVIX	-0.583***	-0.282**	-0.443***	0.619***	1.086***	0.999***	0.882***	-0.383***	-0.410**	-0.466***
	(0.134)	(0.118)	(0.171)	(0.122)	(0.188)	(0.176)	(0.147)	(0.135)	(0.167)	(0.128)
Alpha	0.082	-0.095	-0.387	0.325*	0.316	0.375	0.309	-0.092	0.003	-0.099
	(0.197)	(0.174)	(0.251)	(0.180)	(0.277)	(0.260)	(0.216)	(0.199)	(0.245)	(0.189)
Adj R-sq Obs	0.260	0.651	0.503	0.773	0.629	0.688	0.714	0.593	0.514	0.625
	347	347	347	347	347	347	347	347	347	347
	WhlslRF	Rtail-RF	Meals- RF	Banks- RF	Insur-RF	RIEst-RF	Fin-RF	OtherRF		
RM-RF	0.724***	0.374**	-0.106	0.153	-0.226	1.750***	1.754***	0.977***		
	(0.142)	(0.167)	(0.177)	(0.201)	(0.174)	(0.288)	(0.172)	(0.238)		
FVIX	-0.146	-0.451***	-0.713***	-0.690***	-0.866***	0.523**	0.325**	-0.101		
	(0.104)	(0.122)	(0.129)	(0.147)	(0.127)	(0.210)	(0.125)	(0.174)		
Alpha	-0.079	-0.014	-0.099	-0.332	-0.327*	-0.229	0.166	-0.483*		
	(0.153)	(0.180)	(0.190)	(0.217)	(0.187)	(0.310)	(0.185)	(0.257)		
Adj R-sq	0.707	0.666	0.583	0.629	0.639	0.439	0.774	0.555		
Obs	347	347	347	347	347	347	347	347		

Note: This table reports the ICAPM with FVIX regression results for all 48 industries defined by Fama-French (1997), available on http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_48_ind_port.html. $R M-R F$ is the market risk premium, and FVIX is the factor-mimicking portfolio that mimics the changes in VIX index. Obs reports the number of months in the regressions. Standard errors appear in brackets. $* * *, * *$, and $*$ denote statistical significance at the 1, 5, and 10 percent levels, respectively.

Table 11A. Factor-Mimicking Regressions of CatLoss and the CombRat

Historical Sensitivity Quintiles	(1) C	(2)	Historical Sensitivity Quintiles	(3)	(4)
		CatLoss			Combrat
	VW	EW		VW	EW
Quint1-RF	$\begin{aligned} & \hline 0.007 \\ & (0.091) \end{aligned}$	$\begin{aligned} & \hline 0.045 \\ & (0.128) \end{aligned}$	Quint1-RF	$\begin{aligned} & \hline 0.287^{*} \\ & (0.170) \end{aligned}$	$\begin{aligned} & \hline-0.067 \\ & (0.277) \end{aligned}$
Quint2-RF	$\begin{aligned} & -0.012 \\ & (0.131) \end{aligned}$	$\begin{aligned} & -0.134 \\ & (0.231) \end{aligned}$	Quint2-RF	$\begin{aligned} & 0.011 \\ & (0.217) \end{aligned}$	$\begin{aligned} & 0.654 \\ & (0.540) \end{aligned}$
Quint3-RF	$\begin{aligned} & -0.016 \\ & (0.124) \end{aligned}$	$\begin{aligned} & -0.028 \\ & (0.235) \end{aligned}$	Quint3-RF	$\begin{gathered} -0.311 \\ (0.282) \end{gathered}$	$\begin{aligned} & -0.369 \\ & (0.602) \end{aligned}$
Quint4-RF	$\begin{aligned} & 0.004 \\ & (0.141) \end{aligned}$	$\begin{aligned} & 0.189 \\ & (0.278) \end{aligned}$	Quint4-RF	$\begin{aligned} & 0.101 \\ & (0.266) \end{aligned}$	$\begin{aligned} & -0.276 \\ & (0.582) \end{aligned}$
Quint5-RF	$\begin{gathered} -0.013 \\ (0.077) \end{gathered}$	$\begin{aligned} & -0.084 \\ & (0.125) \end{aligned}$	Quint5-RF	$\begin{gathered} -0.136 \\ (0.157) \end{gathered}$	$\begin{aligned} & 0.024 \\ & (0.234) \end{aligned}$
Constant	$\begin{aligned} & 1.959 * * * \\ & (0.319) \\ & \hline \end{aligned}$	$\begin{aligned} & 1.952^{* * *} \\ & (0.339) \\ & \hline \end{aligned}$	Constant	$\begin{aligned} & 0.005 \\ & (0.660) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.076 \\ & (0.708) \\ & \hline \end{aligned}$
Adj. R-sq	-0.044	-0.041	Adj. R-sq	-0.013	-0.034
Obs	104	104	Obs	104	104

Note: This table performs the standard factor-mimicking regression with inflation-adjusted catastrophic losses (CatLoss) (in columns 1 and 2) or change in combined ratio (4 CombRat) (in columns 3 and 4) on the left-hand side and excess returns to value-weighted (VW) and equal-weighted (EW) quintile portfolios based on the historical stock sensitivity to catastrophic losses and change in combined ratio, respectively. $R F$ is risk-free rate. Standard errors appear in brackets. $* * *, * *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 12A. CatLoss Mimicking Portfolio: Alphas and Betas

	(1) CAPM Pan	(2) FF3 A. Value-	(3) Carhart eighted R		(5) CAPM Pan	(6) FF3 B. Equal-	(7) Carhart eighted R	
RM-RF	$\begin{aligned} & \hline-0.029 * * * \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.030^{* * *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & -0.029^{* * *} \\ & (0.000) \end{aligned}$	$\begin{aligned} & \hline-0.030^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & \hline-0.017^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.017^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.016^{* * *} \\ & (0.002) \end{aligned}$	$\begin{aligned} & -0.016^{* * *} \\ & (0.002) \end{aligned}$
SMB		$\begin{aligned} & 0.003^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.003^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & 0.003^{* * *} \\ & (0.001) \end{aligned}$		$\begin{aligned} & -0.012^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.012^{* * *} \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.013^{* * *} \\ & (0.003) \end{aligned}$
HML		$\begin{aligned} & -0.004^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.004^{* * *} \\ & (0.001) \end{aligned}$	$\begin{aligned} & -0.003^{* * *} \\ & (0.001) \end{aligned}$		$\begin{aligned} & -0.007 * * * \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.007 * * * \\ & (0.003) \end{aligned}$	$\begin{aligned} & -0.010^{* * *} \\ & (0.004) \end{aligned}$
Mom			$\begin{aligned} & 0.003^{* * *} \\ & (0.000) \end{aligned}$				$\begin{aligned} & 0.001 \\ & (0.002) \end{aligned}$	
RMW				$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$				$\begin{aligned} & -0.001 \\ & (0.004) \end{aligned}$
CMA				$\begin{aligned} & -0.002 \\ & (0.001) \end{aligned}$				$\begin{aligned} & 0.008 \\ & (0.005) \end{aligned}$
Alpha	$\begin{aligned} & -0.003 \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.004^{* *} \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.001 \\ & (0.002) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.008 \\ & (0.008) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.005 \\ & (0.008) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.006 \\ & (0.008) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.008) \\ & \hline \end{aligned}$
Adj. R-sq	0.909	0.927	0.936	0.927	0.214	0.272	0.270	0.274
Obs	312	312	312	312	312	312	312	312

Note: This table reports the alphas and betas of the factor-mimicking portfolios on inflation-adjusted catastrophic losses in the CAPM, FF3, Carhart, and FF5 models. The factor-mimicking portfolios in Panels A and B are the fitted part from the regressions in columns 1 and 2 in Table 11A less the constant, respectively. $R M-R F$ is the market risk premium, $S M B$ is the difference in the returns of small and large portfolios, $H M L$ is the difference in the returns of high and low book-to-market portfolios, $R M W$ is the difference in the returns of robust and weak (high and low) operating profitability portfolios, CMA is the difference in the returns of conservative and aggressive (low and high) investment portfolios, and Mom is the return differential from investing long in past winners and shorting past losers. Standard errors appear in brackets. $* * *, * *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 13A. Δ CombRat Mimicking Portfolio: Alphas and Betas

	(1) CAPM Pa	(2) FF3 A. Value	(3) Carhart eighted R		(5) CAPM Pa	(6) FF3 B. Equal	(7) Carhart eighted R	
RM-RF	$\begin{aligned} & 0.012 \\ & (0.009) \end{aligned}$	$\begin{aligned} & 0.002 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.009) \end{aligned}$	$\begin{aligned} & -0.016 \\ & (0.010) \end{aligned}$	$\begin{aligned} & \hline-0.010^{*} \\ & (0.005) \end{aligned}$	$\begin{aligned} & \hline-0.011^{* *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.015^{* *} \\ & (0.006) \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.006) \end{aligned}$
SMB		$\begin{aligned} & 0.049^{* * *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.052^{* * *} \\ & (0.012) \end{aligned}$	$\begin{aligned} & 0.038^{* * *} \\ & (0.014) \end{aligned}$		$\begin{aligned} & 0.020^{* * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.021^{* * *} \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.024^{* * *} \\ & (0.008) \end{aligned}$
HML		$\begin{aligned} & -0.015 \\ & (0.013) \end{aligned}$	$\begin{aligned} & -0.031^{* *} \\ & (0.013) \end{aligned}$	$\begin{aligned} & 0.034^{*} \\ & (0.019) \end{aligned}$		$\begin{aligned} & 0.012 \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.009 \\ & (0.008) \end{aligned}$	$\begin{aligned} & 0.008 \\ & (0.011) \end{aligned}$
Mom			$\begin{aligned} & -0.045^{* * *} \\ & (0.008) \end{aligned}$				$\begin{aligned} & -0.011^{* *} \\ & (0.005) \end{aligned}$	
RMW				$\begin{aligned} & -0.052^{* * *} \\ & (0.020) \end{aligned}$				$\begin{aligned} & 0.013 \\ & (0.012) \end{aligned}$
CMA				$\begin{aligned} & -0.088^{* * *} \\ & (0.027) \end{aligned}$				$\begin{aligned} & 0.002 \\ & (0.016) \end{aligned}$
Alpha	$\begin{aligned} & -0.051 \\ & (0.040) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.049 \\ & (0.039) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.009 \\ & (0.038) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.002 \\ & (0.041) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.007 \\ & (0.023) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.013 \\ & (0.023) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.003 \\ & (0.023) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.019 \\ & (0.024) \\ & \hline \end{aligned}$
Adj. R-sq	0.002	0.049	0.134	0.086	0.008	0.029	0.040	0.027
Obs	312	312	312	312	312	312	312	312

Note: This table reports the alphas and betas of the factor-mimicking portfolios on change in combined ratio in the CAPM, FF3, Carhart, and FF5 models. The factor-mimicking portfolios in Panels A and B are the fitted part from the regressions in columns 3 and 4 in Table 11A less the constant, respectively. $R M-R F$ is the market risk premium, $S M B$ is the difference in the returns of small and large portfolios, $H M L$ is the difference in the returns of high and low book-to-market portfolios, RMW is the difference in the returns of robust and weak (high and low) operating profitability portfolios, CMA is the difference in the returns of conservative and aggressive (low and high) investment portfolios, and Mom is the return differential from investing long in past winners and shorting past losers. Standard errors appear in brackets. $* * *, * *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 14A. Underwriting Cycles in the Intertemporal CAPM (CatLoss)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
RM-RF	$\begin{aligned} & \hline 0.87 * * * \\ & (0.05) \end{aligned}$	$\begin{aligned} & \hline 0.04 \\ & (0.14) \end{aligned}$	$\begin{aligned} & \hline 0.87 * * * \\ & (0.05) \end{aligned}$	$\begin{aligned} & \hline-0.27 \\ & (0.17) \end{aligned}$	$\begin{aligned} & \hline-0.64^{* * *} \\ & (0.19) \end{aligned}$	$\begin{aligned} & \hline-0.27 \\ & (0.17) \end{aligned}$	$\begin{aligned} & 1.07 * * * \\ & (0.04) \end{aligned}$	$\begin{aligned} & \hline 0.88^{* * *} \\ & (0.14) \end{aligned}$	$\begin{aligned} & 1.07 * * * \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.52^{* * *} \\ & (0.18) \end{aligned}$	$\begin{aligned} & \hline 0.41^{*} \\ & (0.21) \end{aligned}$	$\begin{aligned} & 0.52^{* * *} \\ & (0.18) \end{aligned}$
SMB							$\begin{aligned} & -0.12^{* *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.11^{*} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.12^{* *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.08 \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.07 \\ & (0.06) \end{aligned}$	$\begin{aligned} & -0.08 \\ & (0.06) \end{aligned}$
HML							$\begin{aligned} & 0.52^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.50^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.52^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.54^{* * *} \\ & (0.07) \end{aligned}$	$\begin{aligned} & 0.52^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.54^{* * *} \\ & (0.08) \end{aligned}$
RMW							$\begin{aligned} & 0.32 * * * \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.31^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.32^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.22^{* * *} \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.22 * * * \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.22 * * * \\ & (0.08) \end{aligned}$
CMA							$\begin{aligned} & 0.07 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.06 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.07 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.00 \\ & (0.11) \end{aligned}$	$\begin{aligned} & -0.00 \\ & (0.11) \end{aligned}$	$\begin{aligned} & 0.00 \\ & (0.11) \end{aligned}$
FVIX				$\begin{aligned} & -0.87 * * * \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.68^{* * *} \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.87 * * * \\ & (0.13) \end{aligned}$				$\begin{aligned} & -0.39^{* * *} \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.37 * * * \\ & (0.13) \end{aligned}$	$\begin{aligned} & -0.39^{* * *} \\ & (0.13) \end{aligned}$
FCatLoss		$\begin{aligned} & -29.05^{* * *} \\ & (4.72) \end{aligned}$			$\begin{aligned} & -21.39^{* * *} \\ & (4.76) \end{aligned}$			$\begin{aligned} & -6.31 \\ & (4.42) \end{aligned}$			$\begin{aligned} & -4.44 \\ & (4.42) \end{aligned}$	
CatLoss			$\begin{aligned} & 0.01 \\ & (0.07) \end{aligned}$			$\begin{aligned} & 0.04 \\ & (0.06) \end{aligned}$			$\begin{aligned} & 0.01 \\ & (0.05) \end{aligned}$			$\begin{aligned} & 0.01 \\ & (0.05) \end{aligned}$
Alpha	$\begin{aligned} & 0.15 \\ & (0.20) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.19) \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.23) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.28 \\ & (0.19) \end{aligned}$	$\begin{aligned} & -0.26 \\ & (0.19) \end{aligned}$	$\begin{aligned} & -0.35 \\ & (0.23) \end{aligned}$	$\begin{aligned} & -0.20 \\ & (0.16) \end{aligned}$	$\begin{aligned} & -0.20 \\ & (0.16) \end{aligned}$	$\begin{aligned} & -0.21 \\ & (0.20) \end{aligned}$	$\begin{gathered} -0.33^{*} \\ (0.17) \\ \hline \end{gathered}$	$\begin{aligned} & -0.32^{*} \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.35^{*} \\ & (0.20) \\ & \hline \end{aligned}$
Ad. R-sq	0.546	0.594	0.544	0.603	0.626	0.602	0.719	0.720	0.718	0.727	0.727	0.726
Obs.	312	312	312	312	312	312	312	312	312	312	312	312

Note: This table reports the regression results including the catastrophic losses factor into the three models from Tables 2 (CAPM, FF5, ICAPM) and FF5 augmented with FVIX (FF6) for all the publicly traded insurance companies. The results of estimating the four models are in columns 1, 4, 7, and 10, respectively. The catastrophic losses factor is added to the models in columns $2,5,8$, and 11 . In columns $3,6,9$, and 12 factors is replaced by the variable it mimics (inflationadjusted catastrophic losses). The left-hand side variable is the value-weighted returns to all insurance companies. $R M-R F$ is the market risk premium, $S M B$ is the difference in the returns of small and large portfolios, $H M L$ is the difference in the returns of high and low book-to-market portfolios, $R M W$ is the difference in the returns of robust and weak (high and low) operating profitability portfolios, and CMA is the difference in the returns of conservative and aggressive (low and high) investment portfolios. FVIX is the factor-mimicking portfolio that mimics the changes in VIX index, which measures the implied volatility of the S\&P100 stock index options. FCatLoss is the factor-mimicking portfolio that mimics the inflation-adjusted catastrophic losses, namely, the catastrophic losses factor. CatLoss is the variable that FCatLoss mimics, which is the inflation-adjusted catastrophic losses. Since FCatLoss and CatLoss are available from 1989, all regressions are from 1989 to 2014. Obs reports the number of months in the regressions. Standard errors appear in brackets. $* * *$, $* *$, and $*$ denote statistical significance at the 1 , 5 , and 10 percent levels, respectively.

Table 15A. Cost of Equity Estimates

Panel A. All Insurers

Year	COE Estimates						Sum-beta COE Estimates					
	CAPM (1)	FF5 (2)	CCAPM (3)	ICAPM (4)	AFM (5)	FF6 (6)	CAPM (7)	FF5 (8)	$\begin{aligned} & \hline \text { CCAPM } \\ & (9) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { ICAPM } \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AFM } \\ (11) \end{gathered}$	$\begin{aligned} & \hline \text { FF6 } \\ & \text { (12) } \\ & \hline \end{aligned}$
1997	11.994	12.216	5.951	16.718	11.672	13.263	11.945	12.506	5.901	17.780	10.727	10.808
1998	12.779	14.289	4.672	17.523	12.873	14.938	13.080	16.887	4.651	20.305	13.330	15.997
1999	12.419	18.952	3.086	20.442	13.859	20.236	12.977	21.254	2.904	22.000	14.538	21.260
2000	11.906	20.945	4.439	26.400	15.825	23.420	12.808	21.380	4.451	26.495	17.029	21.555
2001	9.657	21.487	3.893	21.658	16.769	23.516	9.851	22.530	3.795	21.426	17.717	22.466
2002	8.369	19.120	2.617	17.007	14.797	19.800	8.647	20.089	2.591	17.214	15.946	19.650
2003	7.230	17.214	5.090	14.783	14.385	17.552	7.445	16.456	5.482	15.506	15.795	16.510
2004	6.505	15.434	6.109	15.399	13.353	16.706	6.848	13.771	5.140	16.528	14.587	14.532
2005	6.038	12.966	3.958	10.190	12.234	13.540	6.430	12.023	3.251	11.716	12.751	12.176
2006	7.324	10.693	4.437	8.481	8.772	10.934	7.824	12.827	4.189	9.636	10.208	12.199
2007	9.165	11.261	4.123	10.402	10.409	12.186	9.422	14.428	4.134	11.424	11.410	13.918
2008	10.291	10.032	2.994	11.136	9.615	10.574	10.571	10.626	2.985	11.407	8.915	10.381
2009	11.343	12.360	18.136	12.287	11.708	12.472	11.267	13.926	18.246	12.486	9.486	12.868
2010	10.704	8.470	28.765	11.064	9.839	8.895	10.644	10.398	28.963	10.718	8.669	10.326
2011	9.787	6.779	11.648	10.199	8.780	7.412	9.625	8.443	12.118	9.525	7.664	8.787
2012	8.852	5.627	8.532	9.229	8.030	6.224	8.644	7.555	8.778	8.504	6.872	7.846
2013	8.453	5.057	7.486	8.787	7.659	5.767	8.294	6.971	8.407	7.913	8.178	7.243
2014	7.152	5.017	6.520	7.314	6.296	5.377	6.530	5.678	6.002	5.365	7.029	5.677
Avg.	9.443	12.662	7.359	13.834	11.493	13.490	9.603	13.764	7.333	14.219	11.714	13.567

Panel B. P/L Insurers

Year	COE Estimates						Sum-beta COE Estimates					
	CAPM (1)	$\begin{gathered} \text { FF5 } \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { CCAPM } \\ & \text { (3) } \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { ICAPM } \\ & \hline(4) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { AFM } \\ & \text { (5) } \\ & \hline \end{aligned}$	FF6 (6)	$\begin{gathered} \text { CAPM } \\ \text { (7) } \\ \hline \end{gathered}$	FF5 (8)	$\begin{aligned} & \text { CCAPM } \\ & (9) \\ & \hline \end{aligned}$	$\begin{gathered} \text { ICAPM } \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AFM } \\ \text { (11) } \\ \hline \end{gathered}$	$\begin{aligned} & \text { FF6 } \\ & \text { (12) } \end{aligned}$
1997	10.648	9.464	5.678	18.315	9.929	11.888	9.574	8.651	5.578	16.618	7.805	9.625
1998	11.805	11.888	4.689	19.712	11.531	14.399	11.332	13.566	4.662	19.785	11.485	14.298
1999	11.324	18.926	3.109	22.797	13.192	22.213	11.325	20.335	2.918	21.473	13.270	20.721
2000	10.988	21.363	4.444	27.601	16.926	24.995	11.957	20.786	4.468	25.172	16.972	20.636
2001	8.989	21.305	3.985	22.197	17.326	23.918	9.510	22.005	3.420	20.393	18.050	21.795
2002	7.822	17.832	2.692	17.367	14.632	18.765	8.246	18.160	2.595	16.372	15.055	17.480
2003	6.864	16.262	5.483	15.366	14.428	16.772	7.094	14.368	6.407	14.926	14.478	14.516
2004	6.364	14.410	5.854	16.533	13.368	16.293	6.824	11.777	4.974	16.641	13.496	13.201
2005	5.956	12.300	3.179	11.214	11.715	13.289	6.121	10.437	2.555	11.461	10.884	10.692
2006	7.518	9.825	4.087	9.605	7.939	10.334	7.390	12.191	4.031	8.941	10.241	11.048
2007	9.521	11.564	4.282	11.594	10.770	12.267	9.338	15.360	4.129	11.457	11.814	14.154
2008	9.465	10.251	3.040	10.695	8.332	10.766	9.443	11.125	2.914	10.220	7.270	10.640
2009	9.228	10.666	16.867	10.099	7.942	10.756	8.854	9.055	17.073	8.542	6.037	9.114
2010	8.421	5.710	22.910	8.464	6.319	5.937	8.107	4.692	21.954	6.269	4.495	4.763
2011	7.437	3.665	9.419	7.593	5.030	4.082	6.982	2.888	9.207	4.871	3.349	2.652
2012	6.528	2.523	7.077	6.759	4.404	2.926	6.039	1.880	6.700	3.939	2.557	1.552
2013	6.076	2.334	6.179	6.186	4.405	2.721	5.581	1.409	6.808	2.579	3.795	0.569
2014	5.085	3.323	5.264	6.857	4.362	4.603	3.839	3.375	4.605	3.342	4.526	3.458
Avg.	8.336	11.312	6.569	13.831	10.142	12.607	8.198	11.225	6.389	12.389	9.754	11.162

Panel C. Life Insurers

Year	COE Estimates						Sum-beta COE Estimates					
	$\begin{aligned} & \text { CAPM } \\ & (1) \end{aligned}$	$\begin{gathered} \hline \text { FF5 } \\ \text { (2) } \\ \hline \end{gathered}$	$\begin{gathered} \text { CCAPM } \\ (3) \\ \hline \end{gathered}$	$\begin{gathered} \text { ICAPM } \\ (4) \\ \hline \end{gathered}$	AFM (5)	FF6 (6)	CAPM (7)	FF5 (8)	$\begin{aligned} & \hline \text { CCAPM } \\ & (9) \\ & \hline \end{aligned}$	$\begin{gathered} \text { ICAPM } \\ (10) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { AFM } \\ (11) \end{gathered}$	$\begin{aligned} & \text { FF6 } \\ & \text { (12) } \\ & \hline \end{aligned}$
1997	12.664	19.831	6.094	20.394	15.631	21.997	13.636	22.230	6.209	25.200	15.612	22.828
1998	12.954	20.359	4.687	20.298	16.195	21.538	14.304	24.044	4.648	27.910	16.517	25.598
1999	12.745	18.533	3.127	18.932	14.808	18.359	14.436	22.383	2.664	26.066	15.422	24.864
2000	12.307	18.656	4.420	24.111	13.600	19.274	13.331	21.076	4.379	28.194	15.208	23.378
2001	10.415	19.815	3.499	20.132	15.095	20.536	10.415	22.570	3.879	22.259	16.841	22.799
2002	9.357	19.151	2.895	16.202	15.393	19.366	9.914	22.796	2.880	18.552	18.721	22.790
2003	8.476	17.795	6.139	14.330	15.370	17.824	9.161	20.235	5.127	17.229	19.848	20.137
2004	7.727	16.669	7.151	14.683	15.001	16.868	8.281	17.026	5.537	17.885	18.581	16.765
2005	7.223	13.389	5.656	9.315	13.863	13.130	8.337	14.921	4.957	13.619	17.103	15.027
2006	8.262	11.207	4.734	7.388	11.009	10.709	10.231	12.375	4.058	11.906	13.500	12.815
2007	9.571	10.252	4.177	8.243	10.219	9.703	10.873	10.547	4.462	11.391	12.797	10.320
2008	11.935	10.693	3.060	11.230	13.788	10.634	12.384	7.958	3.223	11.174	14.088	7.750
2009	17.882	18.525	24.145	17.902	22.526	18.672	19.255	27.730	24.827	23.168	21.371	23.803
2010	17.920	15.643	53.297	17.627	19.897	16.433	19.367	23.457	62.724	22.755	22.162	22.898
2011	16.981	13.658	20.048	16.584	18.462	14.664	18.069	18.928	23.070	21.098	20.171	21.311
2012	16.148	11.488	13.989	15.503	17.449	12.479	16.987	17.134	14.931	19.550	19.460	19.538
2013	16.335	10.883	11.819	16.215	15.526	12.432	17.583	18.292	12.467	22.503	19.373	22.358
2014	13.639	10.041	10.093	9.267	11.498	7.761	14.288	13.135	7.587	9.290	14.357	13.021
Avg.	12.363	15.366	10.502	15.464	15.296	15.688	13.381	18.713	10.979	19.431	17.285	19.333

Note: This table shows the value-weighted cost of equity (COE) estimates for all the publicly traded insurers, P/L insurers, and life insurers based on CAPM, FF5, CCAPM, ICAPM, AFM, and FF6 from 1997 to 2014 in columns 16. Columns $7-12$ report the COE estimates based on the sum-beta approach. For each year, the annual COE estimate is the cumulative monthly COE estimates from January to December of that year. Avg. shows the average COE across the full sample period from 1997 to 2014.

Table 16A. Asset-Pricing Model Performance Comparison using Equal-Weighted Insurer Returns

	Panel A. All Insurers				Panel B. P/L Insurers				Panel C. Life Insurers			
	CAPM	FF5	CCAPM	ICAPM	CAPM	FF5	CCAPM	ICAPM	CAPM	FF5	CCAPM	ICAPM
RM-RF	$\begin{aligned} & 0.81^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.89 * * * \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.64^{* * *} \\ & (0.15) \end{aligned}$	$\begin{aligned} & 0.39 * * \\ & (0.15) \end{aligned}$	$\begin{aligned} & 0.71^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.80^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.32^{* *} \\ & (0.15) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.14) \end{aligned}$	$\begin{aligned} & 1.01^{* * *} \\ & (0.05) \end{aligned}$	$\begin{aligned} & 1.10^{* * *} \\ & (0.05) \end{aligned}$	$\begin{aligned} & 0.87 * * * \\ & (0.20) \end{aligned}$	$\begin{aligned} & 0.80^{* * *} \\ & (0.23) \end{aligned}$
SMB		$\begin{aligned} & 0.43^{* * *} \\ & (0.04) \end{aligned}$				$\begin{aligned} & 0.30^{* * *} \\ & (0.05) \end{aligned}$				$\begin{aligned} & 0.46^{* * *} \\ & (0.07) \end{aligned}$		
HML		$\begin{aligned} & 0.59^{* * *} \\ & (0.05) \end{aligned}$				$\begin{aligned} & 0.46^{* * *} \\ & (0.06) \end{aligned}$				$\begin{aligned} & 0.99^{* * *} \\ & (0.09) \end{aligned}$		
RMW		$\begin{aligned} & 0.17 * * * \\ & (0.06) \end{aligned}$				$\begin{aligned} & 0.19 * * * \\ & (0.06) \end{aligned}$				$\begin{aligned} & -0.05 \\ & (0.09) \end{aligned}$		
CMA		$\begin{aligned} & 0.01 \\ & (0.08) \end{aligned}$				$\begin{aligned} & 0.07 \\ & (0.09) \end{aligned}$				$\begin{aligned} & -0.10 \\ & (0.13) \end{aligned}$		
FVIX				$\begin{aligned} & -0.31^{* * *} \\ & (0.11) \end{aligned}$				$\begin{aligned} & -0.50^{* * *} \\ & (0.11) \end{aligned}$				$\begin{aligned} & -0.16 \\ & (0.17) \end{aligned}$
$D E F_{t-1} *(R M-R F)$			$\begin{aligned} & 0.09 \\ & (0.07) \end{aligned}$				$\begin{aligned} & -0.02 \\ & (0.07) \end{aligned}$				$\begin{aligned} & 0.69 * * * \\ & (0.09) \end{aligned}$	
$D I V_{t-1} *(R M-R F)$			$\begin{aligned} & 0.25^{* * *} \\ & (0.06) \end{aligned}$				$\begin{aligned} & 0.26^{* * *} \\ & (0.06) \end{aligned}$				$\begin{aligned} & 0.21^{* * *} \\ & (0.07) \end{aligned}$	
$T B_{t-1} *$ (RM-RF)			$\begin{aligned} & -1.33^{* * *} \\ & (0.32) \end{aligned}$				$\begin{aligned} & -0.59^{*} \\ & (0.32) \end{aligned}$				$\begin{aligned} & -2.52^{* * *} \\ & (0.41) \end{aligned}$	
$\operatorname{TERM}_{t-1} *(R M-R F)$			$\begin{aligned} & -0.07 \\ & (0.06) \end{aligned}$				$\begin{aligned} & -0.00 \\ & (0.06) \end{aligned}$				$\begin{aligned} & -0.24^{* * *} \\ & (0.08) \end{aligned}$	
Alpha	$\begin{aligned} & 0.29 * \\ & (0.16) \end{aligned}$	$\begin{aligned} & -0.01 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.17 \\ & (0.15) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.13 \\ & (0.16) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25^{*} \\ & (0.15) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.03 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.12 \\ & (0.15) \end{aligned}$	$\begin{aligned} & -0.00 \\ & (0.16) \end{aligned}$	$\begin{aligned} & 0.20 \\ & (0.24) \end{aligned}$	$\begin{aligned} & -0.09 \\ & (0.19) \end{aligned}$	$\begin{aligned} & 0.14 \\ & (0.19) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.25) \end{aligned}$
Adj R-sq	0.613	0.805	0.675	0.622	0.560	0.704	0.606	0.592	0.518	0.720	0.712	0.518
Obs	348	348	347	347	348	348	347	347	348	348	347	347

Note: This table shows the regression results based on CAPM, FF5, CCAPM, and ICAPM for all the publicly traded insurance companies, P/L insurers, and life insurers. The insurance portfolio returns are equal-weighted. $R M-R F$ is the market risk premium, $S M B$ is the difference in the returns of small and large portfolios, $H M L$ is the difference in the returns of high and low book-to-market portfolios, $R M W$ is the difference in the returns of robust and weak (high and low) operating profitability portfolios, and CMA is the difference in the returns of conservative and aggressive (low and high) investment portfolios. We use four macroeconomic/business cycle variables as conditioning variables in the CCAPM, which include default spread ($D E F$), defined as the yield spread between Moody's Baa and Aaa corporate bonds, dividend yield ($D I V$), defined as the sum of dividend payments to all CRSP stocks over the previous 12 months divided by the current value of the CRSP value-weighted index, Treasury bill rate (TB), which is the 30-day T-bill rate, and term spread (TERM), defined as the yield spread between the ten-year and the one-year T-bond. In the ICAPM, FVIX is the factormimicking portfolio that mimics the changes in VIX index, which measures the implied volatility of the S\&P100 stock index options. Obs reports the number of months in the regressions. Standard errors appear in brackets. $* * *, * *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 17A. Average CCAPM Betas of Insurance Companies in Expansions and Recessions using Equal-Weighted Insurer Returns

Panel A. All Insurers	Recessions	Expansion	Difference
Median as cutoff point	$0.932^{* * *}$	$0.704^{* * *}$	$0.228^{* * *}$
	(0.015)	(0.015)	(0.021)
Top and bottom 25\% as cutoff point	$1.021^{* * *}$	$0.647^{* * *}$	$0.375^{* * *}$
	(0.023)	(0.023)	(0.032)
Panel B. P/L Insurers	Recessions	Expansion	Difference
Median as cutoff point	$0.837^{* * *}$	$0.628^{* * *}$	$0.209^{* * *}$
	(0.011)	(0.011)	(0.016)
Top and bottom 25\% as cutoff point	$0.873^{* * *}$	$0.542^{* * *}$	$0.331^{* * *}$
	(0.014)	(0.014)	(0.020)
Panel C. Life Insurers	Recessions	Expansion	Difference
Median as cutoff point	$1.036^{* * *}$	$0.832^{* * *}$	$0.204^{* * *}$
	(0.035)	(0.035)	(0.050)
Top and bottom 25\% as cutoff point	$1.212^{* * *}$	$0.857^{* * *}$	$0.355^{* * *}$
	(0.058)	(0.058)	(0.082)

Note: The table labels the month as expansion or recession based on whether the predicted market risk premium is below or above in-sample median (median as cutoff point), or whether the predicted market risk premium is in the bottom or top quartile of its in-sample distribution (top and bottom 25% as cutoff point). We measure expected market risk premium as the fitted part of the regression $R M_{t}-R F_{t}=b_{i 0}+b_{i 1} D E F_{t-1}+b_{i 2} D I V_{t-1}+b_{i 3} T E R M_{t-1}+$ $b_{i 4} T B_{t-1}+\varepsilon$, where $R M-R F$ is the market risk premium, $D E F$ is default spread, DIV is dividend yield, TERM is term spread, and $T B$ is the 30 -day Treasury bill rate. Standard errors appear in brackets. $* * *$, $* *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 18A. Underwriting Cycles in the Intertemporal CAPM using Equal-Weighted Insurer Returns (Combined Ratio Change)

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
RM-RF	$\begin{aligned} & 0.81^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & \hline 0.80^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & \text { 0.81*** } \\ & (0.04) \end{aligned}$	$\begin{aligned} & \hline 0.39 * * \\ & (0.16) \end{aligned}$	$\begin{aligned} & \hline 0.35 * * \\ & (0.16) \end{aligned}$	$\begin{aligned} & \hline 0.38 * * \\ & (0.16) \end{aligned}$	$\begin{aligned} & 0.90^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & 0.90^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & \hline 0.90^{* * *} \\ & (0.03) \end{aligned}$	$\begin{aligned} & \hline 0.39 * * * \\ & (0.14) \end{aligned}$	$\begin{aligned} & \hline 0.40^{* * *} \\ & (0.14) \end{aligned}$	$\begin{aligned} & \hline 0.37 * * * \\ & (0.14) \end{aligned}$
SMB							$\begin{aligned} & 0.41^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.40^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.41^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.45^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.44^{* * *} \\ & (0.04) \end{aligned}$	$\begin{aligned} & 0.45^{* * *} \\ & (0.04) \end{aligned}$
HML							$\begin{aligned} & 0.57^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.56^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.57^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.59^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.58^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.59^{* * *} \\ & (0.06) \end{aligned}$
RMW							$\begin{aligned} & 0.18^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.20^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.18^{* * *} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.10 \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.11^{*} \\ & (0.06) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (0.06) \end{aligned}$
CMA							$\begin{aligned} & 0.08 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.11 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.09 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.08) \end{aligned}$	$\begin{aligned} & 0.02 \\ & (0.08) \end{aligned}$
FVIX				$\begin{aligned} & -0.32^{* * *} \\ & (0.12) \end{aligned}$	$\begin{aligned} & -0.34^{* * *} \\ & (0.12) \end{aligned}$	$\begin{aligned} & -0.32^{* * *} \\ & (0.12) \end{aligned}$				$\begin{aligned} & -0.36^{* * *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.36^{* * *} \\ & (0.09) \end{aligned}$	$\begin{aligned} & -0.37 * * * \\ & (0.10) \end{aligned}$
FCombRat		$\begin{aligned} & 0.27 \\ & (0.24) \end{aligned}$			$\begin{aligned} & 0.37 \\ & (0.24) \end{aligned}$			$\begin{aligned} & 0.29 * \\ & (0.17) \end{aligned}$			$\begin{aligned} & 0.29^{*} \\ & (0.17) \end{aligned}$	
\triangle CombRat			$\begin{aligned} & 0.01 \\ & (0.03) \end{aligned}$			$\begin{aligned} & 0.02 \\ & (0.03) \end{aligned}$			$\begin{aligned} & 0.02 \\ & (0.02) \end{aligned}$			$\begin{aligned} & 0.02 \\ & (0.02) \end{aligned}$
Alpha	$\begin{aligned} & 0.38^{* *} \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.40^{* *} \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.39 * * \\ & (0.17) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.23 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.23 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.22 \\ & (0.18) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & (0.12) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.07 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.07 \\ & (0.13) \\ & \hline \end{aligned}$	$\begin{aligned} & -0.07 \\ & (0.13) \\ & \hline \end{aligned}$
Adj R-sq	0.583	0.583	0.582	0.591	0.593	0.591	0.797	0.798	0.797	0.806	0.807	0.806
Obs	312	312	312	312	312	312	312	312	312	312	312	312

Note: This table reports the regression results including the combined ratio factor (FCombRat) into the three models from Tables 2 (CAPM, FF5, and ICAPM) and FF5 augmented with FVIX (FF6) for all the publicly traded insurance companies. The results of estimating these four models are in columns $1,4,7$, and 10 , respectively. The combined ratio factor is added to the models in columns $2,5,8$, and 11 . In columns $3,6,9$, and 12 each factor is replaced by the variable it mimics (change in combined ratio). The left-hand side variable is the equal-weighted returns to all the publicly traded insurance companies. $R M-R F$ is the market risk premium, $S M B$ is the difference in the returns of small and large portfolios, $H M L$ is the difference in the returns of high and low book-to-market portfolios, $R M W$ is the difference in the returns of robust and weak (high and low) operating profitability portfolios, and CMA is the difference in the returns of conservative and aggressive (low and high) investment portfolios. FVIX is the factor-mimicking portfolio that mimics the changes in VIX index, which measures the implied volatility of the S\&P100 stock index options. FCombRat is the factor-mimicking portfolio that mimics the changes in combined ratio, namely, the combined ratio factor. \triangle CombRat is the variable that FCombRat mimics, which is the change in combined ratio. Since FCombRat and Δ CombRat are available from 1989, all regressions are from 1989 to 2014. Obs reports the number of months in the regressions. Standard errors appear in brackets. $* * *$, $* *$, and $*$ denote statistical significance at the 1,5 , and 10 percent levels, respectively.

Table 19A. Equal-Weighted Cost of Equity Estimates

Panel A. All Insurers Year							COE Estimates		
	CAPM	FF5	CCAPM	ICAPM					
1997	10.100	13.305	5.609	$9)$					
1998	10.616	13.784	4.824	10.314					
1999	10.889	16.993	3.717	14.741					
2000	10.145	18.300	4.762	16.806					
2001	8.716	18.295	4.465	14.427					
2002	7.872	17.615	2.565	11.937					
2003	7.061	16.852	2.646	10.330					
2004	6.624	15.803	4.913	10.118					
2005	6.811	14.285	4.307	8.029					
2006	7.893	13.091	4.377	6.340					
2007	9.665	13.871	4.336	7.118					
2008	10.969	14.035	3.089	10.597					
2009	11.396	13.714	15.623	13.173					
2010	11.022	10.663	25.549	12.481					
2011	10.134	9.420	11.643	11.808					
2012	9.151	7.907	8.784	10.635					
2013	8.762	6.801	7.556	10.256					
2014	8.080	8.626	6.665	7.775					
Average	9.217	13.520	6.968	10.934					

Panel B. P/L Insurers

Year	COE Estimates			
	CAPM	FF5		
(1)	CCAPM	ICAPM		
1997	9.364	14.095	(3)	(4)
1998	10.064	14.755	4.840	13.724
1999	10.114	16.502	3.785	15.343
2000	9.496	17.774	4.801	16.764
2001	8.205	17.288	4.474	14.241
2002	7.392	16.310	2.523	11.772
2003	6.682	15.791	2.655	10.304
2004	6.424	14.976	4.730	10.443
2005	6.598	13.248	3.977	8.214
2006	7.672	12.412	4.239	6.458
2007	9.441	13.747	4.416	7.055
2008	9.972	13.349	3.105	9.723
2009	9.158	12.354	12.057	10.823
2010	8.548	9.311	16.132	10.014
2011	7.650	7.805	9.481	9.431
2012	6.549	6.403	7.046	8.053
2013	6.059	5.946	5.660	7.544
2014	5.765	8.185	5.283	6.823
Average	8.064	12.792	5.815	10.544

Panel C. Life Insurers				
Year		COE Estimates		
	CAPM (1)	$\begin{gathered} \text { FF5 } \\ (2) \\ \hline \end{gathered}$	$\begin{aligned} & \text { CCAPM } \\ & (3) \end{aligned}$	ICAPM (4)
1997	10.304	16.495	5.547	13.542
1998	10.690	16.468	4.801	13.788
1999	10.796	17.820	3.764	15.325
2000	10.121	17.852	4.828	16.622
2001	9.023	18.163	4.366	14.174
2002	8.381	17.841	2.822	11.789
2003	7.837	18.080	3.846	10.443
2004	7.465	17.511	5.549	10.316
2005	7.553	14.401	4.576	7.608
2006	8.737	12.467	4.239	5.537
2007	10.422	14.811	4.352	6.148
2008	12.257	15.551	3.113	10.795
2009	16.893	23.341	27.065	21.150
2010	16.952	17.628	50.852	21.213
2011	15.865	15.901	19.267	20.255
2012	14.871	14.283	14.201	19.039
2013	14.950	12.463	12.636	20.191
2014	12.349	10.917	9.326	11.442
Average	11.415	16.222	10.286	13.854

Note: This table shows the equal-weighted cost of equity (COE) estimates for all the publicly traded insurers, P/L insurers, and life insurers based on CAPM, FF5, CCAPM, and ICAPM from 1997 to 2014 in columns 1-4, respectively. For each year, the annual COE estimate is the cumulative monthly COE estimates from January to December of that year. Average shows the average COE across the full sample period from 1997 to 2014.

[^0]: * Corresponding author.
 ${ }^{1}$ Department of Finance, School of Business Administration, University of California Riverside, 900 University Ave. Riverside, CA 92521, Tel.: +1-951-827-3684, alexander.barinov@ucr.edu.
 ${ }^{2}$ Corresponding author, Department of Finance, Insurance, Real Estate and Law, College of Business, University of North Texas, 1155 Union Circle \#305339, Denton, TX 76203-5017, Tel.: +1-940-565-2192, Fax: +1-940-565-3803, jianren.xu@unt.edu.
 ${ }^{3}$ Department of Insurance, Legal Studies, and Real Estate, Terry College of Business, University of Georgia, 206 Brooks Hall, Athens, GA 30602, Tel.: +1-706-542-3786, Fax: +1-706-542-4295, spottier@uga.edu.
 ${ }^{4}$ The definitions of RM, RF, SMB, HML, FVIX, DEF, DIV, TB, and TERM are in Section II of the paper.

[^1]: ${ }^{5}$ The returns of all firms used for forming the liquidity factors, as well as trading volume data needed to compute the liquidity measures, are from CRSP.

[^2]: ${ }^{6}$ The values of the Pastor-Stambaugh factor are periodically updated by its creators and are available through WRDS to all subscribers.

[^3]: ${ }^{7}$ The standard CAPM uses a very similar logic: the non-systematic risk of an asset is the variance of the asset's returns, but the systematic risk of the asset is measured by the market beta, which is proportional to covariance between the asset's return and the market return, because the covariance measures the contribution of the asset to the variance of a diversified portfolio.

[^4]: ${ }^{9}$ The insurance industry is classified into seven categories, namely, life insurance (SIC 6310-6319), accident and health insurance (SIC 6320-6329), property-liability insurance (SIC 6330-6331), surety insurance (SIC 6350-6351), title insurance (SIC 6360-6361), pension, health, welfare funds (SIC 6370-6379), and other insurance carriers (SIC within 6300-6399 but do not fall into any of the previous six categories).

[^5]: ${ }^{10}$ Column 3 effectively contains the equation for the combined ratio factor, FCombRat, used in Table 6 in the paper.
 ${ }^{11}$ In untabulated results, we also experimented with using different quintile breakpoints for the quintiles sorted on the historical stock sensitivity to catastrophic losses or change in combined ratio, or replacing these quintiles with two-by-three sorts on size and book-to-market from Fama and French (1993). The results in Tables 11A-14A and Table 6 in the paper are qualitatively the same when we do that.

[^6]: ${ }^{12}$ This statement holds true when adding the factor-mimicking portfolio on changes of combined ratio (\triangle CombRat) to the models (CAPM, ICAPM, FF5, and FF6) based on Table 6 in the paper.

