Firm Complexity and Limits to Arbitrage

Alexander Barinov

School of Business University of California Riverside

October 22, 2021

Alexander Barinov (UCR)

Complexity Effect

4 E b

Complexity and Asset Prices

- Cohen and Lou (2012) find that conglomerates take one month longer to incorporate industry-level news
- In particular, returns to a pseudo-conglomerate that mimics the real conglomerate using single-segment firms, predict the conglomerate's returns
- Barinov, Park, and Yildizhan (2020) find that firm complexity impedes information processing
- All else equal, more complex firms have stronger post-earnings-announcement drift
- Barinov (2021) finds that there is more disagreement about conglomerates, and that leads to conglomerates having negative alphas a-la Miller (1977)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Results in This Paper

- Despite conglomerates being larger, more liquid, less volatile than single-segment firms, several anomalies are stronger / exist only for conglomerates
- Among those anomalies are:
 - The IVol effect of Ang et al. and related anomalies
 - Asset growth effect of Cooper et al. (2008)
 - Cumulative issuance effect of Daniel and Titman (2006)
 - Retained earnings effect of Ball et al. (2020)
- The anomalies are also stronger for more complex conglomerates

Measures of Complexity

- Conglomerate dummy (Conglo) 1 if the firm has multiple segments, 0 otherwise
- Concentration (Comp) 1-HHI, HHI (Herfindahl index) is based on segment sales
- Number of segments (NSeg) (based on 2-digit SIC codes)
- RSZ (Rajan, Servaes, Zingales, 2000) coefficient of variation of imputed segment-level market-to-book ratios
- CV_{OL}/CV_{SGA} coefficient of variation of imputed segment-level operating leverage/SG&A-to-assets

<ロ> <同> <同> <同> <同> < 同> < 同> < 同>

Information Environment of Conglomerates

Table 2, Panel B. All Firms

Dep Var =	# An	# Spec	ΙΟ	-EarnQ	Error
log(CV _{OL})	-0.028	-0.097	-0.013	0.038	0.014
t-stat	-5.22	-14.5	-3.93	6.46	4.61
Controls	YES	YES	YES	YES	YES

Table 2, Panel C. Conglomerates Only

Dep Var =	# An	# Spec	ю	-EarnQ	Error
log(CV _{OL})	-0.027	-0.033	-0.014	0.018	0.008
t-stat	-2.69	-2.78	-2.21	1.46	1.32
Controls	YES	YES	YES	YES	YES

Alexander Barinov (UCR)

-

Complexity and Information Environment

- All else equal, more complex firms
 - Are followed by less analysts, especially analysts specializing in their core industry
 - Attract less institutional ownership
 - Have lower earnings quality (more volatile discretionary accruals)
 - Have analysts that make larger forecast errors
- The relation does not hold in univariate tests, but with size adjustment it does hold
- *CV_{OL}* variable has a large mass at zero (single-segment firms), so the relation could be just conglomerates vs. single-segments
- The large slope on the *CV_{OL}* variable in the conglomerates only sample confirms complexity really matters

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Complexity and IVol Effect: Five-Factor Fama-French Alphas

	Low	IVol2	IVol3	IVol4	High	L-H
All Firms	0.045	-0.041	-0.200	-0.072	-0.292	0.337
t-stat	0.99	-0.73	-2.72	-0.85	-2.30	2.20
SingleSeg	0.102	0.125	-0.102	0.146	-0.089	0.192
t-stat	1.01	1.30	-0.88	1.43	-0.63	0.96
Conglos	0.135	-0.179	-0.280	-0.123	-0.362	0.497
t-stat	1.49	-2.21	-2.78	-1.09	-2.32	2.58
C-S	0.033	-0.303	-0.179	-0.269	-0.273	0.306
t-stat	0.29	-2.62	-1.33	-1.82	-1.44	1.28

 Single-segment high-IVol firms do not have negative alphas

Complexity and IVol Effect: Five-Factor Fama-French Alphas

	Low	IVol2	IVol3	IVol4	High	L-H
All Firms	0.045	-0.041	-0.200	-0.072	-0.292	0.337
t-stat	0.99	-0.73	-2.72	-0.85	-2.30	2.20
SingleSeg	0.102	0.125	-0.102	0.146	-0.089	0.192
t-stat	1.01	1.30	-0.88	1.43	-0.63	0.96
Conglos	0.135	-0.179	-0.280	-0.123	-0.362	0.497
t-stat	1.49	-2.21	-2.78	-1.09	-2.32	2.58
C-S	0.033	-0.303	-0.179	-0.269	-0.273	0.306
t-stat	0.29	-2.62	-1.33	-1.82	-1.44	1.28

There is no IVol effect for single-segment firms

Complexity and Disagreement Effect: Five-Factor Fama-French Alphas

	Low	Disp2	Disp3	Disp4	High	L-H
All	0.062	-0.125	0.008	0.037	-0.274	0.336
t-stat	1.11	-2.44	0.14	0.44	-2.26	2.35
SingleSeg	0.254	0.156	0.091	0.251	-0.030	0.284
t-stat	3.31	0.93	0.90	1.97	-0.22	2.02
Conglos	0.118	-0.191	-0.021	0.020	-0.511	0.629
t-stat	1.48	-1.26	-0.19	0.13	-3.37	3.47
C-S	-0.136	-0.347	-0.112	-0.232	-0.482	0.346
t-stat	-1.50	-1.78	-0.72	-1.51	-2.56	1.77

 Single-segment high-disagreement firms do not have negative alphas

Alexander Barinov (UCR)

イロト イポト イラト イラト

Complexity and Disagreement Effect: Five-Factor Fama-French Alphas

	Low	Disp2	Disp3	Disp4	High	L-H
All	0.062	-0.125	0.008	0.037	-0.274	0.336
t-stat	1.11	-2.44	0.14	0.44	-2.26	2.35
SingleSeg	0.254	0.156	0.091	0.251	-0.030	0.284
t-stat	3.31	0.93	0.90	1.97	-0.22	2.02
Conglos	0.118	-0.191	-0.021	0.020	-0.511	0.629
t-stat	1.48	-1.26	-0.19	0.13	-3.37	3.47
C-S	-0.136	-0.347	-0.112	-0.232	-0.482	0.346
t-stat	-1.50	-1.78	-0.72	-1.51	-2.56	1.77

 The analyst disagreement effect of Diether et al. (2002) is twice stronger for conglomerates than it is for single-segment firms

Complexity and Asset Growth Effect: Five-Factor Fama-French Alphas

	Low	AG2	AG3	AG4	High	L-H
All	-0.047	-0.047	-0.025	0.133	0.096	-0.142
t-stat	-0.65	-0.78	-0.43	2.22	1.35	-1.65
SingleSeg	0.147	0.162	0.049	0.254	0.245	-0.098
t-stat	1.47	1.72	0.50	2.49	2.69	-0.78
Conglos	-0.072	-0.047	-0.084	0.017	-0.260	0.188
t-stat	-0.81	-0.46	-1.04	0.19	-2.30	1.35
C-S	-0.220	-0.209	-0.133	-0.237	-0.505	0.285
t-stat	-1.57	-1.43	-1.13	-1.62	-3.52	1.44

 Single-segment high-growth firms do not have negative alphas (their alphas are in fact positive)

Alexander Barinov (UCR)

Complexity and Cumulative Issuance Effect: 5-Factor Fama-French Alphas

	Low	CI2	CI3	CI4	High	L-H
All	0.032	-0.134	0.022	0.069	-0.283	0.316
t-stat	0.41	-2.29	0.30	0.90	-4.04	3.29
SingleSeg	0.047	-0.228	0.144	0.213	-0.081	0.128
t-stat	0.48	-2.10	1.39	1.89	-0.92	0.89
Conglos	0.094	-0.069	-0.033	-0.276	-0.612	0.706
t-stat	0.76	-0.97	-0.34	-2.25	-4.48	4.16
C-S	0.047	0.159	-0.177	-0.489	-0.530	0.577
t-stat	0.33	1.31	-1.38	-2.86	-3.18	2.61

Single-segment routine issuers do not have negative alphas

Alexander Barinov (UCR)

イロト イポト イラト イラト

Complexity and Cumulative Issuance Effect: 5-Factor Fama-French Alphas

	Low	CI2	CI3	CI4	High	L-H
All	0.032	-0.134	0.022	0.069	-0.283	0.316
t-stat	0.41	-2.29	0.30	0.90	-4.04	3.29
SingleSeg	0.047	-0.228	0.144	0.213	-0.081	0.128
t-stat	0.48	-2.10	1.39	1.89	-0.92	0.89
Conglos	0.094	-0.069	-0.033	-0.276	-0.612	0.706
t-stat	0.76	-0.97	-0.34	-2.25	-4.48	4.16
C-S	0.047	0.159	-0.177	-0.489	-0.530	0.577
t-stat	0.33	1.31	-1.38	-2.86	-3.18	2.61

 Cumulative issuance puzzle of Daniel and Titman (2006) is more than five times stronger for conglomerates compared to single-segment firms

Complexity vs. IVol and Disagreement Effects

Panel B. Complexity and Analyst Disagreement Effect

Comp=	NSeg	1-HHI	RSZ	CV _{OL}	CV _{SGA}
log(Disp)	0.378	0.338	0.667	0.471	0.631
t-stat	0.66	0.59	1.16	0.67	1.10
Comp .Disp	-0.029	-0.065	-0.078	-0.088	-0.053
t-stat	-0.30	-0.33	-2.06	-2.18	-1.56

Panel C. Complexity and Idiosyncratic Volatility Effect

Comp=	NSeg	1-HHI	RSZ	CV _{OL}	CV _{SGA}
log(IVol)	3.633	3.751	3.333	3.614	3.455
t-stat	3.82	4.05	3.44	3.12	3.04
Comp .IVol	1.027	-9.718	-2.890	-2.144	3.357
t-stat	0.09	-0.48	-0.77	-0.59	0.86

Complexity vs. Turnover and Investment Growth Effects

Panel D. Complexity and Turnover Effect

Comp=	NSeg	1-HHI	RSZ	CV _{OL}	CV _{SGA}
log(Turn)	0.230	0.265	0.210	0.242	0.262
t-stat	2.31	2.69	2.14	2.40	2.56
Comp .Turn	-0.134	-0.703	-0.226	-0.160	-0.172
t-stat	-0.69	-1.75	-3.41	-2.59	-2.73

Panel E. Complexity and Investment Growth Effect

Comp=	NSeg	1-HHI	RSZ	CV _{OL}	CV _{SGA}
IG	0.276	-0.126	0.048	0.126	-0.005
t-stat	1.62	-1.25	0.35	0.99	-0.04
Comp.IG	-0.388	0.151	-0.101	-0.096	-0.072
t-stat	-2.65	0.67	-2.20	-2.38	-1.50

Complexity vs. Asset Growth and Cumulative Issuance Effects

Panel F. Complexity and Asset Growth Effect

Comp=	NSeg	1-HHI	RSZ	CV _{OL}	CV _{SGA}
AG	-0.113	0.263	0.683	0.145	0.352
t-stat	-0.26	0.71	1.65	0.39	0.97
Comp*AG	-0.106	-0.197	-0.293	-0.143	-0.205
t-stat	-0.31	-1.80	-2.30	-1.40	-2.33

Panel G. Complexity and Cumulative Issuance Effect

Comp=	NSeg	1-HHI	RSZ	CV _{OL}	CV _{SGA}
CI	-0.516	-0.442	-0.468	-0.355	-0.539
t-stat	-2.48	-1.49	-2.01	-1.60	-2.84
Comp*Cl	-0.022	-0.101	-0.031	-0.014	-0.013
t-stat	-2.61	-1.14	-2.72	-1.91	-1.81

Conglomerate Complexity and Anomalies

- Conglomerate-only sample is rather small, roughly 600 conglomerates per year
- Most complexity measures show that anomalies are stronger for complex (and typically large) conglomerates even after other limits-to-arbitrage variables are controlled for
- Number of segments (NSeg) is the least successful complexity measure, variation in market-to-book or operating leverage within a segment is more tightly related to anomalies' strength (and thus to limits to arbitrage)

Conclusion

- Conglomerates are large and liquid, but they are hard to understand
- Conglomerates, all else equal, have worse analyst following, lower institutional ownership, lower earnings quality
- Many anomalies are stronger for conglomerates and especially more complex conglomerates
- Investors do not trade against the anomalies due to prudent man laws and the difficulty/cost of processing information about conglomerates