Firm Complexity and Conglomerates Expected Returns

Alexander Barinov

School of Business University of California Riverside

May 4, 2018

Complexity and Asset Prices

- Cohen and Lou (2012) find that conglomerates take one month longer to incorporate industry-level news
- In particular, returns to a pseudo-conglomerate that mimics the real conglomerate using single-segment firms, predict the conglomerate's returns
- Barinov, Park, and Yildizhan (2016) find that firm complexity can be used as a limits to arbitrage measure
- All else equal, more complex firms have stronger post-earnings-announcement drift

Disagreement, Short Sale Constraints, and Overpricing

- Miller (1977) argues that short sale constraints make stocks overpriced: pessimists are kept out of the market, and the stock price is the average valuation of the optimists
- Greater disagreement makes the overpricing worse, since optimists become more optimistic on average (pessimists become more pessimistic too, but they do not trade)
- Barinov, Park, and Yildizhan (2016) show that, holding all else fixed, conglomerates have lower analyst following, lower institutional ownership, less precise earnings forecasts

What Is New Here?

- The negative cross-sectional relation between uncertainty/disagreement and future returns is well-known
- Diether et al., 2002, look at analyst disagreement, Ang et al., 2006, look at idiosyncratic volatility
- Implied trading strategies call for shorting small, illiquid, distressed, volatile firms, and the alpha is visible for at most a year
- In contrast, conglomerates are relatively large, liquid, and not particularly volatile
- The complexity effect lasts for at least two years, and the underperformance of conglomerates persists for almost a decade

< ロ > < 同 > < 回 > < 回 >

Measures of Complexity

- Conglomerate dummy (Conglo) 1 if the firm has multiple segments, 0 otherwise
- Concentration (Comp) our main variable, equals to 1-HHI, HHI (Herfindahl index) is based on segment sales
- Number of segments (NSeg) (based on 2-digit SIC codes)
- RSZ (Rajan, Servaes, Zingales, 2000) coefficient of variation of imputed segment-level market-to-book ratios

• • • • • • • • • • • • •

Information Environment of Conglomerates

Table 2, Panel A. All Firms

Dep Var =	# An	# Spec	Ю	Error	Disp
Comp	-27.60	-60.86	-15.08	21.78	15.30
t-stat	-8.72	-13.8	-7.20	2.09	5.76
Controls	YES	YES	YES	YES	YES

Table 2, Panel B. Conglomerates Only

Dep Var =	# An	# Spec	ю	Error	Disp
Comp	-33.53	-77.57	-19.22	30.17	17.00
t-stat	-8.25	-13.3	-7.17	2.48	4.57
Controls	YES	YES	YES	YES	YES

-

Complexity and Information Environment

- All else equal, more complex firms
 - Are followed by less analysts, especially analysts specializing in their core industry
 - Attract less institutional ownership
 - Have analysts that disagree more and make larger forecast errors
- The relation does not hold in univariate tests, but with size adjustment it does hold
- Comp variable has a large mass at zero (single-segment firms), so the relation could be just conglomerates vs. single-segments
- The larger slope on the Comp variable in the conglomerates only sample confirms complexity really matters

Complexity Sorts: Alphas

	Zero	Low	High	Z-H	Z-M	L-H
α_{FF5}	0.194	-0.009	-0.162	0.354	0.203	0.154
t-stat	3.04	-0.17	-2.70	4.01	2.46	1.85
$lpha_{\it FF3+CMA}$	0.044	0.013	-0.075	0.119	0.031	0.090
t-stat	0.64	0.26	-1.26	1.14	0.35	1.13
$\alpha_{FF3+RMW}$	0.162	0.020	-0.115	0.276	0.142	0.136
t-stat	2.75	0.37	-2.05	3.41	1.85	1.71
$lpha_{\textit{FF5}+MOM}$	0.240	0.014	-0.114	0.353	0.226	0.129
t-stat	3.50	0.29	-1.82	4.06	2.61	1.47

Complexity Sorts: Alphas

	Zero	Low	High	Z-H	Z-M	L-H
α_{FF5}	0.194	-0.009	-0.162	0.354	0.203	0.154
t-stat	3.04	-0.17	-2.70	4.01	2.46	1.85
$lpha_{\textit{FF3+CMA}}$	0.044	0.013	-0.075	0.119	0.031	0.090
t-stat	0.64	0.26	-1.26	1.14	0.35	1.13
$\alpha_{FF3+RMW}$	0.162	0.020	-0.115	0.276	0.142	0.136
t-stat	2.75	0.37	-2.05	3.41	1.85	1.71
$lpha_{\textit{FF5+MOM}}$	0.240	0.014	-0.114	0.353	0.226	0.129
t-stat	3.50	0.29	-1.82	4.06	2.61	1.47

Complexity Sorts: Alphas

	Zero	Low	High	Z-H	Z-M	L-H
α_{FF5}	0.194	-0.009	-0.162	0.354	0.203	0.154
t-stat	3.04	-0.17	-2.70	4.01	2.46	1.85
$lpha_{ extsf{FF3+CMA}}$	0.044	0.013	-0.075	0.119	0.031	0.090
t-stat	0.64	0.26	-1.26	1.14	0.35	1.13
$lpha_{\textit{FF3+RMW}}$	0.162	0.020	-0.115	0.276	0.142	0.136
t-stat	2.75	0.37	-2.05	3.41	1.85	1.71
$lpha_{\textit{FF5}+MOM}$	0.240	0.014	-0.114	0.353	0.226	0.129
t-stat	3.50	0.29	-1.82	4.06	2.61	1.47

イロト イポト イヨト イヨト

Complexity Sorts: Betas

	Zero	Low	High	Z-H	Z-M	L-H
β_{MKT}	0.962	1.004	1.084	-0.122	-0.042	-0.080
t-stat	49.6	46.8	77.6	-4.61	-1.58	-3.25
eta_{SMB}	0.007	-0.047	-0.076	0.083	0.053	0.029
t-stat	0.23	-1.91	-2.82	1.93	1.42	0.91
β_{HML}	-0.096	-0.036	0.032	-0.128	-0.059	-0.067
t-stat	-2.73	-0.98	0.96	-2.84	-1.26	-1.76
eta_{CMA}	-0.121	0.184	0.177	-0.298	-0.306	0.006
t-stat	-2.09	2.84	3.34	-4.69	-4.59	0.08
β_{RMW}	-0.309	0.117	0.174	-0.483	-0.426	-0.057
t-stat	-7.17	3.09	3.94	-9.43	-8.00	-1.27

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Complexity Sorts

- High-complexity conglomerates trail single-segment firms by 35 bp per month (FF5 alphas)
- Key factor is RMW: conglomerates seem to be relatively profitable (compared to their size-MB-investment matches), but do not earn high returns of profitable firms
- Low-complexity firms also trail single-segment firms and beat high-complexity firms, though significance is weaker

Complexity Effect: Persistence

	Year 1	Year 2	Year 3	Year 4	Year 5
α_{FF5}^{Z-H}	0.354	0.275	0.329	0.335	0.299
t-stat	4.01	2.78	3.42	3.32	3.10
α_{FF5}^{Z-L}	0.203	0.149	0.283	0.282	0.284
t-stat	2.46	1.76	3.64	3.58	3.59
α_{FF5}^{L-H}	0.154	0.127	0.046	0.053	0.015
t-stat	1.85	1.93	0.59	0.69	0.20

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 シののや

Complexity Effect: Persistence

- High/low-complexity conglomerates continue to underperform for at least five years
- Most likely, this extreme persistence is because of extreme persistence of the conglomerate status
- Complexity per se affects returns for two years (14 bp times 24 months = 3.4% total effect)

イロト イポト イラト イラ

Complexity Effect and Institutional Ownership

A3. RSZ Complexity Measure

	Zero	Low	High	Z-H
Low	0.297	-0.304	-0.296	0.594
t-stat	2.99	-1.72	-3.51	4.49
RInst2	0.214	-0.107	-0.214	0.429
t-stat	2.86	-0.91	-2.22	3.43
High	0.070	0.043	-0.028	0.097
t-stat	0.81	0.40	-0.30	0.74
L-H	-0.228	0.347	0.269	0.497
t-stat	-1.94	1.65	2.17	3.11

-

• □ ▶ • □ ▶ • □ ▶

Complexity Effect and Idiosyncratic Volatility

B3. RSZ Complexity Measure

	Zero	Low	High	Z-H
Low	0.095	-0.021	-0.160	0.255
t-stat	1.15	-0.26	-2.39	2.50
IVol2	0.154	-0.130	-0.180	0.334
t-stat	1.98	-1.11	-1.67	2.51
High	-0.250	-0.745	-1.023	0.773
t-stat	-1.61	-2.98	-3.35	2.15
H-L	0.345	0.725	0.863	0.518
t-stat	1.83	2.66	2.72	1.37

Complexity Effect and Limits to Arbitrage

- Complexity effect is stronger if institutional ownership is low, consistent with Miller (1977) story
- Complexity effect is stronger if idiosyncratic volatility is high
- Complexity effect can reach 59-77 bp per month if limits to arbitrage are high

Complexity Effect at Earnings Announcements

Conglo	-0.086			
t-stat	-3.00			
Comp		-0.223		
t-stat		-3.03		
NSeg			-0.062	
t-stat			-3.99	
RSZ				-0.018
t-stat				-4.55
Controls	YES	YES	YES	YES

Alexander Barinov (UCR)

Complexity Effect

May 4, 2018 18 / 30

< ロ > < 同 > < 回 > < 回 >

New Conglomerates

Conglo	-0.096	-0.101	-0.101
t-stat	-2.20	-2.16	-2.01
NewCong1	-0.354		
t-stat	-2.45		
NewCong2		-0.195	
t-stat		-1.91	
NewCong3			-0.213
t-stat			-2.24
Controls	YES	YES	YES

- Complexity effect is distinct from post-merger underperformance
- Post-merger underperformance can have an explanation a-la Miller (1977)

Alexander Barinov (UCR)

Other Uncertainty Effects

IVol	-6.144					-8.719
t-stat	-2.02					-2.36
AD		-0.356				-0.227
t-stat		-4.39				-2.82
Turn			-3.833			-0.526
t-stat			-4.87			-0.65
10				-0.325		-0.403
t-stat				-3.38		-0.75
RSI					-9.437	
t-stat					-6.48	
Conglo	-0.115	-0.079	-0.124	-0.156	-0.211	-0.111
t-stat	-3.00	-1.85	-3.08	-3.90	<i>-3.55</i>	-2.56
Controls	YES	YES	YES	YES	YES	YES

Alexander Barinov (UCR)

। ► ◀ ॊ ► ॊ = ∽००० May 4, 2018 20 / 30

< ロ > < 同 > < 回 > < 回 >

Coinsurance Hypothesis

- Hann, Ogneva, and Ozbas (2013) show that conglomerates have lower implied cost of capital
- They argue this effect is risk-based because it is stronger for financially constrained firms and for conglomerates with lower correlation between segment cash flows
- Essentially, conglomeration implies coinsurance of the segments

< ロ > < 同 > < 回 > < 回 >

Complexity Effect and Financial Constraints: Regression Slopes

A2. Whited-Wu Index

	Low	High	H-L
Comp	-0.116	-0.599	0.483
t-stat	-1.24	-2.95	2.39
Controls	YES	YES	YES

A3. Kaplan-Zingales Index

	Low	High	H-L
Comp	-0.461	-0.122	-0.339
t-stat	-3.15	-0.79	-1.71
Controls	YES	YES	YES

Alexander Barinov (UCR)

< ロ > < 同 > < 三 > < 三 >

Complexity Effect and Coinsurance in Cross-Sectional Regressions

B1. Segment Correlation

	Low	High	H-L
HiComp	-0.258	-0.121	-0.137
t-stat	-1.61	-1.71	-0.83
Controls	YES	YES	YES

B2. Credit Rating

	IG	Junk	NR
Comp	-0.145	0.360	-0.557
t-stat	-1.00	2.05	-3.48
Controls	YES	YES	YES

Complexity Effect and Coinsurance Hypothesis

- Complexity effect is in realized equity returns, not in cost of capital implied by equity forecasts averaged with bond returns
- Whited-Wu and Kaplan-Zingales financial constraints measures disagree whether complexity effect is stronger for financially constrained firms
- Credit rating also delivers split message: complexity effect is stronger for non-rated firms (consistent with coinsurance hypothesis), but flips the sign for junk-rated firms (inconsistent)
- Cash flow correlation between segments is not related to complexity effect

Complexity Effect and Diversification Discount

- Complexity effect can be creating diversification discount (slow bleeding) or it can be viewed as "delayed" diversification discount
- Lamont and Polk show that deeper diversification discount implies higher expected return
- They find no difference in expected returns between conglomerates and single-segment firms, because they did not control for RMW
- Mitton and Vorkink (2010) hypothesize that skewness-loving investors dislike diversification (which destroys skewness) and require a higher rate of return from (some) conglomerates

Complexity Effect and Diversification Discount

DDisc	0.092	0.097	0.111
t-stat	3.45	3.56	3.78
HiComp	-0.108		
t-stat	-1.78		
HiSeg		-0.101	
t-stat		-1.69	
HiRSZ			-0.138
t-stat			-2.03
Controls	YES	YES	YES

- I confirm Lamont and Polk result, but find that it does not subsume complexity effect
- The regressions are for conglomerates only, showing that degree of complexity matters for expected returns

Alexander Barinov (UCR)

Complexity Effect

Complexity Effect and Idiosyncratic Skewness

C. Return Skewness Groups

	Low	High	H-L
Comp	-0.295	-0.351	-0.057
t-stat	-2.46	<i>-2.33</i>	-0.38
Controls	YES	YES	YES

 Complexity effect is unrelated to skewness and Mitton and Vorkink story

Alexander Barinov (UCR)

< ロ > < 同 > < 三 > < 三 >

Conclusion

- Conglomerates are hard to value, which makes institutions and analysts abandon them
- The resulting disagreement coupled with short-sale constraints creates overpricing and subsequent negative alphas
- Complexity effect is around 35 bp per month (controlling for RMW)
- Expected return spread between single-segment firms and conglomerates lasts for at least 5 years
- Expected return spread between low and high complexity conglomerates lasts for 2 years
- Complexity effect can double if limits to arbitrage is high

Idiosyncratic Volatility Discount and Conglomerates

Single	Low	IVol2	IVol3	lvol4	High	L-H
$lpha_{\textit{FF5}}$	0.070	0.123	-0.156	0.130	-0.225	0.294
t-stat	0.67	1.20	-1.40	1.06	-1.40	1.38
Conglo	Low	IVol2	IVol3	lvol4	High	L-H
$lpha_{\textit{FF5}}$	-0.024	-0.152	-0.149	-0.269	-0.558	0.534
t-stat	-0.39	-1.67	-1.64	-2.07	-2.48	2.13

- IVol effect is stronger for conglomerates despite them being larger, more liquid, etc.
- The impact is primarily on the short side

Analyst Disagreement Effect and Conglomerates

Single	Low	Disp2	Disp3	Disp4	High	L-H
α_{FF5}	0.194	-0.113	0.067	0.187	-0.175	0.369
t-stat	2.61	-1.25	0.58	1.31	-1.16	2.18
Conglo	Low	Disp2	Disp3	Disp4	High	L-H
α_{FF5}	0.141	-0.222	-0.081	-0.020	-0.523	0.665
t-stat	1 75	-2 17	-0.69	-0 13	-3.52	371

- AD effect is stronger for conglomerates despite them being larger, more liquid, etc.
- The impact is primarily on the short side