Aggregate Volatility Risk Explaining the Small Growth Anomaly and the New Issues Puzzle

Alexander Barinov

Terry College of Business University of Georgia

November 20, 2008

Alexander Barinov (U of Georgia)

Aggregate Volatility Risk

November 20, 2008 1 / 31

イロト イポト イラト イラト

Playing Field

- Small growth anomaly the smallest growth portfolio has the FF alpha of -0.3% per month (Fama and French, 1993)
- New issues puzzle IPOs and SEOs have the FF alpha of -0.4% per month (Loughran and Ritter, 1995)
- Cumulative issuance puzzle long high net issuance, short low net issuance has CAPM alpha of -0.5% per month (Daniel and Titman, 2006)
- Brav, Geczy, and Gompers (2000): Returns to small growth firms and IPOs/SEOs are driven by a common factor

-

Contribution

- The common explanation to all three anomalies is aggregate volatility risk
- Small growth firms earn low returns, because they hedge against aggregate volatility risk
- Firm-type story: recent issuers and routine heavy issuers seem to underperform, because they are small growth
- The liquidity explanation of the new issues puzzle (Eckbo and Norli, 2005) in fact picks up aggregate volatility risk

Aggregate Volatility Risk

- Volatility increase means worse future investment opportunities (Campbell, 1993)
- Volatility increase means the need to increase precautionary savings (Chen, 2002)
- Firms with most positive return sensitivity to aggregate volatility changes have lower expected returns (Ang et al, 2006)

Model Setup - Barinov (2007)

• A firm consists of assets in place, *B*, and growth options (call option on *S*)

$$dB_t = (r + \pi_B)B_t dt + \sigma_B B_t dW_B$$

 $dS_t = (r + \pi_S)S_t dt + \sigma_S S_t dW_S + \sigma_I S_t dW_I$

- Growth options volatility consists of the systematic part and the idiosyncratic part
- dW_S and dW_B can be correlated

Main Mechanism: Cross-Section

$$\beta_{P} = E(P, S) \cdot \beta_{S},$$

$$\frac{\partial E(P,S)}{\partial \sigma_I} < 0$$

• As idiosyncratic volatility goes up

- The beta of the asset behind the growth option stays constant
- The growth option elasticity wrt the underlying asset value declines
- Therefore, the growth options beta declines in idiosyncratic volatility

Main Mechanism: Time-Series

- Both IVol and aggregate volatility are high in recessions
- All else constant, higher IVol has two effects, both stronger for high volatility growth firms
 - Risk exposure of growth options decreases
 - Value of growth options increases
- Therefore, high volatility firms are hedges against aggregate volatility risk
- The same is true about small growth firms and new issues

Data 1: Aggregate Volatility

- Aggregate volatility is measured by VIX index (old definition) from CBOE
- VIX index is defined as the implied volatility of S&P100 one-month near-the-money options
- Return sensitivity to VIX changes is from daily regressions of stock excess return on the market excess return and the VIX change, run each firm-month

Data 2: BVIX Factor

- VIX sensitivity portfolios use previous month sensitivity and are held for one month
- BVIX factor is the value-weighted return differential between the most negative and the most positive VIX sensitivity quintiles
- Sample: February 1986 December 2006 (BVIX availability)

Data 3: Other

- Returns, listing, market value from CRSP
- New issues, their dates, after-issue book and market values from SDC
- IPO/SEO portfolios are held for 3 years starting 1 month after the issue
- Factors, 25 size-B/M portfolios from Kenneth French's website
- Sample: January 1986 to December 2006

Image: A math

Table 1: Is BVIX Priced?

- BVIX earns a bit less than 1% per month of abnormal return
- BVIX betas are significant for 25 Size-B/M portfolios, 25 IVol-M/B portfolios, 48 industry portfolios
- BVIX factor significantly improves the GRS statistic for the alphas
- CAPM+BVIX performs better than FF for 25 IVol-M/B and 48 industry portfolios

Table 1A&1B: Three Puzzles and Business Cycle

- I regress the smallest growth portfolios on MKT and business cycle variables
- In Table 1B I subtract return to the largest value portfolio from LHS
- TARCH is forecast of MKT volatility from TARCH model, TARCH and VIX are logs
- BC is 1 if NBER says recession, HVIX is 1 if VIX in top 25%, HTARCH is 1 if TARCH in top 25%

-

Table 1A: Three Puzzles and Business Cycle

_	BC	VIX	HVIX	TARCH	HTARCH
S1G1	0.735	0.615	0.588	1.285	1.293
t-stat	0.52	0.56	0.41	1.90	1.22
S2G1	1.454	0.695	0.604	1.048	1.399
t-stat	1.59	1.01	0.78	2.29	2.29
IPO	1.264	0.291	0.001	0.957	1.447
t-stat	0.90	0.34	0.00	1.65	1.86
SEO	0.716	0.224	0.456	0.774	1.017
t-stat	0.87	0.38	0.78	1.94	1.93
CumIss	0.287	0.423	0.751	0.431	0.198
t-stat	0.38	0.65	0.87	1.14	0.35
MKT	-0.449	-3.539	-2.537	0.114	-0.074
t-stat	-0.27	-3.37	-3.08	0.22	-0.10

Alexander Barinov (U of Georgia)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Table 1B: Three Puzzles vs. LargeValue across Business Cycle

	BC	VIX	Ηνιχ	TARCH	HTARCH
S1G1	1.512	1.620	0.970	1.662	2.069
t-stat	1.03	1.13	0.49	2.26	1.95
S2G1	2.231	1.700	0.987	1.425	2.175
t-stat	2.33	1.65	0.75	2.50	3.18
IPO	2.042	1.296	0.383	1.334	2.223
t-stat	1.39	1.08	0.25	1.96	2.65
SEO	1.493	1.229	0.838	1.151	1.792
t-stat	1.46	1.43	0.80	2.51	3.23
Cumlss	1.064	1.428	1.134	0.808	0.974
t-stat	1.02	1.33	0.78	1.49	1.37

Alexander Barinov (U of Georgia)

< ロ > < 同 > < 回 > < 回 >

Table 2A: Aggregate Volatility Risk and the Small Growth Anomaly

VW Returns, January 1986 - December 2006

	Small	Size2	Size3	Size4	Big	S-B
$lpha_{{\it CAPM}}$	-0.926	-0.525	-0.369	-0.058	0.004	-0.930
t-stat	-2.74	-2.35	-1.89	-0.32	0.03	-2.42
$lpha_{\it FF}$	-0.645	-0.280	-0.025	0.225	0.233	-0.879
t-stat	-3.55	-2.57	-0.28	1.77	2.96	-4.37
$lpha_{\it ICAPM}$	-0.440	-0.158	-0.046	0.207	-0.066	-0.374
t-stat	-0.95	-0.53	-0.18	0.86	-0.51	-0.74
β_{BVIX}	-0.495	-0.374	-0.330	-0.270	0.072	-0.567
t-stat	-1.96	-2.22	-2.40	-2.58	2.54	-2.11

Alexander Barinov (U of Georgia)

Table 2A: Aggregate Volatility Risk and the Negative Size Effect

VW Returns, January 1986 - December 2006

	Small	Size2	Size3	Size4	Big	S-B
$lpha_{{\it CAPM}}$	-0.926	-0.525	-0.369	-0.058	0.004	-0.930
t-stat	-2.74	-2.35	-1.89	-0.32	0.03	-2.42
$lpha_{\it FF}$	-0.645	-0.280	-0.025	0.225	0.233	-0.879
t-stat	<i>-3.55</i>	-2.57	-0.28	1.77	2.96	-4.37
$lpha_{\mathit{ICAPM}}$	-0.440	-0.158	-0.046	0.207	-0.066	-0.374
t-stat	-0.95	-0.53	-0.18	0.86	-0.51	-0.74
eta_{BVIX}	-0.495	-0.374	-0.330	-0.270	0.072	-0.567
t-stat	-1.96	-2.22	-2.40	-2.58	2.54	-2.11

4 3 5 4 3

BVIX Factor and Small Growth

- The CAPM and the Fama-French model produce large and significant alphas in the two smallest growth quintiles and negative size effect for growth firms
- The ICAPM with BVIX halves the alphas and makes them insignificant
- The results are even stronger if I drop the January 2001 outlier, when the smallest growth firms make 55%

Table 3: Aggregate Volatility Risk and the New Issues Puzzle

	Pa	nel A. IP	Os	 Pa	nel B. SE	Os
	CAPM	ICAPM	FF	CAPM	ICAPM	FF
α	-0.578	-0.326	-0.406	-0.436	-0.245	-0.415
t-stat	-2.01	-1.08	-2.11	-2.25	-1.22	-3.16
$eta_{\it MKT}$	1.466	1.423	1.228	1.318	1.286	1.203
t-stat	16.4	15.7	16.7	23.2	23.2	21.6
$eta_{ extsf{SMB}}$			1.048			0.775
t-stat			7.46			7.54
$m{eta}_{HML}$			-0.211			0.019
t-stat			-1.30			0.20
β_{BVIX}		-0.281			-0.203	
t-stat		-1.99			-2.65	
$\Delta lpha / lpha$	44%		20%	 44%		41%

Alexander Barinov (U of Georgia)

November 20, 2008 18 / 31

-

Table 4: New Issues Puzzle in Cross-Section

IPO	MB1	MB2	MB3	3-1	Size1	Size2	Size3	1-3
$lpha_{CAPM}$	0.315	-0.463	-0.835	1.150	-0.639	-0.505	0.270	0.909
t-stat	1.14	-1.60	-2.30	3.70	-2.02	-1.69	0.95	2.37
$lpha_{\mathit{ICAPM}}$	0.364	-0.338	-0.483	0.846	-0.372	-0.257	0.341	0.713
t-stat	1.41	-1.13	-1.27	2.60	-1.12	-0.84	1.16	1.68
β_{BVIX}	-0.094	-0.135	-0.385	0.291	-0.291	-0.299	-0.100	0.191
t-stat	-1.04	-1.13	-2.11	2.53	-1.86	-2.29	-1.90	1.17

SEO	MB1	MB2	MB3	3-1	Size1	Size2	Size3	1-3
$lpha_{CAPM}$	0.022	-0.262	-0.665	0.686	-0.495	-0.376	-0.215	0.280
t-stat	0.10	-1.17	-2.80	2.91	-2.04	-1.94	-1.52	1.14
$lpha_{\mathit{ICAPM}}$	0.022	-0.177	-0.340	0.362	-0.269	-0.171	-0.234	0.036
t-stat	0.11	-0.83	-1.25	1.40	-1.01	-0.90	-1.61	0.12
β_{BVIX}	-0.010	-0.092	-0.339	0.329	-0.232	-0.217	0.008	0.240
t-stat	-0.15	-1.61	-3.06	4.04	-2.07	-3.44	0.12	1.55

-

New Issues Puzzle Explained!

- BVIX explains about 40% of the new issues puzzle and leaves the rest insignificant
- New issues underperformance is driven primarily by small and growth new issues
- BVIX is successful to explain their abysmal returns and why they are different from large and value new issues
- The results are even stronger if I drop January 2001, when IPOs make 39%, and SEOs make 24%

-

Cumulative Issuance

Cumulative Issuance Puzzle

- Cumulative issuance log growth in market value minus log cumulative returns in the past five years
- It shows the net effect of all equity issuing and retiring activity (but no IPOs!)
- Daniel and Titman (2006) show that firms with high cumulative issuance earn abnormally low future returns
- They say it is managers taking advantage of intangible information mispricing
- I need to show high cumulative issuance means small growth

Alexander Barinov (U of Georgia)

Table 5B: Size, Market-to-Book, and Cumulative Issuance

	Small	Size2	Size3	Size4	Big
Low	0.104	0.079	0.112	0.069	0.005
t-stat	5.4	3.8	5.3	3.8	0.1
MB2	0.194	0.162	0.122	0.084	0.043
t-stat	7.2	5.9	4.3	3.5	1.0
MB3	0.309	0.262	0.170	0.124	0.031
t-stat	8.0	9.4	9.0	5.8	1.1
MB4	0.450	0.445	0.316	0.210	0.049
t-stat	9.8	9.5	8.3	8.0	1.9
High	0.662	0.721	0.563	0.354	0.074
t-stat	16.8	18.8	11.8	14.7	2.9

-

< ロ > < 同 > < 回 > < 回 >

Table 6A: Aggregate Volatility Risk and the Cumulative Issuance Puzzle

Panel A. EW Returns

	Lowlss	Medlss	Highlss	H-L
$lpha_{{\it CAPM}}$	0.574	0.513	-0.065	-0.639
t-stat	3.00	2.37	-0.23	-2.66
$lpha_{\it ICAPM}$	0.503	0.586	0.126	-0.378
t-stat	2.70	2.61	0.41	-1.31
β_{BVIX}	0.070	-0.081	-0.203	-0.273
t-stat	1.41	-1.19	-1.65	-2.09

Table 7: Cumulative Issuance Puzzle in Cross-Section

	MB1	MB2	MB3	1-3
$lpha_{{\it CAPM}}$	0.124	-0.319	-1.063	1.187
t-stat	0.55	-1.37	-2.67	4.30
$lpha_{\mathit{ICAPM}}$	0.232	-0.118	-0.456	0.688
t-stat	0.97	-0.43	-0.85	1.77
eta_{BVIX}	-0.117	-0.211	-0.624	0.507
t-stat	-1.34	-1.84	-2.44	2.58

Alexander Barinov (U of Georgia)

Aggregate Volatility Risk

Image: A mage: A ma

Explaining the Cumulative Issuance Puzzle

- High cumulative issuance firms are usually small growth
- BVIX factor explains about 45% of the cumulative issuance puzzle and makes the alphas insignificant
- Cumulative issuance puzzle is stronger for growth firms
- BVIX can explain the cross-section of the cumulative issuance puzzle

Liquidity Factor vs. BVIX Factor

- Eckbo and Norli (2005) show that a turnover-based liquidity factor explains IPO underperformance
- Liquidity factor and BVIX have large positive correlation of 0.45
 - Strange, because small firms load negatively on BVIX and should load positively on liquidity risk
 - If turnover picks up uncertainty, the liquidity factor can be a proxy for BVIX
- In two-factor models, BVIX explains returns to the liquidity factor, but not vice versa

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Robustness Checks

Table 9: Horse Race

	S1G1	S2G1	IPO	SEO	CumIss
α	-0.088	0.090	0.043	-0.019	-0.088
t-stat	-0.23	0.39	0.16	-0.10	-0.46
eta_{BVIX}	-0.064	-0.070	0.171	0.073	0.082
t-stat	-0.51	-0.71	1.79	1.07	1.56
eta_{LMH}	-1.049	-0.738	-1.099	-0.670	-0.861
t-stat	-7.50	-7.57	-8.94	-9.77	-10.77

Alexander Barinov (U of Georgia)

Aggregate Volatility Risk

November 20, 2008 27 / 31

3

イロト イポト イヨト イヨト

Table 9: Horse Race

	S1G1	S2G1	IPO	SEO	CumIss
α	-0.088	0.090	0.043	-0.019	-0.088
t-stat	-0.23	0.39	0.16	-0.10	-0.46
eta_{BVIX}	-0.064	-0.070	0.171	0.073	0.082
t-stat	-0.51	-0.71	1.79	1.07	1.56
$m{eta}_{LMH}$	-1.049	-0.738	-1.099	-0.670	-0.861
t-stat	-7.50	-7.57	-8.94	-9.77	-10.77

3

<ロ> <同> <同> <同> < 同> < 同>

Table 10A: Liquidity Factor and Cross-Section of New Issues Puzzle

	Size1	Size2	Size3	3-1
$lpha_{\it IPO}$	0.150	0.199	0.379	0.229
t-stat	0.46	0.75	1.35	0.64
eta_{LMH}	-1.069	-0.953	-0.148	0.922
t-stat	-8.64	-6.37	-1.72	5.73
$lpha_{ extsf{SEO}}$	0.037	0.079	-0.121	-0.158
t-stat	0.14	0.39	-0.76	-0.60
eta_{LMH}	-0.720	-0.616	-0.126	0.594
t-stat	-12.30	-6.19	-1.27	6.05

Alexander Barinov (U of Georgia)

< ロ > < 同 > < 回 > < 回 >

Liquidity Factor vs. BVIX: Conclusion

- Eckbo and Norli's liquidity factor picks up aggregate volatility risk, not liquidity risk
 - Liquidity factor and BVIX factor are strongly and counterintuitively positively correlated
 - BVIX factor explains returns to the liquidity factor, but not vice versa
 - Smallest growth firms seem to be extraordinary hedges against "liquidity risk"
 - "Liquidity risk" is much lower for the smallest new issues than for the largest ones

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

- Aggregate volatility risk measured by the BVIX factor is the common explanation of
 - Small growth anomaly
 - New issues puzzle
 - Cumulative issuance puzzle
- BVIX factor explains the cross-section of the new issues puzzle and cumulative issuance puzzle
- Liquidity factor of Eckbo and Norli (2005) captures aggregate volatility risk, not liquidity risk
- January 2001 is a powerful outlier for small growth