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Two major sources of imprecision in human knowledge, linguistic inexactness and
stochastic uncertainty, are identified in this study. It is argued that since in most
realistic situations these two types exist simultaneously, it is necessary to combine
them in a formal framework to yield realistic solutions. This study presents such a
framework by combining concepts from probability and fuzzy set theories. In this
framework four models (Kwakernaak, 1978; Yager, 1979; 1984b; Zadeh, 1968;
1975) that attempt to account for the numeric or linguistic responses in various
probability elicitation tasks were tested. The linguistic models were relatively
effective in predicting subjects' responses compared to a random choice model. The
numeric model (Zadeh, 1968) proved to be insufficient. These results and others
suggest that subjects are unable to represent the full complexity of a problem.
Instead they adopt a simplified view of the problem by representing vague linguistic
concepts by multiple-crisp representations (the a-level sets). All of the mental
computation is done at these surrogate levels.

1. Introduction

1.1. BACKGROUND
Most real world decision-making takes place in an environment in which the states
of nature, feasible actions and outcomes, and available information are only
imprecisely known. Imprecision has been quantified primarily by means of probabil
ity theory, a practice which tacitly implies that imprecision of any sort can be
equated to randomness. Several authors (Bellman & Zadeh, 1970; Dutta, 1985)
have emphasized the need for differentiating among the sources of imprecision
underlying particular assumptions or items of evidence. Imprecision can arise from a
variety of sources (Dutta, 1985): incomplete knowledge. inexact language, am
biguous definitions. inherent stochastic characteristics, measurement problems, etc.
This work deals with two major sources of imprecision in human knowledge:
stochastic uncertainty, and linguistic inexactness. Specifically, it investigates the
combined effects of stochastic uncertainty and linguistic inexactness in a probability
encoding task.

The plan for the rest of the Introduction section is as follows. In the remainder of
this section we briefly discuss stochastic uncertainty and linguistic inexactness. The
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next section discusses relationships between the two concepts. In it we emphasize
the inability of classical probability theory to cope with the multiplicity of kinds of
imprecision that one encounters in decision analysis, and the need to independently
account for the vague meanings of linguistics terms. Section 1.3 discusses the
widespread use of linguistic terms in decision analysis and the apparent advantage of
thinking about uncertainty in a linguistic rather than numeric mode. We conclude
that there is a need for a general framework for combining stochastic uncertainty
and linguistic inexactness to deal with situations in which both sources of
imprecision exist. Section 1.4 presents such a framework. Section 1.5 reviews four
models based on fuzzy set theory for representing the probability of a fuzzy or
non-fuzzy event in a fuzzy or non-fuzzy environment, and locates these models in
the framework developed in Section 1.4. Finally, Section 1.6 presents the purpose of
the experimental work.

At least three levels of subjective stochastic uncertainty can be differentiated. On
the first level it is assumed that beliefs can be represented by a single probability
measure defined over the states of nature. This assumption is very strong since it
amounts to the agent having complete information in the sense that he or she is
certain of the probabilities of the possible states of nature. On the second level it is
assumed that the beliefs can be represented by a second order probability
distribution over probability values. The third level refers to the case where none of
the above assumptions can be made. Whereas these levels have received little
attention among subjective statisticians (de Finetti, 1977), their distinction for
understanding the psychology of choice and inference behaviour has been demon
strated experimentally (Becker & Brownson, 1964; Ellsberg, 1961; Yates &
Zukowski, 1976).

The second source of imprecision is linguistic inexactness. Black (1937) distingu
ished three kinds of inexactness in natural language. The first is generality, in which
a word applies to a multiplicity of objects in the field of reference. For example, the
word chair can apply perfectly well to objects differing in size, shape and material.
The second kind of linguistic inexactness is ambiguity, which occurs when a finite
number of alternative meanings have the same phonetic form (e.g., bank), and the
third is vagueness, in which there are no precise boundaries to the meaning of a
word (e.g., young, rich).

In general, a proposition is uncertain if it involves a stochastic process; a
proposition, whose contents state the value of some variable, is linguistic inexact if
this value is not sufficiently determined with respect to a given scale (Dutta, 1985).
Note that an exact proposition may be uncertain ("it will be 4°C tomorrow"), and a
proposition which is completely certain may be linguistically inexact ("it is warm
now").

1.2. TIlE RELATIONSHIP BETWEEN STOCHASTIC UNCERTAINTY AND LINGUISTIC
INEXACTNESS
Central to the standard axiomatic model of subjective probability (Ramsey/de
Finetti/Savage) is the idea that probability, which is a measure of one's degree of
belief, can be operationalized via choices among gambles (Savage, 1954). This
model encounters difficulties even in an idealized paradigm, such as Ellsberg's
(1961) classical paradox of "ambiguous-probabilities," or Gardenfors & Sahlin's
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(1982) example of "unreliable" probabilities. It is clear in these examples that the
ordinary additive probability representation does not capture the entire psychologi
cal reality of uncertainty. Demonstrations such as those by Ellsberg (1961) and
Gardenfors & Sahlin (1982) suggest that the notion of probability refers in natural
language to several distinct states of mind, to which the rules of the standard
calculus of probability may not be equally applicable (Kahneman & Tversky, 1982).

Numerous attempts have been made to develop a more general model of
subjective uncertainty (Budescu & Wallsten, 1987). Two principle alternatives that
have been suggested within a probability framework are: (i) second order
probabilities, described by a probability density function over probabilities; and (ii)
interval or lower-and-upper probabilities, described by a rectangular indicator
function. In both models the probability of an event is represented by some sort of
function defined on the unit interval rather than a single point in the interval. In this
work we are interested in cases where neither of the above alternatives are
justifiable on the basis of the available information. Such is the case, for example,
whenever the event itself is loosely defined, or whenever the available information
with regard to the probabilities of possible states of nature is given in linguistic
rather than numeric terms.

Consider for example the following problem, in which the emphasized words have
vague meanings: An urn contains approximately 100 balls of various sizes, of which
several are large. What is the probability that a ball drawn at random is not large?
(zadeh, 1984).

The main limitation of classical probability theory in coping with this problem is
that it is based on two-valued logic. This means that all predicates and concepts in
probability theory have crisp denotations, a restriction that rules out events defined
by linguistic predicates like warm, young, short, and/or linguistic quantifiers like
most, several, few, and/or linguistic probabilities like probably, likely, or doubtful
(Zadeh, 1986). What is needed is a general computational system for representing
the meaning of inexact propositions.

Within the theory of fuzzy sets the vague meaning of a linguistic term or phrase is
represented by a membership function from the universe of discourse to the [0,1]
interval. The function assigns the value zero to elements that are not in the concept
represented by the phrase. The value one is assigned to elements that are definitely
in the concept, and intermediate values are assigned to elements with intermediate
degrees of membership in the concept represented by the phrase. If the linguistic
term is well defined then the membership function can take on only 0 or 1. If the
concept is not well defined (e.g., young), then the membership function can take on
any value in the [0, I) interval. Note that all three types of linguistic inexactness
distinguished by Black (1937) can be represented by the membership function;
generality occurs when the portion of the universe of discourse where the
membership value equals one is not just one point; ambiguity occurs when there is
more than one local maximum of the membership function; and vagueness occurs
when the function takes values other than just 0 and 1 (Goguen, 1968-69).

There are both fundamental differences and similarities between fuzzy set theory
and probability theory, as well as relationships between the two (Gaines, 1978). In
this work we advocate combining both fuzzy set and probability theories in order to
deal with situations for which each theory alone is inadequate. Fuzzy set theory and
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probability theory should be viewed not as rivals, but rather as similar logical
systems, having a common core that is adequate for many aspects of decision
analysis, and differing in certain well-defined features that mayor may not be
relevant in particular applications.

1.3. TIIE USE OF LINGUISTIC TERMS IN DECISION ANALYSIS
Forecasting is essential for decisions that involve possible future events. Sometimes
the forecaster and the decision maker are the same person, but frequently, however,
one person forecasts, while another makes the decisions. A necessary condition for
good decision processes is good communication between these two persons
(Beth-Marom, 1982).

Poor communication resulting from the use of ambiguous expressions can lead to
a disaster. Behn & Vaupel (1982) offer the following example:

In early 1961, President Kennedy ordered the Joint Chiefs of Staff to study the Central
Intelligence Agency's plan for an invasion of Cuba by expatriates. The general in charge
of the evaluation concluded that its chances of overall success were "fair," by which he
meant that they were 30%. Yet, when the Joint Chiefs sent their report to the president,
no probabilities were included; instead the report stated. "This plan has a fair chance of
ultimate success," the rest is history. Years later the general felt that the misinterpreta
tion of the word "fair" had been one of the central misunderstandings of the Bay of Pigs
fiasco, and he was still unhappy with himself for not insisting that a specific, numerical
assessment be used. Recalled the general, "We thought other people would think that "a
fair chance" would mean "not too good. "

(Quoted by Peter Wyden, 1979, pp . 89-90.)

A second recent example is taken from the report of the Rogers Committee on
the space shuttle disaster. This example demonstrates how widespread the practice
of qualitatively estimating frequencies and probabilities is. This is how Milton
Silveira, a NASA official, described the way NASA estimated the risk involved in
launching the space shuttle:

They get all the top engineers together down at Marshall Space Flight Center and ask
them to give their best judgement of the reliability of all the components involved ." The
engineers' adjectival descriptions are then converted to numbers. For example, Silveira
says, "frequent" equals 1 in 1000; "occasional" equals 1 in to 000; and "remote" equals 1
in 100,000.

When all the judgements were summed up and averaged, the risk of a shuttle booster
explosion was found to be 1 in 100000. That number was then handed over to DOE.

(Science, July 1986)

These kinds of examples have led some researchers to conclude that we need an
agreed-upon set of rules for translating linguistic probabilities into numbers (Kent ,
1964), and others to conclude that forecasting organizations should change their
policy and use numerical expressions of probability rather than verbal ones
(Beyth-Marom, 1982; Bryant & Norman, 1980; Nakao & Axelrod, 1983). Behn &
Vaupel (1982) arrive at the same conclusion. They write:

"for decision makers, ambiguous probability statements are useless. They simply do not
provide the information necessary to analyse a decision ." Behn & Vaupel (1982), p. 78.
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The emphasis on the exclusive use of the numerical representation of uncertainty
even when the data are imprecise is based on the current inability to effectively
communicate in linguistic terms, and ignores the following points:

(1) Linguistic communication is common practice. In addition to the above
examples, Szolovits & Pauker (1978) found that while experts seem quite
prepared to give qualitative estimates of likelihood, they often refuse to give
precise numerical estimates of outcomes.

(2) It may be possible to measure the vague meanings of linguistic terms, and
hence eliminate the communication objection. A method, based on fuzzy set
concepts, to measure the vague meaning of linguistic terms has been
developed by Wallsten and his associates (Wallsten, Budescu, Rapoport,
Zwick & Forsyth , 198(0) and by others (Norwich & Turksen, 1984;
Zimmermann, 19&7; Zwick, 19&7a; Zysno, 1981) and has been used success
fully with linguistic probabilities. The meanings of linguistic terms such as
doubtful, probable or likely are expressed as membership functions over the
[0, I) probability interval. Wallsten et al. (19800) have demonstrated that the
derived membership functions have interpretable shapes and, more impor
tantly, predict the judgements well for each subject in an independent task .
Subjects' membership functions were stable over time, although considerable
between-subject variability was observed. The reader is referred to Wallsten
et al. (l986a) and to Rapoport, Wallsten & Cox (1987) for a full discussion of
this topic.

(3) Thinking about uncertainty may be facilitated by the use of linguistic terms.
For example, Zimmer (1983) found that subjects are better able to consider
complex dependencies in a problem if they are to make verbal judgements
than if they are to provide numerical judgements. Kochen (1979), based on
findings in perception and problem solving, concluded that excessive precision
and (apparent) clarity may be as ineffective as excessive vagueness and
confusion. The attempt to perceive a complex situation with an "inappropri
ately high" degree of precision may fail, with costly consequences. Fox,
Barber & Bardhan (1980) have designed a rule-based system for the diagnosis
of indigestion in which hypotheses formed from data were marked with strings
like "possible", "maybe", etc. They claim that the imprecise approach was
viable partially because of the ability to exploit patterning in the data which
the Bayesian method could not. The exploitation of the qualitative features of
the problem could therefore compensate for the loss of precision normally
provided by numerical procedures. Nagy & Hoffman (1981) conducted a
preliminary study of the performance difference between subjects using
natural language estimates and those using numerical estimates in assessing
the security risks of various computer installation configurations. Though the
study used few subjects, it indicated that the use of natural language rather
than numbers was associated with an increase of accuracy due to the
elimination of extremely inaccurate estimates.

(4) For many decisions precise quantitation is unnecessary and may in practice be
an illusion when the data are unreliable. Commenting that numbers denote
authority and a precise understanding of relationships, a committee of the US
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... important responsibility not to use numbers, which convey the impression of
precision, when the understanding of relationships is indeed less secure. Thus, while
quantitative risk assessment facilitates comparison. such comparison may be illusory or
misleading if the use of precise numbers is unjustified.

(National Research Council Governing Board Committee on the Assessment of Risk,
1981, p. 15).

All of the above points suggest that in order to take advantage of the possible
superiority of thinking about uncertainty, in linguistic terms, in line with common
practice, a general framework is needed that will combine stochastic uncertainty and
linguistic inexactness. Such a framework is developed in the next section.

1.4. A FRAMEWORK FOR COMBINING STOCHASTIC UNCERTAINTY AND LINGUISTIC
INEXACTNESS
Probability theory and the theory of fuzzy sets are both used to study imprecision.
Probability theory deals with imprecision due to the occurrence of random events,
while fuzzy set theory deals with imprecision inherent in the use of natural language.
Consider once again the following problem in which the emphasized words have a
vague meaning: An urn contains approximately 100 balls of various sizes, of which
several are large. What is the probability that a ball drawn at random is not large?
(Zadeh , 1984).

One way to deal with such a combination of randomness and natural language
concepts, is to fuzzify the concept of a random variable. A random variable consists
of two components, a real valued function from the sample space to the real line
(variable), and a probability structure defined over the sample space (random). The
concept of a random variable can be fuzzified through each of its components.

Definition 1 (Zadeh, 1965). Let U be the universe of discourse. A fuzzy subset F of
U is characterized by a membership function IlF: U - [0, 1), which associates with
each element u of U a number IlF(U) representing the grade of membership of u in F.

Definition 2 (Dubois & Prade, 1982a). A fuzzy function I from a set U to a set V is
a function from U to the set of nonempty fuzzy subsets of V, namely P(V) - {ep}.

In other words, each element ue U corresponds to a fuzzy set leu) defined on V,
whose membership function is Ili(u), and I(u) is nonempty. Other definitions of
fuzzy functions exist in the literature (Chang & Zadeh, 1972; Negoita & Ralescu,
1975). In this study however, we will adopt the above definition. Intuitively, a fuzzy
function is an ill-defined function in the sense that to a given precise element u E U,
there correspond several more or less possible images. For example, a function that
assigns a linguistic age (represented by a fuzzy subset of the real line) to each
member of a set of students is a fuzzy function.

Dubois & Prade (1978a; 1982a,b,c) have systematically studied the fundamental
theory of fuzzy set-valued functions and its application.
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Definition 3 (Zadeh, 1975). Let X be a variable, whose universe of discourse, Q, is
a finite set. Q={UI.U2' ...• U..}. With each u., ;=1. .... n, we associate a
linguistic probability. The n-ary linguistic vector (PI •... , p.. )constitutes a linguistic
probability assignment list. and will be referred to as a linguistic probability
distribution or a fuzzy probability structure.

For example, by assigning the phrase "very likely" to the event "rain tomorrow",
and the phrase "very unlikely" to the event "no rain tomorrow", we define a fuzzy
probability structure over the sample space Q ={rain, no-rain}.

Several authors (Adamo, 1980; Nguyen, 1977; Zadeh, 1975) have studied the
properties of a fuzzy probability structure.

Definition 4 (Zadeh, 1968). Let Q be a sample space. A fuzzy event is a fuzzy
subset of Q.

In what follows the term crisp will refer to the classical definitions of function,
probability structure, and event.

Using the above definitions, we propose combining stochastic uncertainty and
linguistic inexactness by defining four different kinds of random variables.

Let Q be a sample space mthe real line, and P(m) the set of all fuzzy subsets of
!1il, then:

A Crisp Random Crisp Variable is a Crisp function, X,

with a crisp probability structure defined on Q.
A Crisp Randon Fuzzy Variable is a fuzzy function, X.

X:Q-P(9t).

with a crisp probability structure defined on Q.

A Fuzzy Random Crisp Variable is a crisp function, X.

X :Q- m
with a fuzzy probability structure defined on Q.

A Fuzzy Random Fuzzy Variable is a fuzzy function, X.
X:Q-P(91)

with a fuzzy probability structure defined on Q.

For each of the four types of random variables one can ask: "What is the
probability of an event," where the event can be either crisp or fuzzy. Furthermore,
the question can be answered with either a crisp probability number or a fuzzy
number expressed as a linguistic probability. Table 1 presents the 16 possible
combinations of crispness and fuzziness pertaining to the probability structure over
the space (random), the function into which the space is mapped (variable), the
event, and the response. The rightmost column of Table 1 references the original
work in each of these categories, some of which will be summarized in the next
section. The many empty cells in the rightmost column emphasize that many of the
combinations have not yet been explored. It is important to note that other
definitions of random fuzzy variables (and their expectations) have been proposed
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TABLE 1
The 16 possible combinations of crispness and fuzziness pertaining to the probability

structure (random), the function (variable), the event, and the response

Random Variable Event Response Original work

Crisp Crisp Crisp Crisp Classical probability theory
Crisp Crisp Crisp Fuzzy
Crisp Crisp Fuzzy Crisp Zadeh (1968)
Crisp Crisp Fuzzy Fuzzy Yager (1979; 1984b)
Crisp Fuzzy Crisp Crisp
Crisp Fuzzy Crisp Fuzzy Kwakemaak (1978; 1979)
Crisp Fuzzy Fuzzy Crisp
Crisp Fuzzy Fuzzy Fuzzy
Fuzzy Crisp Crisp Crisp
Fuzzy Crisp Crisp Fuzzy Zadeh (1975)
Fuzzy Crisp Fuzzy Crisp
Fuzzy Crisp Fuzzy Fuzzy Zadeh (1975)
Fuzzy Fuzzy Crisp Crisp
Fuzzy Fuzzy Crisp Fuzzy
Fuzzy Fuzzy Fuzzy Crisp
Fuzzy Fuzzy Fuzzy Fuzzy

by Puri & Ralescu (1988), Nahmias (1978; 1979), Nguyen (1977), and Stein & Talati
(1981).

Ideally, we would like to have one general model that accounts for human
behaviour in all 16 cases. Such a model might treat all celJs as special cases of the
last row of Table 1, in which a fuzzy (linguistic) response is given to a query
regarding the probability of a fuzzy event, given a fuzzy random fuzzy variable.
However, from a psychological point of view it is not clear whether the same
underlying judgment process operates in each of the 16 cells. It might be the case
that individuals cope with combinations of randomness and liguistic inexactness in
qualitatively different ways, depending on the exact combination and location of the
linguistic inexactness.

The following section reviews four models developed in the fuzzy set literature.
Each one pertains to a different row in the taxonomy of Table 1, and each was
tested in the experiment to be described subsequently. The development of a unified
model must await further research .

1.5. MODELS BASED ON FUZZY SET TIlEORY FOR REPRESENTING TIlE
PROBABILITY OF A (F1JZZY) EVENT GIVEN A (FUZZY) RANDOM (FUZZY)
VARIABLE
One model, due to Zadeh (1968), pertains to the probability of a fuzzy event given a
crisp random crisp variable. This is the only model tested in this work that assumes a
numeric response. Yager's model (1979; 1984b) pertains to the same background
information as Zadeh's, but assume a linguistic response. A model developed by
Kwakernaak (1978; 1979) pertains to the probability of a crisp event given a crisp
random fuzzy variable and assumes a linguistic response. Finally, another model
developed by Zadeh (1975) pertains to the probability of a crisp event given a fuzzy
random crisp variable, and assumes a linguistic response.



UNCERTAI/IITY AND LINGUISTIC INE)(ACTNr..ss 77

1.5.1. The real-valued probability of Q fuzzy event given a crisp random crisp
variable (Zadeh. 1968)
Consider the data in Table 2. What is the probability that a randomly selected
person from this group will be young? This is a query that demands a numerical
response about a fuzzy event given a crisp random crisp variable.

Let (~". a. P) be a crisp probability space in which 0 is the a-field of Borel sets in
rffl" and P is a probability measure over ~Il" . The probability of a fuzzy event A (a
fuzzy subset of ~" whose membership function is Borel measurable) is defined by
Zadeh to be the Lebesgue-Stieltjes integral

where Il,ll is the membership function of the fuzzy event A. If A is a finite set, then
P(A) is simply the weighted sum of the membership values of the elements in A.
with each value weighted by its respective probability. In more general terms, peA)
is the expected value of the membership function of A. This is a straight forward
generalization of the classical case where the probability of A equals the expected
value of the characteristic function of A.

Example 1. Let the concept young be represented by the following membership
function:

{

I if US 25

IlVOUNO(U) = (I + «u - 25)/5)2)-1 if 25< u < 100
o if u ~ 100

On the basis of the above function, the membership values of the numerical ages
are presented in Table 2.

Using Zadeh's definition, the probability that a randomly selected person from

TABLE 2
Probability distribution of numerical ages
in a certain group and the membership
values of the numerical ages in the fuzzy set

YOUNG (ue Example I)

Probability Age #A VOl INO(age)

0·300 50 0-038
().IlX) 43 0·012
(I·2CXl 37 0·148
0·200 30 0·500
0·050 28 0·735
().()2'i 20 1.(0)
O·02.'i 19 1.(0)
o- J(X) 17 1.(0)
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Table 2 will be young is 0·335, calculated as:

(0,3 x 0,038) + (0,1 x 0·072) + (0·2 x 0,148) + (0,2 x 0·5)

+ (0·75 x 0·735) + (0,025 x t) + (0·025 x t) + (0,1 x 1) = 0·335,

where the first term in each product is the probability of a given age (from Table 2)
and the second term is the age's membership value in the concept young. (For more
details see Buoncristiani, 1980; 1983; Khalili, 1979; Klement & Schwghla, 1981;
Ralescu & Ralescu, 1984; Smets, 1982a,b; Yager, 1982).

1.5.2 Linguistic models
The next three models have two properties in commn . First , they all yield fuzzy
probabilities (i.e., membership functions over [0, 1]), which can be interpreted as
representing specific linguistic responses. Second, the models all proceed by (a)
forming multiple crisp representations of the problem consistent with the overall
fuzzy structure, (b) carrying out simplified calculations at each crisp representation,
and (c) combining the results of these calculations to yield the resulting membership
function over [0,1]. For example, if the vagueness in a problem is due to a fuzzy
event (e.g. , young), then the model considers all possible crisp events (i.e., intervals
of the real line) that agree more-or-less with the fuzzy concept. A probability is
estimated for each of the crisp events, and a membership value is calculated for each
probability. This procedure is consistent with theoretical developments in behavioral
decision theory which postulate that subjects form and act upon simplified
representations of problems (Slovic, Fishhoff, & Lichtenstein, 1977).

The fuzzy probability of a fuzzy event given a crisp random crisp variable (Yager,
1979, 1984a,b; Klement 1982). Yager noted that intuitively it appears unnatural for
the probability of fuzzy events to be real numbers. It would be more natural if the
probabilities were fuzzy subsets themselves. Hence, he assumed that for each
possible numeric response p, subjects evaluate the truth value of the proposition:
"the probability of A is at least p," and "the probability of A is at most p," and
combine these evaluations through the min rule. The evaluations are accomplished
by imagining or mentally simulating different possible crisp events (A~s) associated
with the linguistic term defining event A . Formally, let A be a fuzzy subset of Q, and
let P be a crisp probability measure defined on 0, then using the extension
principle, and following Zadeh's (1981) work on fuzzy cardinality, Yager defined the
following three probabilities:

I-lFGP(A)(P)=sup{aIP(Aa)~P} pe[O, 1]. (1)
a

I-lFGP(A)(P) should be interpreted as the truth value of the proposition: "the
probability of A is at least p."

I-lFLP(A)(P) = 1 - I-lFGP(A)(P) = sup {a Ip(Aa) ~ 1 - P }.
a

(2)

I-lFGP(A)(P) should be interpreted as the truth value of the proposition: "the
probability of not-A is at least p," and I-lFLP(A)(P) as the truth value of the
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0·735 < Q'S 1.

os Q'sO·038

0·038 < Q' s 0·072

0-072< Q' s 0·148

0·148< Q' sO·5

0·5 < Q'sO·735

P(An) =1

P(An) =0·7

P(A..) =0·6

P(An) =0·4

P(A .. ) =0·2

P(A..) =0·15

proposition: "the probability of A is at most p."

FEP(A) I: FGP(A) n FLP(A), (3)

where /lFEP(,A)(p) is the truth value of the proposition : "the probability of A is p."
For the properties of FEP(A) sec Yager (J984b).

Example 2 Let the concept young be defined as in Example 1. Then using the
database in Table 2:

A",= {1. 2, 3. 4. 5, 6, 7. tI}

A",={2. 3,4,5.6,7, tI}

A", = {3, 4, 5, 6, 7. 8}

A", ={4. 5, 6 , 7, H}

A", = {5, 6, 7, 8}

A",={6,7,8}

where 1,2, ...• 8 are the eight age groups in Table 2. and A =YOUNG. Then
FGP(YOUNG) is given by:

J.lFOP(YOtlNOI( p) =

1

0·735

()·5

0·148

()·on
0·038

if osp S 0·15

if 0·15 < P es o·2
if 0·2 <p s 0·4

if 0·4 < P s 0-6

if 0'6<p sO·7

if O·7 < P s 1·0

FLP(YOUNG) is given by:

o
0·265

0·5

IlRPIYotINlI)(P) = 0·852

0·928

()'962

1

if Osp <0-15

if 0·15 s p < 0·2

if 0-2 «» <0·4

if ()·4 s P < 0·6

if 0-6 s P < 0-7

if O·7 s P < 1·0

if P = 1·0.

And FEP(YOUNG) is given by;

()

()·265

0·5

()'148

0·072

()·03S

if Osp <0·15

if 0·15 sp <0-2

if 0·2 sp <0·4

if 0·4 s p < 0·6

if O·6sp <0·7

if O·7 s p -s 1·0.
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The fuzzy probability of a crisp event given a crisp random unimodal fuzzy variable
(Kwakernaak, 1978, 1979). Consider the information presented in Table 3 and the
question: "What are the chances that a randomly selected person will be 43 to 48
years old?" This is a query about a crisp event given a crisp random fuzzy variable.

Note that Kwakernaak uses the term fuzzy random variable for what we call a
crisp random fuzzy variable. Our usage emphasizes that the fuzzy component is the
variable (function) rather than the probability structure.

Central to this model is the idea of an original of a fuzzy function. Consider again
the data in Table 3 and imagine that these are six friends of yours whose exact ages
you have forgotten. You can only assign each of them to a linguistic age category.
Given this assignment you may consider many different numeric assignments, some
of which are more compatible with the linguistic assignment than others. Each
numeric assignment is treated as a potential original of the linguistic assignment.

Formally, let (0, 0 , P) be a regular probability triple. Suppose that V is a crisp
random crisp variable defined on this triple. Assume now that we are perceiving this
random variable through a noisy signal such that the best we can determine is the
possibility that V(w) = r, where WE 0, and r E~. Namely, we perceive U as a
fuzzy function X mapping 0 to the set of all fuzzy subsets of the real line (P(fIl»
given by

where WE 0 and X.., E P(~).

A crisp random fuzzy variable X is called unimodal if for each WE Q, the
membership function X.., is unimodal.

The random variable V, of which this crisp random fuzzy variable is a perception,
is called an original of the crisp random fuzzy variable. Note that corresponding to a
given crisp random fuzzy variable there exist many originals. The set of all possible
originals of X is a crisp set U· of all possible random variables defined on (0, a, P).

The acceptability that U E U· is the original of X is given by

inf {X..,(U(w»} .
..,eQ

Using Zadeh's extension principle, Kwakernaak defined the expectation of a crisp

TABLE 3
Probability distribution of linguistic

ages in a certain group

Probability

0·30
0·10
0·20
0·20
0·05
0·15

Age

Very old
Old
Approximately 45
45-40
Young
Very young
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random unimodal fuzzy variable to be

(EX)(x) =/1.I~.Url/_' .~.~~ (X...{U{W))}. xe~.
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Next, given a crisp event A. Kwakernaak defined a set of indicator functions of
the fuzzy event X EA. Each function is associated with one element of the sample
space O.

For a fixed to e 0,

if :r =0

if 0< Jr < I
if n = 1.

where

r~{w):csupX... (x), and r:;'(fd)=sUpX... (x).
• _A I.A"

For a fixed to e 0 and 1r e In. II. the number 1~(Jr) indicates the acceptibility that a
fraction :r of the point tu belongs to the event A.

Finally, the probability of A (a Borel set in ;I? ) is defined to be

P(X E A) = EI"""

where I~·A = (l~'A 1lJ) E Q). and associated with each I~'A is the probability of lJ),

hence I X
•

A is a crisp random fuzzy variable .
This model assumes that given a crisp event A, subjects first evaluate the

acceptability that the image of each member of the sample space under the fuzzy
function belongs to the event A. The outcome of this evaluation is a function
I~·A: [0, 1)- [0. 1). Associated with each function is the probability of lJ). Next,
subjects mentally simulate all possible originals of /,'" A and compute the expected
value under each possible original. The outcome is then combined according to the
max-min rule.

Example 3. Consider again the information presented in Table 3 and the
question: "What are the chances that a randomly selected person will be 43 to 48
years old?" Let the linguistic ages be represented by the following fuzzy subsets of
gl:

{

o ifus50

JJOl.I>(U) = (II + ((u - SO)/S) - ~ ) 1 if 50 < II < 100
if II ~ 100

{

I if U :s 25
JJVOllN(i(U) = (I + «II - 25)/5)~) I if 25< 11< I<X)

o if II ~ HX)

IJVI It Y III n( II) "" I,JoI 1)( II»Z

I' VI·Itv VlIflNO( II) = II' VOl IN(l( U»2
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if u s40

if 40<u S45
if 45 <u S 50

if 50<u
{~u - 40)/(45-40)

JlAPPRoXIMATELY4~(U) = (~O - u)/(50 - 45)

{
I if 40 SUS 45

Jl.S-40(U) = 0 otherwise

Using Kwakernaak's definition (and algorithms for the discrete case), the probabil
ity that a randomly selected person from the population described in Table 3 will be
43 to 48 years old is given by:

0·6

1

Jlp(XEI43.48!>(P) = 0·07

0·0049

o

if Osp <0·2

if o-2 s p s 0·4

if 0·4 sp sO·45

if 0·45 < P s 0·6

if p >0·6

(For other developments in this category see Kruse, 1982; 1984; Miyakoshi &
Shimbo, 1984.)

The fuzzy probability of a crisp event given a fuzzy random crisp variable (Zadeh,
1975). Consider the information presented in Table 4 and the question: "What are
the chances that a randomly selected person will be 43 to 48 years old?" This is a
query about a crisp event given a fuzzy random crisp variable.

The probability should be the "sum" of doubtful, almost impossible, and unlikely.
If linguistic probabilities are represented as fuzzy numbers of the [0, 1] interval, it is
necessary to have a formula for adding fuzzy numbers. However, the fuzzy numbers
assigned to these linguistic terms are not independent of each other. For example, if
we consider a probability of 0·7 for likely (in Table 4), then we cannot consider the
value 0·4 for doubtful. Thus, the corresponding values are said to be interactive, and
the usual formula for adding fuzzy numbers (using the extension principle) must be
modified to accommodate interactive fuzzy numbers. Zadeh (1975), and Dubois &
Prade (1981) have investigated several kinds of interaction, and provided practical
methods for the computation with interactive fuzzy numbers.

TABLE 4
Linguistic probability distribution of

ages in a certain group

Probability Age

Doubtful 44
Almost impossible 45
Unlikely 47
Likely 50
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Zadeh's (1975) model assumes that given a fuzzy probability structure, subjects
mentally simulate all possible permissible originals of the fuzzy probability structure.
For each permissible original they compute the probability of the crisp event. The
outcomes are then combined according to the max-min rule.

Example 4. Consider again the information presented in Table 4 and the query:
"What are the chances that a randomly selected person will be 43 to 48 years old?"

Let the linguistic probabilities be presented by the following triangular LR fuzzy
numbers (L =R) (see Dubois & Prade , 197M).

Doubtful =(0-2.0-1, 0·l)l.R

Almost impossible = (0,1,0·05, 0-05)LR

Unlikely = (0·3.0·3. 0·3),.R

Likely = (0'4,0-2, 0·2),.R'

Then the interactive sum of doubtful, almost impossible, and unlikely is again an
LR fuzzy number given by (Dubois & Prade, 1981):

P(X E (43. 48» =(0,6, 0·05. 0'05)LR'

Note that P(X E [43, 48» represents a greater probability than what is understood as
the meaning of the concept likely (0-6> 0·4). and is as precise as the term almost
impossible (0·05).

1.6. PURPOSE OF TIlE EXPERIMENT
Giles (1983) has described the current character of research on fuzzy reasoning as
follows:

A prominent feature of most of the work in fuzzy reasoning is its ad hoc nature.... If
fuzzy reasoning were simply a mathematical theory there would be no harm in adopting
this approach; ... f Iowever, fuzzy reasoning is essentially a practical subject. Its function
is to assist the decision-maker in a real world situation. and for this purpose the practical
meaningof the concepts involved is of vital importance (Giles. 1983, p. 263).

Fuzzy set theory would benefit from becoming a behavioural science, having its
assumptions validated, and having its models verified by empirical findings (Kochen,
1975). In particular, there has been virtually no experimental work done with regard
to probability inference in the presence of linguistic inexactness. The experiment to
be described next empirically tested the models described in Section 1. Subjects
were instructed to estimate the probabilities of certain events given databases similar
to those presented in Examples I through 4. The subjects' linguistic or numeric
responses were then compared to the predicted ones based on the tested models.

Shafer & Tversky (1985) compared a subjective probability model to a formal
language. It has a vocabulary-a scale of degrees of probability. Attached to this
vocabulary is a semantic structure-a scale of canonical examples that show how the
vocabulary is to be interpreted, and psychological devices for making the interpreta
tion effective. Elements of the vocabulary are combined according to a syntax-the
theory's calculus. In the context of fuzzy probabilities the vocabulary is a set of
functional representations of probabilities, namely their membership functions over
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the unit interval. While previous work (e.g., Wallsten et al. 19800) was more
concerned with the vocabulary itself, this work is aimed at testing the "semantics" of
the proposed subjective probability language.

Testing the "usefulness" of these models is the first step toward verifying the
semantics of the linguistic probability language (Shafer & Tversky, 1985). A second
step, which is outside the scope of the current research, is to validate the language
syntax. The final step will be to incorporate this language into a formal decision
analysis theory.

2. Method

2.1. SUBJECTS
Twenty native speakers of English were recruited by placing an advertisement in the
students' newspaper, and by distributing this advert among students who particip
ated in a first-year graduate level course in statistics. The advert offered the
opportunity to earn cash ($50) for participation in a multi-session experiment on
probability estimation conducted by the psychology department. From an initial
pool of volunteers, 10 subjects with no probability/statistics background were
assigned to the "naive" group (Group N), and another 10 subjects with moderate to
advanced background in probability/statistics were assigned to the "sophisticated"
group (Group S).

2.2. GENERAL PROCEDURE
Subjects were tested for five sessions of approximately 1 to 11h each. Sessions 2 and
3 were one integral unit broken into two parts due to the lengthy nature of this unit.
Similarly, sessions 4 and 5 were an integral unit. In what follows, sessions 2 and 3
will be referred to as Part 1, and sessions 4 and 5 as Part 2 of the experiment. Part 2
was a replication of Part 1. Session 1 was for practice, and Parts 1 and 2 were for
data collection. The practice and four data sessions were scheduled generally two
days apart. The experiment was controlled by an IBM-PC with stimuli presented on
a color monitor and responses made on the keyboard.

During all sessions, subjects worked through five types of tasks comprised of: (1)
a probability estimation task (PE), (2) a linguistic probabilities scaling task (LPS),
(3) a linguistic ages scaling task (LAS), (4) a linguistic probabilities similarity
judgment task (SIM), and (5) a probability estimation-scaling task. The data
collected in task (5) proved to be too sparse for proper analysis; hence this task will
not be considered further. In addition, sessions 2 and 4 included a sixth type of task
called a linguistic probabilities ranking task (RANK). Trials from all tasks were
presented in all sessions in an inter-mixed random order. In what follows, tasks (2)
through (6) will be referred to as the auxiliary tasks, referring to their status as an
aid to the models' verification rather than directly related to the core issue of
probability estimation in the presence of linguistic inexactness.

In session 1 (the practice session), the general nature of the study was described,
and then each task was described in more detail. Subjects familiarized themselves
with an tasks and modes of response.

Each task will now be described in more detail as it was presented in Session 1.
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2.2.1. PROBABILITY ESTIMATION TASK (PE)

The instructions for this task read in pan (for complete instructions see Zwick,
1987b):

" . .. Every 4th of July. a group of civic clubs organizes a family event in Kenan Stadium.
Imagine an especially great success I year . Some families brought their youngest children
with them, some of whom were only several weeks old. Other families included the great
and even great great grand parents . some of whom were 100 years old . So the audience
in Kenan Stadium that day was extremely variable with respect to age. with some people
who were just born. and others who were as old as IIX) years. But all of them were there
for the same reason-s-celebrating Independence Day .

Now imagine that we select /IX) people from thrs crowd. and we move them to the club
house at the far end of the field. We will select people on the basis of their age only. For
example, we might decide that we want to select IlX) people such that 10 of them are 20
years old, 30 of them are 35 years old and the rest are 50 years old . Or we might decide
that we want 100 people. two persons from each age group of 50 up to 100(two persons
who are 50 years old. two arc 5I years old. two are 52 years old. and so on up to 99 years
old). Or we might decide to choose Ill) people such that there are more old people than
young people in this group. and only few arc very young.

Now suppose that after we have made our selection of people and they are all in the
dub house, we randomly pick one of them to Win a valuable prize . Certainly the chances
of picking a person of a certain age Will depend on the age structure of the group we
brought to the club house . For example. If we decided to choose 100 people all of whom
are 50 years old, then it is certain that a ~) year Illd penon WIll he selected to win the
prize. Or if we decided to choose IIX) people such that all of them arc either old or very
old, but more are very old. then the chances Ihat a very old penon ",ill Win the louery
are higher than the chances that an old person "'111 "'," It.

On each trial we will select a different group of ItXJ people . On some tnals we wdltdl
you how we selected the ages for the ItfOuJlllf IlXl people. and then we ",ill ask you to
judge the chances that a randomly selected pe",ln from the group (the wmner of the
prize) will belong to a certarn age category. FlU example "''I: mIght nk you what arc the
chances that a randomly selected person from thu. ~roup 'li '"uJJJ~ 11K""

Sometimes we will tell you cxactly how thu ':fIlUp .li Itructurcd . on other mab wc
might tell you the prohahility structure of the age ~rou~ only .n I:cncral temu. . . . Artcr
we have told you in some falihilln atlout the 'I:e ,tructurC'. .·e .,11 aU you about the
chances that a randomly selected PCDl," "'111 I1lC of • o:r"l.n .~e or .~e cOltCa:ory . We
might ask about a precise numerical age liuch ali .1~ YCOln old. or .t-,ut an age c;ale~)ry

expressed by a linguistic term liuch 1.1 old. younJl. etc
Sometimes we will alik you to respond Wllh • prota.tt..hty numhc:r (a e • • numhc:,

between 0 and I). and on other tnalli 10 relipond .,th • 1',~flt"ly .urd. ,U<h ., si,t'"
chance, probable, CIC."

There were six different Iypcll of rruhahilal)' t'lhm;alJon uub, co,,"pllnd,n,: In
the six rows with models in Table I . Tahle ~ p,clCnh the ,UlK1u,... (If t'.1ch 1)f'C nf
trial (including the symbolic notation of nch I)~. and the m(-.Jcl uch t)"f'C l\

testing). "Probability structure" rden tn Ihe WilY Ihc snfornuhnn ,ct:mlm# the: at'"
composition of the selected group waJ plclCnl('d .."unhutt''' feref' to ttK- IUY the
actual ages were presented, "Event' Idef' tn the . -a)' 1M qU"'hnn -a' fl1,mu~I(",
and tinaUy "Response" rden 10 the in,ltuC'hnn ~,"('n h- the- -.ultJC"C1' .1 10 hn,. lhe.
should respond. Due to crron in rr('~nlan. t)"J1t' 1.N1.1. dat .. 10 ttK- -.uh,«h . ,,,,h
that the trials were not compatihle With l..Adeh', modd (1'17\) .''Umrt.~'. Ibn I,~

was eliminated from further con,ukrallOn ,:.turt'.. I In ~ p("'IlCnl Oft(' cumrk' of
the computer display from each nf the rcmaimnl1 t,l'C'
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TABLE 5
The structure of the problems included in this study

Probability Symbolic
structure Attribute notation Model

(Random) (Variable) Event Response (Type) Tested

Numeric Numeric Numeric Numeric NNNN Classical
probability
theory

Numeric Numeric Linguistic Numeric NNLN zadeh (1968)

Numeric Numeric Linguistic Linguistic NNLL Yager (1984)

Numeric Linguistic Numeric Linguistic NLNL Kwakemaak (1978)

Linguistic Numeric Numeric Linguistic LNNL zadeh (1975)

Linguistic Numeric Linguistic Linguistic LNLL zadeh (1975)

For the numeric probability structures, a uniform distribution was used for
simplicity. In each part, subjects responded to five problems from type NNNN, and
15 problems from each of the other types (NNLN, NNLL, NLNL, and LNNL), for
a total of 65 different problems. All problems were presented in a random order
intermixed with all other tasks. In a numeric response problem (types XXXN),
subjects were instructed to type in their response (any number from 0 to 1) using the
keyboard. When a linguistic response (types XXXL) was required, a list of
probability words and a list of modifiers was presented at the bottom of the screen.

Equally likely

0·02

o 50

AQe (years)

Please answer the lallow,"~ questIon with
o prObability number between 0 and I.

What are the chances that 0 randomly
selected person wi 1\ be 65 to 80 years old ?

FlG. 1. Probability estimation trial, type NNNN.

\00
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Equally likely

0·02

87

o 40

Aoe (yeorl)

Pleoll onl.er "" fOliowino qUilt ion •• th
a pro~obility number bet.ltn 0 and I.

WhOI are the chancII thaI a randomly
leleeled penon .,11 be Very Old 1

90 100

0'02

o

FlO, 2. Probability cstimation trial. type NNLN.

Equally likely

50
AQe (yeorl)

Whol are Ihe chane.. thaI a randomly
IIleeled perlon .,11 be v.ry Old ?

100

( 0) very
(b) Not
( c) Ou,"
( d) Rolher
( .) Fairly
( I) I-IIOhly
( 0) Some.hot
I II) Ealremely
( r ) Pretty

( I) Good chance
( 2) likely
( 3) Probable

( 4) Doubtful
( 5) Unlikely
( 6 I Improbable
( 7 I SIlQht chance

FlO. 3. Probability cstimation trial. type NNLL.



88

Probabl'l;ly

0 ·16
0 ·28
0 ·11
0 ·40
0 ·05

Agil

Very Old
Old
Middle Aile
Young
Very Younll

R. ZWICK AND T. S. WAUSTEN

What are the chances that a randomly
selected person will be 13 10 45 years old?

( a ) very (I) Good chance
( b) NOl ( 2) Likely
( C ) Quite ( 3) Probable
( d ) Rother
( e ) Fairly (4 ) Doubtful
(f) Hillhly (5 ) Unlikely
( 9 ) Somewhat (6 ) Improbable
( h) E.tremely (7 ) Sllllht chance
(i) Prelly

FIG. 4. Probability estimation trial , type NLNL.

o
UnIi kely I

20

Improbable I
40

Probable

Aile (years)

I
60

Sl ight
chance I

60

Doubtful

100

What are the chances Ihal a randomly
selecled person will be 20 fa 60 yeors Old?

( a) Very
( b) Not

I c) Quile
l d) Rother
( e) Foirly
( f) H ighly
( 9 I Somewhat
( II) E."emely
( I I P,elly

( I) Good chance
( 2) Likely
( 3) P,oboble

I 4) Doublful
I 5) Unlikely
( 6) ImprObable
( 7) Sli ghl chanc e

FIG. S. Probability estimation trial. type LNNL.
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Subjects could choose one of seven primary terms, or they could combine one
primary term with one or two of nine modifiers. The primary terms were : good
chance, likely, probable, doubtful, unlikely, improbable, and slight chance. The
modifiers were : very, not, quite, rather, fairly, highly, somewhat, extremely, and
pretty. These terms were chosen on the basis of a pilot study, in which subjects
generated their own linguistic responses. The terms that were used most frequently
by subjects in the pilot study were included in the current study. The primary terms
were presented in a column at the bottom right of the screen. These terms were
ordered from most to least likely based on each subject's response in the linguistic
probabilities ranking task (details of this task will be presented later in this section).

2.2.2. LINGUISTIC PROBABILmES SCALING TASK (LPS)
The objective of this task was to establish the subject's membership function for
various linguistic probability phrases. Recently, Wallsten, et al. (19860) developed a
method for empirically establishing the memberhsip functions of fuzzy concepts,
based on conjoint measurement and utilizing a graded pair-comparison technique.
Rapoport et al. (1987) further established that the methods of direct magnitude
estimation and graded pair-comparison yield similar membership functions. In this
study we adopted the direct magnitude estimation technique, which is much shorter.
Instructions for this task said in part (the probability number and phrase refer to
those that appeared on the screen in the practice session:

". .. At the top of the screen is a question:
'How well is 0·5 described by probable?'

The probability phrase should be thought of in the age context we have been using,
namely that it represents the chances that a randomlyselected person will be a particular
age or a particular age category. You are to indicate how well the probability phrase
describes the numerical probability in this context. If you think that the probability
number (0'5) is very well described by the phrase, move the arrow all the way to the
right. . . . If you think that the probability number is not at all well described by the
phrase, move the arrow all the way to the left... . The relative location of the arrow on
the line should correspond to how well (right) or how poorly (left) the phrase described
the numerical probability."

The phrases each subject used were classified as expressing high or low
probability, according to the following rules:

(1) A priori classification of the primary terms. Good chance, likely, and probable
were classified as expressing high probability. Doubtful, unlikely, improbable,
and slight chance were classified as expressing low probability.

(2) Any combination of a "primary term" [see (I)] with a modifier, except the
modifier not, was classified as belonging to the primary term category.

(3) Any combination that included the modifier not, was classified as belonging to
the category that the "primary term" does not belong to . (This procedure
produced few misclassifications, all of which involved the combination of not
very or not highly with a primary term. Fortunately, these combinations were
seldom used).

"High" probability terms were presented once (in Part 1) with each of the
following high "core" probabilities: 0·45, 0·55, 0·65, 0·75, 0·85, and 0·95 . "Low"
probability terms were presented once with each of the following low "core"
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probabilities: 0·05, 0·15, 0-25, 0-35, 0·45, and 0-55. The probabilities that actually
appeared on the screen were randomly chosen from the following interval ["core"
-0.03, "core" +0·03]. We adopted this procedure because: (1) Presenting the same
12 numeric probabilities again and again might cause the subjects to treat the
probablity distributions as discrete rather than continuous ones, as they should be
treated; and (2) Assuming consistent responses between parts, this procedure
facilitates subsequent curve-fitting (see Results section), by providing more data
points along the probability axis. We also assumed that since the underlying scaled
concepts are continuous, this technique would not impair the ability to test response
consistency between parts. The total number of trials from this task varied
depending on the number of probability phrases generated by each subject.

2.2.3. LINGUISTIC AGES SCALING TASK (LAS)
The objective of this task was to establish the subject's membership function for
various linguistic age phrases. Again, we adopted the direct magnitude estimation
technique.

Instructions for this task said in part (the linguistic and numeric ages refer to those
that appeared on the screen during the practice session:

"... At the top of the screen is a question:

'How well is 45 described by old?

You are to indicate how well the age phrase described the numerical age in the context
of the whole population at Kenan Stadium. If you think the number (45) is very well
described by the phrase (old), move the arrow all the way to the right.... If you think
that the number is not at all well described by the phrase, move the arrow all the way to
the left.... The relative location of the arrow on the line should correspond to how well
(right) or how poorly (left) the phrase described the numerical age."

In Part 1 each linguistic age was presented once with each of 10 different numeric
ages. The following numeric ages were used:

Very Young: 2,5,6,8,11,12,14,16,20,26

Young: 7,13,16,19,24,29,31,36,39,45
Middle Age: 23,28,33,36,44,47,50,53,62,69

Old: 37,46,53,61,68,72,75,82,84,93

Very Old: 43,57,62,66,74,78,85,92,98,100

Thus, there was a total of 50 trials.

2.2.4. LINGUISTIC PROBABILmES SIMILARITY·JUDGMENT TASK (SIM)
The objective of this task was to choose the best similarity index between
membership functions within a subject. This index was used to determine whether
subjects selected the linguistic responses that were the "closest" to the ones that
were predicted by the various models under investigation. Zwick, Carlstein &
Budescu (1987) have noted that if the objective is to accurately model the behavior
of a specific individual, then the ideal strategy is to determine the best similarity
measure for that individual. This study follows that recommendation. Subjects were
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asked to judge the similarity between probability phrases that were classified as
belonging to the same category (high or low category).

Instructions for this task read in part:

"At the center of the screen you see two non-numerical probability phrases. You have to
judge how similar. or synonymous, you consider the two phrases to be with respect to
describing the probability in the age context we have been using. If you think that the
two phrases are absolutely similar, move the arrow all the way to the right. If you think
that the two phrases are not at all similar. move the arrow all the way to the left. The
relative location of the arrow on the line should correspond to how similar (right) or how
dissimilar (left) the two phrases are.

In Part 1 subjects judged the similarity among eight high probability, and among
eight low probability phrases. Each pair of words was presented once for a total of
56 trials. For each subject, each category contained the first eight probability
phrases that were chosen by him or her.

2.2.5. LINGUISTIC PROBABILmES RANKING TASK (RANK)
Whenever a linguistic response was required in a probability estimation trial, a list
of "primary terms" appeared at the lower right portion of the screen. It was
assumed that ordering these terms from most to least likely would facilitate the
search for the appropriate response. The objective of this task was to guarantee that
this ordering would agree with each subject's opinion.

The instruction for this task said in part:

"At the bottom of the screen you see a list of probability words. You must choose the
word that expresses the highest probability. Note that corresponding to each word is a
number. Type in the number that corresponds to the word that in your opinion expresses
the highest chance. .. . As you can see this word has disappeared from the list and
instead is appearing now at the top of a new list at the top of the screen.

Next you have to choose again the word that expresses the highest probability among
the remaining words in the list at the bottom of the screen. . .. Note again that the
chosen word was eliminated from the bottom list and instead is now appearing at the
second place in the top list. You have to repeat this task until no word is left in the
bottom list.

Note that the top list should agree with your opinion about the way to rank order these
probability words from most to least likely."

Each part started with this task.

3. Results

Recall that in this study subjects were presented with both primary and auxiliary
tasks. The auxiliary category included the two scaling tasks (linguistic ages and
probabilities), and the linguistic probabilities similarity and ranking tasks. The
primary category included the probability estimation task . The structure of the
results section follows the category distinction. First the results of the auxiliary tasks
will be reported. These results include subjects' reliability, practical estimation of
membership functions, and choosing the best similarity index-all at the individual
level. Next the results of testing the models will be organized and reported by
response mode. Numerical models will be reported first (classical probability theory,
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and Zadeh, 1968, [NNLNl), followed by the linguistic models (Yager, 1979, 1984b,
[NNLL]; Kwakernaak, 1978, [NLNL]; and Zadeh, 1975, [LNNL]) .

3.1. AUXILIARY TASKS

3.1.1. Linguistic probabilities scaling task (LPS)

Reliability. A prerequisite for any model testing is that subjects' responses be
consistent beyond the variability expected due to the vagueness inherent in the
meaning of the scaled concepts. Because Part 2 was a partial replication of Part 1, it
is possible to assess subjects' reliability in the direct scaling tasks in which subjects
were instructed to respond by locating the arrow on a directed line.

Linear correlations and the estimated slopes and intercepts of the linear structural
relation between responses in Parts 1 and 2 were used to assess reliability. A
consistent subject should demonstrate a high correlation and a linear structural
relation with an intercept of 0, and a slope equal to 1. Based on the assumption that
close probability numbers have close membership values in the same concept,
repeated trials were included in this analysis only if the actual probabilities
presented on the screen were not farther than 0·03 apart.

The linear correlations were high for all subjects (ranging from 0·84 to 0·53), but
the intercept and slope of the linear structural relationships differed significantly
from (0,1 respectively) for subjects 6 and 11. Because the ability to measure the
vague meanings of the probability terms is a prerequisite for any attempt to test the
linguistic models, subjects 6 and 11 were removed from further linguistic model
testing analysis. Considering the demonstrated high reliability of the other subjects
in this task, all subsequent analyses in this task (LPS) were done by combining the
two parts.

Practical estimation of membership function (linguistic probabilities) . We have
adopted what can be called an implicit analytical definition, or a parametric
approach to modeling membership functions. In this approach, the general shape of
the function (a family) is assumed to be known, and the particular member of the
family is estimated by using the experimental data. Two types of membership
functions are common throughout fuzzy set literature--monotonic and single
peaked (unimodal, nonmonotonic) functions. Hersh, Caramazza & Brownell (1979),
adopted the linear family, and estimated the parameters by using regression
techniques. Zysno (1981) adopted an exponential family for the monotonic
functions, and a combination of two exponential for the single-peaked functions.
The slopes and the inflection points of these functions were estimated by regression
analysis.

Based on the shapes of membership functions obtained in previous research on
scaling linguistic ages and probabilities (Zysno, 1981; Wallsten , et al., 19800;
Rapoport et al., 1987), we concluded that the cubic polynomial family can
adequately represent the membership functions of these concepts. Cubic polyno
mials were fitted to the subjects' responses, using a least squares technique. Each
function was restricted to be non-negative then rescaled and normalized to attain the
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value of 1 on at least one point in the appropriate interval. (See Zwick (1987b) for
details about the rescaling procedure.)

For the purpose of model testing it is necessary that the fitted cubic functions be
good representations of a subject's responses. Note that the usual application of
regression analysis is to predict the dependent variable given the independent
variables. In the traditional case, a flat regression line, parallel to the x-axis, is not
informative and the regular indices of R2 and F values would indicate that the
regression model is not significant. In our context, a flat membership function is
appropriate if it accurately reflects subjects' perception of the concept (e.g., 12% of
the subjects in Wallsten et al. (1986a) Experiment 1 judged possible to have a flat
membership function) . For this reason, we report and rely only on the Root Mean
Sqaure Error (RMSE) index as a goodness of fit measure.

As expected, the RMSE varied considerably between words within a subject, and
between subjects within a word, The average RMSE across subjects ranged from
0·099 for Subject 1 to 0·233 for subject 5. By using the RMSE data we have
identified those words that are poorly fitted by the cubic function, and to guard
against the possibility that these poorly fitted phrases distorted the models' testing
results, we tested the models with and without these words. There was virtually no
influence on the results. Thus, we report only the results of the analysis that used
the entire vocabulary of each subject.

3.1.2. Linguistic ages scaling task (LAS)

Reliability. AU subjects were highly reliable in this task as is evident by the high
linear correlations between Parts 1 and 2 (range from 0·97 to 0,61) and by the
inability to reject the assumption that the intercept and the slope of the linear
structural relationships between responses in Parts 1 and 2 are simultaneously equal
to (0,1). Considering these results, all subsequent analyses were done over the two
parts combined.

Practical estimation of membership function (linguistic ages). The same procedure
was used as with the linguistic probabilities. As with linguistic probabiities, the
RMSE varied considerably between words within a subject, and between subjects
within a word. The average RMSE across subjects ranged from 0·088 for subject 17
to 0·248 for subject 12. The small number of points within each distribution (5) does
not allow the reliable detection of outliers. When the RMSE index for linguistic
probabilities is compared to that for linguistic ages (within a subject), it turns out
that in all cases the RMSE value associated with an outlier in the LPS task is much
higher than the maximum RMSE associated with a linguistic age. Based on the
above, we did not eliminate any of the linguistic ages.

3.1.3. Similarly task (SIM)

Reliability. Most subjects were not consistent in this task as evaluated by the linear
correlations and by the slopes and intercepts of the linear structural relationships
between responses in Parts 1 and 2. Recall that in this task, subjects judged the
similarity between probability words separately within the high and low probability
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groups. Most subjects judged the words within each group to be very similar to each
other, and consequently used only the right-most part of the response continuum,
close to the label absolutely similar. This restriction of range resulted in low
reliability measures. Subjects whose responses did not deviate significantly from the
consistency line judged the members of one or two pairs of words to be quite
dissimilar-judgments that increased response variability and consequently in
creased the chances of no significant deviation from the consistency line.

Determining the best similarity index. Recall that the models discussed in the
Introduction (except Zadeh's, 1968) generate membership functions over the unit
interval to represent the appropriate probabilities. Generally, one would not expect
the resulting fuzzy set to exactly correspond to any of the fuzzy sets assigned to
linguistic probabilities in the LPS task. One approach is to find the probability
phrase (presented by its cubic polynomial, estimated by the LPS data) that is most
"similar" to the fuzzy set resulting from the models' computations. Such a term
would then be called a linguistic approximation. This is an analogy to statistics,
where empirical distribution functions are often approximated by well-known
standard distribution functions.

The purpose of the similarity task was to determine the best similarity index
between fuzzy sets. Considering the unreliability in the similarity judgments
between parts , we compared the discriminative power of all indices in each part
separately. For each subject the index that performed well in both parts was used in
testing the models. (See Zwick et al. (1987) for a description of the indices tested,
and for theoretical background.)

Similarly indices were compared within parts in the following way: For a
particular subject and a particular similarity measure (within a part), the correlation
between the "true" similarity rating (SIM task) and the similarity measures over all
pairs of words was calculated. For each subject and part, all indices were ranked
from best to worst (from the highest to the lowest correlation). Within subjects, the
index with the highest average rank was chosen. We preferred the highest average
rank, rather than the highest average correlation, to avoid choosing an index that
performs extremely well in one part, but quite poorly in the other. Using the best
average rank procedure guarantees that the index is robust to a moderate fluctuation
in the similarity judgments. This is important considering that all other analyses
(fitting membership functions, and model testing) were done over the two parts
combined. Generally, the best indices predict subjects' judgments relatively well.

3.2. PRIMARY TASKS: MODEL TESTING

3.2.1. Numeric response models

Type NNNN (classical probability theory). This probability estimation task was
included in the experiment as an additional indicator of the statistical sophistication
of the subjects. The problems are classical probability questions similar to those
dealt with in any introductory probability course. Since the two groups (N and S)
were formed to differ in probability sophistication , we assumed that they would
differ in the performance of this task.
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Table 6 presents the number of times each subject's response were precisely
correct in this type of a problem and the mean absolute difference (MAD) between
the observed and the correct response. (There were five problems in each part for a
total of 10 NNNN problems.) As can be seen, this task failed to discriminate
between the two groups. The average number of correct responses in both groups is
5·4, and the mean MAD for groups Nand S is 0·046 and 0·041, respectively. This
finding and the fact that four subjects from the "sophisticated" group (subjects 15,
16, 17, and 20) responded incorrectly more often than correctly, put in doubt the
assumption that this task measures probability sophistication. Considering these
findings, we do not consider this task as an indication of statistical sophistication.

Zadeh's model (1968) (Type NNLN). An a priori question is whether this task was
meaningful from the subjects' point of view. Subjects might be unable to answer
these questions intelligently, and since they were required to respond, they did so
randomly. To test this possibility a reliability check, similar to the one performed on
the scaling data was performed.

Based on the correlations and the intercepts and slopes of the structural
relationships between responses to replicated problems in Parts 1 and 2, subjects 1,

TABLE 6
Number of correct responses (out of 10) and the mean absolute
difference (MAD) between observed and correct responses in type

NNNN (task PE)

Numberof
Group Subject correct responses MAD

N 1 3 0·084
2 1 0·095
3 8 0·012
4 2 0·119
5 0 0·099
6 8 0·006
7 8 0·012
8 8 0·012
9 10 0·000

10 6 0·016
Mean 5·4 0·046

S 11 9 0·006
12 9 0·006
13 7 0·046
14 6 0·016
15 0 0·110
16 2 0·109
17 4 0·077
18 8 0·012
19 8 0-012
20 1 0·020

Mean 5·4 0·041
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2,4, 5, 10, 15 and 17 were identified as unreliable in this task , and were not used to
test Zadeh's model.

Table 7 presents the mean absolute deviations (MAD) and the intercepts and
slopes of the regression lines between observed and predicted responses. The model
is unsuccessful in predicting the responses of 10 out of 13 reliable subjects. In most
cases, the model over-estimated subjects' responses.

3.2.2. Linguistic-response models

Consistency. A prerequisite for any model testing is that subjects' responses be
consistent across replications. This issue of consistency is complicated by the nature
of the linguistic response. Since different phrases might convey the same meaning,
consistency should be defined by the type rather than the token of the response.
Because subjects almost never replicated their exact linguistic responses across
parts, it is necessary to determine whether the two responses to a problem are
similar in meaning. The average distance between replicated responses by subject
and problem type was computed by applying the best similarity measure to the

TABLE 7
Average mean absolute deviations (MAD) and slopes and intercepts of
the regression lines between observed and predicted responses in type

NNLN (task PE)

Group Subject Intercept Slope MAD

N I(UR)
2(UR)
3 0·010 0·645- 0·135t
4(UR)
5(UR)
6 -0'019 0·466- 0·342t
7 -0·004 0·742- O·096t
8 0·047 0·555- O·I28t
9 -0·038 0·942 0·071

10(UR)
.._-------_._------------------------------------_._---------.-------------_ ...

S 11 -0·043 0·912 0·090
12 0·028 0·619- O·105t
13 0·056 0·675- 0·070t
14 0·086 0·447- 0·157t
15(UR)
16 -0'056 1·030 0·105
17(UR)
18 0·061 0·363- O'I92t
19 0·004 0·752- O·087t
20 0·028 0·574- 0·176t

• Indicates that the assumption that the slope =1 or that the intercept =0 should be
rejected (p < 0·05).

t p < 0·05 (Wilcoxon test).
UR Unreliable subject in this task.
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membership function representations of the linguistic responses. Using the distances
between all pairs of words in each subject's vocabulary. one can find the
(approximate) sampling distribution of the mean distance between 15 randomly
selected pairs (corresponding to the 15 problems in each type). This is equivalent to
the assumption that subjects are responding randomly, hence each possible pair of
responses is equally likely. The probability of finding a mean distance that is less
than or equal to the observed mean distance under the random choice assumption
can be found. Most subjects passed this weak test of consistency (p < 0,05). In
addition to Subjects 6 and 11 who were found to be inconsistent in the LPS task,
Subjects 4 and 12 demonstrated a lack of consistency across types and were removed
from further analysis regarding these models. In addition, the following subjects
demonstrated a lack of consistency in one type or another and were removed from
testing the corresponding model (p > 0,05): subjects 1, 5, 15 and 17 from testing
Yager's model (NNLL), subjects 2 and 8 from testing Kwakernaak's model
(NLNL), and subject 1 from testing Zadeh's model (LNNL).

Model testing technique. As was explained in Section 2, the models (Yager's,
Kwakernaak's, and Zadeh's) were tested by comparing them to an alternative
simple baseline model. Recall that in these problems (NNLL, NLNL, and LNNL)
subjects were instructed to respond by choosing one of seven primary linguistic
terms, alone or combined with one or two of nine modifiers. Given these
possibilities, each model predicts subjects' responses based on the subjects'
membership functions for the lingusitic terms . The alternative model (unrestricted
baseline model) uses a random process to predict a response from each subject's
own vocabulary.

Since many of the words used by the subjects might be considered synonyms we
have used a cluster analysis technique to reduce each subject's own vocabulary into
fewer equivalence classes. This reduction was done by considering the pairwise
distances (using the best similarity index) between all words in each subject's
vocabulary. The distances between predicted and observed response clusters were
computed for each problem within a subject. In order to test the model, we first
obtained a sampling distribution for a null model (the unrestricted baseline model)
by considering the discrete sampling distribution of the distances between a
randomly selected cluster and the observed response. This is simply the set of all
possible distances from the observed response to the set of all clusters in the
vocabulary (call this random variable Xi) ' The unrestricted baseline model assumes
that responses are independent within a problem (across parts) and between
problems (within and across parts). Hence, under the unrestricted baseline model
assumptions we have a sequence of 30 independent random variables, {Xi}~~1> the
mean and standard deviation of which are known . According to the Liapunov
version of the central limit theorem (Rao, 1965, p. 107)

E?=I (Xi - Jli)
y,,= c,.

tends to the standard normal. Where

E(X;) = Jli, and en = (~I 0'7) 112.
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Based on this approximate sampling distribution we can compute the probability
of the standardized observed mean distance (or a smaller value) under the
unrestricted baseline model assumptions. A small probability value indicates that
the model tested is outperforming the unrestricted baseline model, while a sizeable
probability value indicates that the model tested does not improve prediction
beyond the performance of a random unrestricted baseline model. All models
should pass this initial test to deserve further consideration.

To further investigate the predictive power of the tested models, the number of
clusters from which the baseline model is allowed to randomly choose a predicted
response is successively restricted. The restriction mechanism is analogous to
considering successively more powerful null hypotheses since the predictive power
of the unrestricted baseline model depends on the number of clusters in the
vocabulary. Few clusters increase the random baseline hit rate, making it harder for
the tested model to distinguish itself. We sequentially carried out the same analysis
reported above eliminating at each state the cluster that is the farthest away from
the observed one on the previous stage.

For each model the analysis is reported by the probability of the standarized mean
distance (or a smaller value) under the unrestricted baseline model, and by the
percentage of clusters that are eliminated before the model tested ceased to
outperform the restricted baseline model (p > 0,05). Note that low probabilities and
high percentage support the tested model versus the unrestricted and the restricted
baseline models. (For a full development of the model testing techniques see Zwick
(1988).

Yager's model. Table 8 presents the results of the analysis described in the previous
section for each of the models. For each subject Table 8 presents the number of
words used in task PE, and the number of clusters found at the 99·9% level (using
the average linkage method of cluster analysis). We consider Yager's model (type
NNLL in task PE) first. The unrestricted baseline model column (UBM) presents
the probability of the standard observed mean distance, or a smaller value, between
the observed linguistic response and the predicted cluster under the unrestricted
baseline model assumptions. Recall that a small probability value indicates that
Yager's model predicts a subject's responses better than the unrestricted baseline
model. Note that this is the case for 11 out of 12 reliable subjects. In most of these
cases the probability is very low (p < 0,001). The restricted baseline model columns
(RBM) presents the percentage of clusters that are eliminated before the model
ceased to outperform the restricted baseline model. For three subjects (2, 10 & 16) a
small restriction (under 31%) is required, indicating that the superiority of Yager's
model over the unrestricted baseline model is a weak one. For another six subjects
(3, 7, 13, 14, 18 & 19) a moderate restriction is required (between 44% & 67%),
indicating a good performance by Yager's model. Finally, for 2 subjects (8 & 9) a
large restriction is required (71·4% and 83·3%, respectively) indicating very good
predictive ability by Yager's model with regard to these subjects.

Kwakemaak's model. The next major columns of Table 8 presents the results of the
analysis of Kwakernaak's model (type NLNL). Kwakernaak's model predicts
subjects' responses significantly better than the unrestricted baseline model for 10
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out of 14 reliable subjects. For six subjects (I, 7, 14, IS, 17 & 18) a small restriction
(less than or equal to 35%) on the vocabulary size is sufficient to eliminate the
significant difference between the performance of Kwakemaak's model and the
restricted baseline model. For two subjects (13 & 19) a moderate restriction is
required (between 40% and 49%). and finally for two subjects (3 and 20), a sizable
restriction is required (86·7% & 77,8%, respectively).

Zadeh's model (1975). The final major columns of Table 8 presents the results of the
analysis of Zadeh's model. For nine out of 15 reliable subjects, Zadeh's model
outperforms the unrestricted baseline model. For four subjects (5, 7, 17 & 18) a
relatively small restriction «34%) on the vocabulary size is sufficient to eliminate
the significant difference between the predictive power of Zadeh's and the restricted
baseline models. For two subjects (16 & 19) a moderate restriction is required
(between 44% & 59%), and for another three subjects (3, 9 & 20) a large restriction
is required (73'3%, 83·3% & 88·9% respectively) .

4. Discussion

This study experimentally tested four models proposed in the fuzzy set literature to
represent the probability of a fuzzy or a non-fuzzy event, in a fuzzy or a non-fuzzy
environment (as well as the classical probability model in a totally crisp situation).
The structure of the Discussion section is as follows. First, we discuss the success
rate of each model, starting with the numeric-response models (classical probability
theory, and Zadeh's, 1968) and ending with the linguistic-response models (Yager,
1979, 1984b; Kwakemaak, 1978; Zadeh, 1975). Next, we compare the success rate
of the models within and between subjects. Finally, the implications of these
comparisons with respect to the underlying psychological processes in estimating
probabilities under linguistic inexactness are discussed .

4.1. NUMERIC RESPONSES
In two types of problems subjects were instructed to respond numerically. The first
type (NNNN) was intended to provide a measure for further discriminating among
subjects on the basis of statistical sophistication (the main discrimination was by
group membership). The second type (NNLN) tested the descriptive validity of
Zadeh's model (for estimating the probability of a fuzzy event given a crisp random
crisp variable).

4.1.1. Classicalprobability theory (type NNNN)
Classical probability theory failed to describe subjects' responses in this task. On
average, subjects responded incorrectly more often than correctly, although
substantial individual differences were found (Table 6). The MAD scores indicated
that most subjects, although not always correct, were not too inaccurate. On
average, the error was within 0·04 of the correct response. Accuracy in this task
(measured by the number of correct responses and the MAD index) was group
independent, although the two groups were formed a priori to differ in terms of
statistical sophistication. There were only three possible correct responses to the
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NNNN problems: 0·2 to problems 1, 2, and 3; 0·3 to problem 4; and 0·4 to problem
5. All the correct responses are "simple" numbers, in that only one digit is required
after the decimal point. Hence the assumption that errors were due to a numerical
approximation process should be rejected. We believe that most subjects failed to
recognize the simplicity of these problems, although subjects in group S had seen
similar ones many times in probability courses. These problems (NNNN) were
presented to the subjects along with the other types in an intermixed and random
order. It is very likely that the subjects failed to recognize the simplicity of these
problems due to the linguistic vagueness introduced in the other types. Subjects
responded to these problems using the same frame of mind that was needed to cope
with the vagueness that existed in other problems, and instead of solving the
problems using an exact numerical method they resorted to other techniques that
yielded only approximate responses such as considering relative areas on the density
graphs. This Einstellung effect is very well documented in psychological literature.
For example Luchins' (1942) classical experiments showed that subjects, given a
series of problems with the same rule for solution, solved test problems by a "blind"
application of that rule, even when a much simpler solution was possible.

The findings that our subjects misperceived the nature of the problems in this type
should alert us to the possibility that this may also be the case with the other types
of problems.

4.1.2. Zadeh's model (1968) (Type NNLN)
Although most subjects were consistent in this task, the fact that seven out of 20
subjects were not consistent emphasize the difficulty of responding with an exact
probability number in the presence of a vague linguistic event. However, the
moderate degree of "concordance" among the reliable subjects (0·67) suggests that
the task was meaningful at least for these subjects. Nevertheless, Zadeh's model
fails to describe the responses of 10 out of 13 reliable subjects.

It can be argued that Zadeh's model fails to predict subjects' responses in this task
because the fuzzy-set representations of the linguistic ages are inadequate. This
argument can be rejected on two related grounds: (1) The same representations
were used with the other models, and they were more successful; and (2) subjects
were highly consistent in the linguistic age scaling task, and a good fit was found
between the cubic functions and the data.

We believe that the failure of Zadeh's model is due to its underlying assumption
that subjects behave as if they integrate probabilities and membership values on the
entire range over which the membership function is not zero. The fact that in most
cases Zadeh's model predicted higher than observed probability estimates suggests
that subjects disregard elements of the fuzzy event if their membership values are
below some predetermined threshold.

This possibility raises the issue of the extent to which the subjects actually used
graded category membership in this task. Lakoff (1973) suggested that some
speakers seem to turn relative judgment of category membership into absolute
judgments by assigning the member in question to the category in which it has the
highest degree of membership. Kochen (1975) proposed that some people might be
"thresholders" who assign an item to a category if its membership value is beyond a
certain level, while others might be "estimators" and think in terms of genuine
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gradations of membership. He found that approximately half of his sample treated
graded categories in an e~sentialJy unfuzzy way. Pipino".Van Gigch & T~~ (1981)
found evidence for the existence of both types of people to the same cogmnve task.
And finally, Zwick et al. (1987) have found that distance measures between fuzzy
sets with consistently good descriptive performance all share the property of
concentrating their attention on a single value. rather than on the entire function.

All of the above considerations suggest several alternative models to Zadeh's.

(1) A threshold model. According to this model. whenever a person is instructed
to respond numerically on the basis of a linguistic concept, he or she simplifies
the task by acting upon certain precise values consistent with the vague
concept. If A is the fuzzy-set representation of the linguistic concept. then the
precise values belong to an a-level set of A for a specific a. peA) is then
equal to P(A a ) for SOme a E [0, 1]. The a-level can be perceived as the
threshold of belonging to A. Assuming that subjects adopt the same a-level in
all problems, the a parameter can be estimated and the fit of the model to the
data determined .

(2) Graded membership models. This is a family of models that assumes that
subjects do think in terms of genuine gradations of membership. However,
this family accepts the possibility that subjects consider fuzzy sets defined over
only one part of their support-the most significant part. Namely, P(A) =
P(A a ) for some a E [0. 1J. This family of models also allows the integration of
probabilities and membership values to be not necessarily multiplicative in
nature. With regard to the last point. Yager (1982) has extended Shafer's
theory of evidence so that belief structures may involve fuzzy sets. He then
obtained under the condition of Bayesian belief structure a family of possible
definitions for the real-valued probability of a fuzzy event given a crisp
random crisp variable. For example Yager has shown that if Q =
{XI. X2 • • • • ,x,,} is a finite sample space on which probability (Bayesian)
structure. p(xl ) =PIt is defined and if A is a fuzzy subset of Q. then

"peA) = L T(p,. JlA(X,))
I cl

for any r-norrn. The significance of this result is that there exists a family of
possible definitions for the probability of a fuzzy event. For example, if we
consider multiplication as our r-norm function, then P(A) = E7-1 PI' JlA(X;),
which is the definition suggested by Zadeh (1968). However if we consider the
min operator then we get

"
P(A) =L min (p" Jl~(X,»,

, ~I

The threshold and the graded membership models with different r-norm
operations will be experimentally tested in future research.

To summarize, Zadeh's model (1968) failed to describe the behavior of subjects in
this task (NNLN). We believe that this failure is related to Zadeh's model
assumptions that subjects consider the entire range on which the membership
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function is not zero, and that the integration of probabilities and membership values
is multiplicative in nature. Better assumptions might be that either (1) subjects treat
vague concepts in an essentially unfuzzy way, or (2) that subjects consider only a
restricted range on which the fuzzy set is defined , although on this range they think
in terms of graded membership. Furthermore, within this range the integration of
probabilities and membership values may take forms other than multiplication
(Zwick, Budescu & Wallsten, 1988).

4.2. LINGUISTIC RESPONSES
Before evaluating the separate models , it is necessary to discuss two issues that are
common to all linguistic models , those of consistency and vocabulary size.

4.2. 1. Consistency
Most subjects were quite consistent in responding linguistically to the problems in
this experiment. Only two subjects (4 & 12) were unreliable across all three types of
problems that required linguistic responses (NNLL, NLNL , and LNNL). Other
subjects were unreliable in only one of the three types.

Several authors have suggested that a greater degree of response consistency over
trials will occur if subjects are allowed to give imprecise verbal reports about a
vague concept than if they are forced to give precise numeric responses (Kochen,
1975; Zimmer, 1983). Our data do not support this claim. Recall that tasks NNLN
and NNLL differed only along the response dimension, hence a direct consistency
comparison is possible. For the same problem, subjects were instructed to respond
numerically in type NNLN, and linguistically in type NNLL. There was a high
degree of correlation between consistency in both tasks . Five out of the seven
subjects who were found to be inconsistent in task NNLN were found to be
inconsistent in task NNLL as well. Two subjects were unreliable in only the numeric
task and three subjects were unreliable in only the linguistic task. Overall, neither
the linguistic nor the numerical mode exhibited greater consistency. The reader
should note that different consistency tests were performed with the numeric and the
linguistic data. Hence these results should be treated with caution.

4.2.2. Vocabulary
A substantial vocabulary for uncertainty was demonstrated . The number of phrases
generated by subjects in the PE task ranged from 15 (subject 9) to 50 (subject 7),
with an average of 35·25 phrases. This result can be compared to an average of 13
phrases (both self-produced and from the list) generated by Budescu, Weinberg &
Wallsten's (1988) subjects, and is in marked contrast to Zimmer's (1983) results, in
which subjects' active lexicons for uncertainty seemed to contain, on average,
between five and six expressions each. It is important to note that these experiments
are different in many ways, any of which might be responsible for the conflicting
findings.

Zimmer (1983) elicited from his subjects the verbal labels (in German) that they
were most familiar with and used most frequently, while in our study subjects
composed responses from an a priori closed set of primary and modifier terms .
Familarity and frequency of use were not emphasized. It is possible that in the
present study subjects tried to show that they are shrewd problem solvers, and since
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it was emphasized that there are no right or wrong answers, subjects expressed their
sophistication by producing a rich vocabulary. In light of the conflicting findings,
further research is needed to determine the number of linguistic terms that is
sufficient to span the probability interval, although individual differences should be
recognized.

4.2.3. Yagers model (type NNLL)
The quality of a Iingusitic model can be evaluated both in terms of the number of
subjects for whom the model outperformed the unrestricted baseline model, and in
terms of the proportion of clusters that must be eliminated before the model ceases
to outperform the restricted baseline model for a given subject.

The results strongly support Yager's model , both across and within subjects.
Yager's model outperformed the unrestricted baseline model for 11 out of 12
reliable subjects (91%) (Table 8). The power of the model was further
demonstrated by the findings that in eight out of 11 successes almost half or more of
the vocabulary's clusters had to be eliminated before the model ceased to
outperform the restricted baseline model. The results support the underlying
assumptions of the model : that people focus on different crisp events associated with
the fuzzy event, and integrate the results of the computations in each of these levels
by the max-min rule. The success of the model is even more significant considering
the large number of computations needed to derive the predictions. Recall that in
contrast with the other models, Yager 's model produces a subnormal membership
function. To interpret this function as a linguistic probability, the function should be
normalized . This process was not necessary in deriving the predicted responses of
the other models. The fact that Yager's model was found, nevertheless, to be
relatively more successful than the other models, (see next sections) emphasizes its
robustness.

4.2.4. Kwakemaak's model (type NLNL)
This model outperformed the unrestricted baseline model for 10 out of 14 reliable
subjects (71'4%) (Table 8). However, this success is rather weak given that in six
out of the 10 cases (subjects 1,7, 14, 15, 17 & 18) a restriction of less than or equal
to 35% on the vocabulary size was enough to eliminate the superiority of
Kwakernaak's model over the restricted baseline model.

It is possible that in at least two ways the subjects did not perceive the data in the
manner assumed by Kwakernaak's model. If so, this could bias the results of the
model evaluation. First, recall that the lingistic vagueness in this case was introduced
in the values of the age attribute. The fact that the probabilities assigned to the
various linguistic ages sum to one (although these categories are not mutually
exclusive) might seem artificial. Kwakernaak (1978) explained this probability
structure as if it were generated by the members of the sample space itself, in which
each of them classifies himself or herself into one and only one of the linguistic (age)
categories. Such an interpretation may work in some cases, however, in our
experiment this interpretation was not given in the instructions. It is possible that
the fact that the probabilities add to 1 encouraged subjects to treat the linguistic
ages as exclusive categories, rather than as elastic fuzzy concepts. Second, a possible
"original" to the fuzzy function can be such that, for example, the numerical age
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that is assigned to the age category very old is less than the numerical age that is
simultaneously assigned to the age category old. This is explained by Kwakernaak as
being possible if one person classifies him/her self as old, and the second person
classifies him/her self as very old, but nevertheless the second person is younger
than the first one. This makes sense if we accept the premise that the linguistic
assignment is self generated. However, in this experiment the linguistic age
assignment was presented to the subjects with no further elaboration on the
assignment process. It is very likely that subjects perceived all persons in one age
category (say old) to be younger than all the persons in a second age category (say
very old). Such an interpretation once again encourages subjects to treat the age
categories as mutually exclusive, and eliminates many possible "originals" that
Kwakernaak's model considers. These two points should be dealt with an any future
research by explicitly presenting the linguistic age structure as self generated.

Finally, Kwakernaak's model assumes a sophisticated underlying process which is
highly demanding. With this in mind it is interesting to note the different
performance of the model with regard to the two groups. Kwakernaak's model
outperformed the unrestricted baseline model for seven out of eight of group S's
reliable subjects. In contrast, the model outperformed the unrestricted baseline
model for only three out of six reliable subjects in group N. The differential
performance of the model, although not significant, may suggest that this model
describes well the behavior of experts who are trained in probability. This
hypothesis requires further research with a larger sample.

4.2.5. Zadeh:S model (1975) (type LNNL)
The model outperformed the unrestricted baseline model for nine of 15 reliable
subjects (60%) (Table 8). In five out of the nine successes half or more of the
vocabulary's clusters had to be eliminated before the model ceased to outperform
the restricted baseline model. In another four cases, a small restriction (under 30%)
was sufficient. The relatively weak performance of the model across subjects is
particularly disappo inting, considering that in this type of problem the same
component of vagueness was used in both the problem formulation and in the
response side. That is, subjects were asked to "add" two linguistic probabilities, and
to express the sum as a third one . Hence the required manipulation should be easier
than dealing with different kinds of imprecision as was the case in types NNLL and
NLNL. Also, more subjects were consistent in this task than in any of the other
linguistic tasks. This shows that the task was relatively easy (as measured by
consistency) from the subjects' point of view. As with Kwakernaak's model, it is
possible that the weak performance is due to problems in data presentation and
scaling technique rather than with the model itself.

The model predicts that subjects will respond with the interactive sum of the two
fuzzy numbers representing the linguistic terms . Furthermore the model assumes
that the linguistic probability assignment list associated with the sample space is
p-interactive (Zadeh, 1975), in the sense that an additional constraint is imposed on
the joint membership function of the terms (i.e ., PI + ... +P.. =I, in which Pi is a
numerical probability associated with the linguistic Pi) ' This interaction is taken into
acc~unt in t.hesum operation. This assumption ignores the possibility that, in reality,
the l.nte.r~cllon between t~e me~bers of the linguistic probability list might influence
the individual membership function as well as the joint one .
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It has been shown that phrase meanings vary over contexts within an individual
(Hersh et al.• 1979; Cohen, 1986; Wallsten, Fillenbaum & Cox, 1986b). In these
studies the following factors were shown to affect the individual membership
functions of specific phrases: (1) the nature of the communication task, namely,
whether one receives the phrase in communication from another person or selects
the phrase in order to communicate to someone else; (2) the available vocabulary
(little effect on the meanings of core phrases); (3) event desirability; and (4) base
rate effects. It is very likely that an additional context effect is present in this study,
namely, that of list composition. Wallsten et al. (19800) did not find such an effect in
their study (experiment 1), however, the comparison was between groups, and no
external restriction was imposed on the lists. In the present study, subjects knew
that the linguistic probability assignment list described the probability distribution
over mutually exclusive and collectively exhaustive categories, hence, the meanings
of individual terms might depend on the other members of the list. Imagine, for
example, that you are told that it is likely to rain tomorrow and improbable not to
rain tomorrow. On a different occasion, you are told that it is likely to rain
tomorrow, but there is a slight chance that it will not rain tomorrow. If you
understand improbable to express a different level of probability than slight chance,
then it is possible that your perception of the vague meaning of likely will differ in
these cases. This hypothesis can be experimentally tested. It predicts, for example,
that the sum of the same two linguistic probability terms depends on the other
members of the assignment list. Unfortunately, we cannot test this prediction in this
study, because the sum of two different linguistic terms was required in each
problem. This context effect can explain the relatively weak performance of Zadeh's
model across subjects.

Based on theoretical grounds Stein (1985) concluded that a joint membership
function over the entire linguistic probability distribution must be specified rather
than using the marginals as was done in this study. He further introduced a class of
joint membership function, called fuzzy beta, to solve this problem. In this work we
are interested in the experimental validity of the mathematical models, hence Stein's
formulation is useful only if the joint membership function is derived
experimentally.

4.3. COMPARISON OF MODELS
Since each of the models tested in this study pertains to a different information
presentation mode and to a different required response (Table 5), a direct
comparison of models is impossible. Nevertheless, it is possible to compare the
performance of the models within and across subjects, each in its own setting.

Several trends can be observed: (1) There is a high correlation between accuracy
in type NNNN, expressed by the MAD scores, and between reliability in type
NNLN. The average MAD score in type NNNN for subjects who were unreliable in
type NNLN is 0·086 compared to 0·021 for the reliable subjects. This difference is
significant based on the normal approximation to the Wilcoxon rank sum test
(Conover, 1980) (5 =111·5, z =2·999. p < 0.(03). The same relationship does not
exist with the consistency in the other three problem types (NNLL, NLNL &
LNNL). These findings may suggest that statistical sophistication is related to the
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manipulation of linguistic information if and only if a numeric response is required.
(2) There is no consistent pattern in the performance of the linguistic models
(XXXL) within a subject. However, all three models were relatively succesful in
predicting the responses of subjects 3, 7, 18 and 19. (3) If more than one of the
models was successful within a subject, than the level of success seems to be
comparable across models. See for example subjects 3, 9 and 20 for a powerful
predictive ability across models, and subjects 7, 13, 18 and 19 for a weaker
predictive ability across models. (4) Comparing the overall success rate of the
models, across reliable subjects, each in its own setting, reveals that Yager's model
is the most successful (91·7%), Kwakernaak's model is next (71·4%) and Zadeh's
model (1975) is the least successful (60%). However, a different picture emerges
when comparing the strength of the models within subjects. On average about half
of the vocabulary clusters had to be eliminated before Yager's (1979; 1984b) and
Zadeh's (1975) models ceased to outperform the restricted baseline model (48·72%
and 50·6% respectively), compared to an average of 37·56% with regard to
Kwakernaak's model. These findings indicate that Kwakernaak's model outper
formed the unrestricted baseline model in more cases than did Zadeh's model
(1975), however among these cases Zadeh's model (1975) was more powerful. (5)
Zadeh's model (1968) clearly failed to capture the psychological processes of
numerically estimating the probability of a fuzzy event given a crisp random
variable.

It is important to note that the above discussion with regard to the performance of
the models ignores the possibility that the experimental setting was in some cases at
fault, rather than the models themselves. We have discussed these possibilities with
regard to Kwakernaak's (1978) and Zadeh's (1975) models in previous sections. Any
final conclusion should await further research in which this possible pitfall is
eliminated.

Models may have more to offer than the success of their predictions on a
particular body of data. One cares about their ability to suggest extensions that add
to predictive power and to provide insights into the underlying psychological
processes and into behaviour outside the laboratory. The remainder of this section
discusses these points.

At the lowest level, the study is conducive to minor changes that might affect the
quality of the predictions. Some of these were mentioned in this paper and others
have been examined but not considered here (Zwick, 1987b). An example is an
alternative scaling procedure, or using experts as subjects.

The relative success of the linguistic models and the failure of the numeric one
(Zadeh, 1968) supports the common underlying feature of the linguistic models.
These models assume that subjects are unable to cope with the overall structure of
the problem and instead reformulate it to reduce its complexity by considering
multiple-erisp representations of the problem. The solution at each crisp level of
representation is easy, since it corresponds to a simple probability problem. The
final response is the combined solutions from the surrogate crisp levels of
representations.

Finally, one cares about the extent to which the models form useful inputs for
other theoretical structures such as to decision analysis. We are planning to extend
the current research in this direction.
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