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We argue that if a vague concept is represented by a random set, then it is justifiable to use 
the law of comparative judgment to estimate the means of the membership function 
distributions. These means may be taken as the type 1 membership values. 
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1. Introduction 

The theory of fuzzy subsets as a purely mathematical discipline is independent 
of the psycholinguistic reality of fuzzy sets [2]. Any complete treatment of fuzzy 
subsets must assume well specified membership functions. However, membership 
value is not a primitive concept from a psychological point of view. Thus, when 
the theory of fuzzy subsets is used to model how experts or other people deal with 
vagueness in natural language, the specific scaling technique used to construct the 
membership function must be justified on psychological and logical grounds. 

There is an apparent inconsistency in using a precise membership function to 
represent a vague concept. To account for this apparent paradox, Zadeh [17] 
defined type m fuzzy sets. Type m fuzzy sets are defined recursively as follows: a 
type 1 fuzzy set is an ordinary fuzzy set; a type m fuzzy set (m > 1) is an L-fuzzy 
set whose membership values are type m - 1 fuzzy sets on [0, 11. Type 2 fuzzy 
sets are easily interpreted, and are intuitively appealing because grades of 
membership in the first level cannot be assumed to be known precisely [9]. 
However, a conceptual difficulty in working with type m fuzzy sets is that it 
quickly leads to an infinite regress paradox. ‘Generalized’ fuzzy set theory [16] 
acknowledges the imprecision inherent in the first level of membership values due 
to the vague nature the ‘concept’ A is representing. This imprecision is modeled 
by putting a second level of membership values on the first. However, this second 
level is similarly seen to be imprecise and a third level of measurement is 
necessary. This process, based on the original logic, should continue ad infinitum. 
Furthermore, from a practical point of view, even two levels of measurement are 
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highly undesirable. Estimating the membership function of higher order fuzzy sets 
would certainly be more difficult than estimating a single membership function. 

An alternative, but closely related approach to representing vague concepts by 
fuzzy sets, is to use a probabilistic or random sets as the modeling tool [l, 3-7, 
121 in which the value of the membership function is a random variable. Norwich 
and Turksen [12] pointed out that structuring a scaling procedure based on 
random sets allows us to view the inconsistency in a subject’s response as an 
inherent fluctuation of the concept definition in the subject’s mind. 

If this approach is adopted, then the establishment of membership functions 
can be closely related to the well known psychometric scaling techniques 
developed by Thurstone [13, 141. 

2. Thurstone’s judgment scaling model 

The Thurstonian approach postulates a psychological scale onto which stimuli 
are mapped. Each time a stimulus is presented it is presumed to be represented 
by a point along this scale, the location of which is determined by an unknown 
process. Because of momentary fluctuations in the organism, a given stimulus 
does not always excite the same value, and therefore the value is a random 
variable on the psychological continuum. 

It is assumed that repeated presentations of the same stimulus produces a 
distribution (called a discriminal process) of such values along the psychological 
scale. On the assumption that the observer cannot directly report the value of the 
discriminal value, the scaling must be done indirectly. Equations based on the 
judgments of relations among stimuli can be deduced and used to estimate the 
modal discriminal value of each stimulus. 

In this paper we will describe one set of equations known as the law of 
comparative judgment. 

3. The law of comparative judgment 

We assume that the stimuli are elements of the space of discourse (Q) and that 
the underlying psychological continuum is ‘F-ness’, where F is a fuzzy concept 
(i.e., tall, long, etc.). Now suppose that we present a stimulus pair (x, y) to a 
subject a number of times. On each presentation a single discriminal value (a 
point on the psychological continuum) is elicited from the distribution of each 
stimulus. Each time the two stimuli are presented, the subject is required to judge 
which is higher on the psychological continuum (in our terminology the subject is 
required to judge the relative ‘F-ness’ of x and y). The basic assumption is that 
the discriminal processes can be represented by normal distributions on the 
underlying psychological continuum. Stimuli x and y will form two normal 
discriminal processes Y(x) and Y(y) with means K and p,, and standard 
deviations (called discriminal dispersions) of a, and o,,. 

If the two stimuli are presented together a large number of times, the 
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discriminal differences themselves form a normal distribution with mean pX - pY 
and standard deviation 

where ‘;,, is the correlation between the two discriminal processes. It is assumed 
that the subject will respond that “stimulus x has more F-ness” or “is more F 
than stimulus y”, if on that specific trial the discriminal value for stimulus x 
exceeds that for stimulus y on the psychological continuum (Y(x) > Y(y)). 

Since Y(x) - Y(y) is distributed normally with mean IL, -CL,, and variance 
a:-,, it follows that 

[‘u(x) - WY) - (A - ~Jlk-y -V, 1). 
Let p(xy) be the theoretical proportion of times that stimulus x is judged higher 

than stimulus y on the psychological continuum, based on the theoretical 
discriminal distributions. Then 

p(xy) = P[ Y(x) > Y(y)] = P[ Y(x) - Y(y) > 01. 
Hence 

P{[(Y(x) - WY) - (A - Pyw~x-yl’[-(P, - PJk-,I) =P(xY> 
so that 

-(A - PJh-y = Zl-p(xy) 

We can thus write the equation 

(1) 
Equation (1) is the complete form of the law of comparative judgment. Note that 
only a pair-wise ordinal judgment is required from the subject, which generally is 
preferable to a direct rating. 

Our goal is to estimate pX and ,u,, using the observed proportion (p’(xy)) and 
to treat them as a first order approximation for each element’s membership value 
regarding ‘F-ness’. The law of comparative judgment is not solvable in the form 
of Eq. (1) since, regardless of the number of stimuli and observations, there are 
always more unknowns than observation equations. Thus, additional assumptions 
are required. 

Thurstone [13] recognized five cases of the law of comparative judgment. We 
are interested here only in the case where replications are within a single 
individual, and we will adopt the Torgerson [15] classification of Thurstone’s 
work. 

Torgerson’s condition A. In this condition is is assumed that the covariance term 
in all equations is a constant value (2c), hence Eq. (1) reduce? 

Py - A = z&&x + Q’* (2) 
where 

a, = 4. - c and a,, = a; - c. 

With n stimuli, there are n means (pi), and n a’s (Ui) that are unknown. We can 
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set one of the scale values to zero and one of the a’s equal to one, leaving us with 
2n - 2 unknowns. Since with n stimuli we have $z(n - 1) equations, a solution is 
possible when [fn(n - l)] > [2n - 21 or when n 5 4. With )2 > 4 we can evaluate 
experimentally the goodness of fit of the solution. 

Torgerson’s condition C. In this more practical condition it is assumed that a,-, 
is constant for all pairs of stimuli (c). Hence Eq. (1) reduces to 

Py - A = c=l-p(xyp (3) 

This condition is attractive since a least-squares estimate of the scale values for 
complete and incomplete data exist. Given a matrix X, which contains the 
sample estimate zl--pO~.~Y~ of the theoretical values, Mosteller [lo] has shown that a 
least-squares estimate of the scale values can be obtained by averaging the 
columns of matrix X (if matrix X contains no vacant cells). Solutions for condition 
C when matrix X is incomplete do exist. The interested reader should consult 
Torgerson [15], pp. 173-179. 

To summarize, if the subject bases his or her judgment of stimulus dominance 
upon the difference between the two internal discriminal processes, then 
information on the distribution of such differences accumulates over a large 
number of trials. The probability with which one stimulus is judged to dominate 
another can then be converted into an estimate of the mean of this distribution of 
differences and consequently a measure of the distance separating the two stimuli 
along the psychological scale. The only evidence the experimenter has of these 
processes is the frequency with which one stimulus dominated another in a 
specific experiment. By adding some major assumptions, this is enough evidence 
to infer differences in scale values. 

4. Major assumptions 

All forms of the law of comparative judgment assume that each stimulus is 
independently compared a large number of times with each other stimulus. 
However if the subject can identify the stimulus pairs, there is the possibility that 
he or she will base later judgments on the memory of earlier judgments of the 
pair. Thus in order to use this procedure, the stimuli should be such that no 
extraneous differentiating cues are available to the subject. Furthermore, it is 
necessary to control the conditions that might introduce biasing effects by 
randomizing relative positions and orders and by use of counter balancing 
procedures. 

It is important to realize that in order to use the Thurstonian approach, one for 
which a large enough set of stimuli will give more observational equations than 
unknowns, it is necessary to specify additional restrictions. In all cases a normal 
distribution is usually assumed. Thurstone cautioned that: “The only valid 
justification for bringing in the (normal) probability curve in this connection is 
that its presence can be experimentally tested”. [14, pp. 3681. 
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However as noted by Lute [8], testing the assumption of normality has proved 
rather less easy and less direct than Thurstone implied. Nevertheless based on an 
argument about neural schema, Lute [8] concluded that Thurstone’s choice of the 
normal distribution was correct. If many different factors contribute to the 
inherent noise in the nervous system, and if the central nervous system averages 
the estimates from the individual fibers, and if these estimates are of comparable 
magnitude, then the Central Limit Theorem tells us that the resulting estimate is 
approximately normally distributed. For a more complete treatment of this idea 
see [8]. 

Another common assumption is that of unidimensionality additivity. In other 
words, it is assumed that all the stimulus comparisons take place along a 
unidimensional hypothetical psychological continuum. Furthermore in Torgeson’s 
condition A it is assumed that the covariance term in the complete law of 
comparative judgment (Eq. 1) is constant for all pairs of stimuli. Finally in 
condition C it is assumed that a,-,, is constant for all pairs of stimuli. 

The validity of Thurstone’s scaling techniques therefore depends on our 
willingness to accept the underlying assumptions and on the robustness of the 
techniques with regard to one or more violations of the assumptions. The 
advantage of using these techniques is that we can test the goodness of fit of the 
model to the data. 

A single over-all test of goodness of fit for condition C has been given by 
Mosteller [ll]. We define 

13’(ij) = arc sin(p”(ij))‘“, 
@‘(ii) = arc sin(p”(ij))‘“, 

and 
12 = number of observations per pair of stimuli, 

k = number of stimuli, 

where p’(ij) are the observed proportions and p”(ij) are the proportions derived 
from the estimated scale values. Then we can test goodness of fit by 

x2 = II 2 (e’(ij) - ~“(ij))‘lSZl, 

with $(k - l)(k - 2) degrees of freedom. 
This test is sensitive to violations of additivity, and is affected unpredictably by 

unequal standard deviations of discriminal differences. If there is a reason to 
believe that the standard deviations are unequal, one might want to relax the 
conditions for case C and try some other case [15]. However, this would require a 
large number of stimuli and observations. 

5. Conclusion 

We have argued that from a psychological measurement point of view, it is 
preferable to represent a vague concept by a random set rather than a type m 
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fuzzy set. Doing so enables one to naturally justify and apply psychological 
scaling techniques developed by Thurstone and others. 
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