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much to invest out of a fixed endowment; the gain from an investment increases with total
investment, so that an investment is profitable iff total investment exceeds a critical mass.
The game has multiple, Pareto-ranked equilibria; we find that whether first-round total
investment reaches critical mass predicts convergence towards the Pareto optimal full-
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1. Introduction

How do economic agents make decisions on their actions, when the payoff of an action depends endogenously on the
collective actions of many agents? This question emerges in many realistic situations. For example, the benefit to a firm
in subscribing to a new teleconferencing service depends on how many other firms also subscribe to the service. A new
business growth opportunity — such as the Internet in the 1990s or an undeveloped region with tourism potential - is
profitable to invest in iff the total amount of investment committed to it is high enough to generate market attention,
further development, and profits.

In this paper, we look at a class of these situations that is stylized as investing in the presence of network externalities. A
market exhibits (positive direct) network externalities when the gain from an investment increases with the total investment
in the market.2 A common consequence is that an investment incurs a net profit iff the total investment exceeds a critical
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2 Network externalities as discussed here are also called direct network effects. Other types of network effects include indirect network effects, which
arise when there is interdependent demand between different products or services in a market. Examples include video consoles and games (Shakar and
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mass. However, whether or not the critical mass can be reached depends on individual agents’ investment decisions in
the first place: an agent who invests (does not invest) in the market contributes marginally to its success (failure) too, and
helps fulfill her own belief, which determines her investment decision in the first place. To put it in another way, agents
face coordination problems in this market: everyone knows that the best action is to do what others do - if others invest
a lot (so that the critical mass will be reached), it is best for an individual to follow, and vice versa; but when agents make
decisions individually, it is difficult to gauge what others’ decisions would be. Decision making in the presence of network
externalities has therefore been described as a “chicken and egg” problem (Bravo and Siciliani, 2007). The present study is
an attempt to shed light on it through experimentation.

We examine people’s decisions and the associated coordination problems in a multi-person investment game with a
payoff function that exhibits network externalities and critical mass effect. Subjects decide simultaneously in every round
how much to invest out of a fixed endowment; the gain from an investment increases with total investment, so that an
investment is profitable iff total investment exceeds a critical mass. The game has two pure strategy equilibria: the “full-
investment”, Pareto optimal equilibrium involves all agents investing all their endowments, while the “no-investment”,
Pareto inferior equilibrium has no one investing. Our research questions are: under controlled laboratory conditions, (i)
How are agents’ initial or “first-round” decisions in the investment game - with no previous history of playing this game
with the other players - affected by critical mass and group size (i.e. the total number of potential investors)? (ii) Once the
game is played repeatedly by the same group of agents, how (if at all) do agents’ adjustment of decisions from round to round
lead to convergence towards an equilibrium? (iii) How (if at all) do agents’ initial decisions predict which equilibrium will
eventually be selected? As can be seen, the answer to (iii) potentially relates critical mass and group size with equilibrium
selection in this game through the answer to (i). We are interested in the effects of these two independent variables because,
first of all, critical mass is an inherent outcome of network externalities and should naturally be considered a possible
focus when studying decisions in the presence of network externalities; meanwhile, group size has been shown to have
an important impact on behavior in other types of games with multiple, Pareto-ranked equilibria (Van Huyck et al., 1990,
2007), and we surmise that it should also impact decisions and equilibrium outcome in our case.

Indeed, we find that the first-round investment varies in a complex way with critical mass and group size: it decreases
with critical mass controlling for group size, but may increase or decrease with group size controlling for the critical mass
or the minimum average investment needed to reach critical mass, depending on whether the quantity that is controlled
for is high or low. This pattern of effects is then mirrored in the likelihood of convergence towards the Pareto optimal
equilibrium. As a result, the first-round investments - which are affected by critical mass and group size - can “make or
break” convergence to the Pareto optimal equilibrium because the Pareto optimal equilibrium will be attained iff total initial
investment reaches the critical mass.

Our research questions differentiate us from most of the network externalities literature (e.g. Leibenstein, 1950; Rohlfs,
1974; Katz and Shapiro, 1985, 1986, 1992; Arthur, 1989; Brynjolfsson and Kemerer, 1996; Chakravarty, 2003a,b; Park, 2004).
Previous studies on network externalities predominantly focus on problems of industrial organization such as the strategic
decisions of competing sellers of technological products, rather than the coordination problems among potential adopters.
Exceptions include the experimental work of Ruffle et al. (2010) and Devetag (2003). Ruffle et al. study a game with network
externalities and critical mass effect, and find that a sufficiently low critical mass is paramount to efficient coordination.
Devetag’s research is on two versions of a game with critical mass effect, one having a payoff function with an increasing
returns component that resembles network externalities. She finds that full information feedback among agents immediately
after every round improves coordination. However, the influence of critical mass and group size on subject behavior in such
games remains unexplored, and we intend to fill this void with the present study.

Our study also contributes to the broader scope of experimental research on coordination games. Coordination prob-
lems among players, when there exist multiple, Pareto-ranked equilibria, have long been major issues in game theory (see
Schelling, 1960, 2006; Harsanyi and Selten, 1988), partly because of their widespread occurrence. As Cooper and John (1988)
point out, whenever an economic model exhibits strategic complementarities (i.e. any agent’s best response is increasing
in other agents’ actions) it may give rise to multiple equilibria, in which case Cooper and John also show that the equilibria
are Pareto ranked under some general conditions. If this happens, the model is prone to coordination failure, meaning that
the outcome equilibrium turns out to be Pareto suboptimal (see Cooper, 1999 for a comprehensive treatment; cf. also Vives,
2005; Van Zandt and Vives, 2007). The game we use and many other coordination games in the experimental literature
indeed have in common the presence of strategic complementarities and multiple, Pareto ranked equilibria. Our experi-
mental results find analogies as well as discrepancies from previous studies in this field. A major similarity is that the Pareto
optimal equilibrium is sometimes, but not always, attained, an observation of many studies that investigate coordination
failure, such as Cooper et al. (1990), Van Huyck et al. (1990, 1991, henceforth “VHBB”), Van Huyck et al. (1997, 2007). We also
find in our experiment that equilibrium convergence in repeated play is sensitive to actions in the first round and is therefore

Bayus, 2003) and PDA hardware standards and software titles (Nair et al., 2004). Yet another type of network effect is called two-sided or, more generally,
multi-sided markets (Rochet and Tirole, 2003; Armstrong, 2006). A two-sided market consists of a firm operating a platform (e.g., a shopping mall) whose
profits depend on two or more groups of agents (e.g., retailers and consumers) with interdependent demand for the platform. Both indirect network effects
and two-sided markets should be distinguished from direct network effects, which have impact on the utility of one type of investment/consumption
category for one group of agents only.
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indirectly sensitive to parameters such as group size that influence first-round actions; similar observations emerge in the
studies by Van Huyck and colleagues, who employ games with discrete strategy space in which every player’s best response
is an order statistic of all other players’ actions.

The literature on the provision point public goods game (see e.g. Rapoport, 1988; Bagnoli and Lipman, 1989; Isaac et
al., 1989; Cadsby and Maynes, 1999; Croson and Marks, 2000) provides more points of comparison. In a provision point
public goods game, a public good with a known, fixed payoff is provided to all players iff the aggregate contribution reaches
a threshold or “provision point”. Typically, provision of public good is a Pareto optimal equilibrium outcome, while no-
investment is a Pareto inferior equilibrium. While the provision point is analogous to the critical mass in our case, the
Croson and Marks (2000)’s meta-analysis shows that success in public good provision depends positively on the Step Return
(SR), which is the aggregate group payoff from the public good divided by the total contribution threshold. This means that
public good provision is less likely the higher the threshold, which is analogous to our finding that first-round investment
and the likelihood of convergence towards the full-investment equilibrium are non-increasing in the critical mass.

However, the group size effects that we present here (see Sections 3 and 4 for details) are not recorded in the afore-
mentioned studies. Van Huyck et al. (1990, 2007) find that coordination success becomes less likely as group size increases
controlling for the payoff function; Croson and Marks (2000) report the same effect controlling for SR. But with the game
we study, group size may decrease or increase the likelihood of coordination success. It may appear intuitive to assume that
strategic uncertainty — the term VHBB use to describe the decision problem subjects face in coordination games - generally
increases when the number of players increases. But whether increased uncertainty necessarily pulls actions away from
the Pareto optimal equilibrium (which will be decreased investments in our case) is another question. As we shall argue in
our hypothesis formulation and then confirm with data, if coordination failure is highly likely when there is little strategic
uncertainty, increasing group size may rather increase first-round investment due to an increase in strategic uncertainty.
Such effects on first-round investments are then carried over by our posited dynamics of the game, which is based on a sim-
ple reinforcement learning model, to produce similar effects on the likelihood of convergence towards the full-investment
equilibrium.

In the following sections, we introduce the game we use in our experiment (Section 2), and suggest, in Section 3, a set of
testable behavioral hypotheses that (1) relate critical mass and group size to first-round investments; (2) relate first-round
investments to equilibrium convergence; and (3) finally, relate critical mass and group size to equilibrium convergence
through (1) and (2). We hypothesize that first-round investments and equilibrium convergence vary with critical mass
and group size in a complex way that is explicable by subtle effects of strategic uncertainty on decision making; these
hypotheses are motivated by previous literature in coordination games (including the provision point public goods game)
and the classic linear public goods game. Moreover, we hypothesize that whether first-round total investment reaches
critical mass predicts convergence towards the Pareto optimal full-investment equilibrium due to a reinforcement learning
process. Next, in Section 4, we report the experimental results when the game is played with different critical masses and
group sizes. Our data show that coordination failure occurs in some, but not all, conditions, and lend support to all our
hypotheses. We conclude, in Section 5, with a discussion of the insights that our research provides in terms of decision
making in the presence of network externalities as well as in coordination games in general, and finally suggest directions
for future research. Our study also consists of an Appendix A in which we present an economic model that produces the
payoff function we use for our experiment (Section A.1), a comparison of the similarities and major differences between the
game we use and the provision point public goods game (Section A.2), and a sample of the experimental instructions we
used (Section A.3).

2. Description and basic properties of the game

Given our research objective of investigating investment decisions and coordination problems in a market with network
externalities, we design a multi-person game for experimental implementation with the following properties:

(a) Every player’s strategy space is continuous and represents her investment in a market;

(b) Every player’s payoff function has a network externalities term that increases with the aggregate investment of all the
players;

(c) There is no free riding: a player whose investment is zero cannot benefit from any network externalities generated by
the aggregate investment;

(d) A positive investment results in a net profit to a player if the aggregate investment exceeds a critical mass, but it results
in a net loss if the aggregate investment falls below the critical mass.

We therefore propose the following simultaneous multi-person game, in which every player has endowment w, any
player i may invest any amount, x; € [0, w], as her chosen strategy, and the payoff to i given all the players’ investments is
given by

i =W —X;

XD %
+# with Vi w>x;>0, (1)
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where N is the total number of players, k is an exogenous parameter, and w is the endowment of each player (we offer in
Section A.1 in Appendix A an economic model of network externalities that leads to the payoff function that is Eq. (1)). It
can be easily checked that this payoff function satisfies properties (a)-(d) with a network externalities term, xiz;\l:]xj /kw,
and a critical mass, kw, that is “non-trivial” when 1<k <N. Although Eq. (1) is not the only payoff function that satisfies the
required properties, we consider it formally simple enough for convenient experimental implementation; it does capture
the features of a market with network externalities in a succinct way.

Methodologically, in using a game with continuous strategy space, we depart from the discrete choice paradigm in many
network externalities and coordination game studies. The example of the new business growth opportunity mentioned
earlier obviously requires the investors to make decisions on a continuous scale. Another example is a network service that
caters to large firms. A firm in the market may decide how many employees should subscribe to the service. This number
potentially ranges from zero — meaning that the firm does not use the service at all - to the total number of employees in
the firm. The net profit that the firm gains through any subscription level depends on its own subscription level and on the
subscription levels of other firms, which can be approximated by all players having a continuous and bounded strategy space
(see also the model in Section A.1 in Appendix A). In implementation, such a design allows for more strategic flexibility for
players, and also allows us to probe more deeply into the beliefs of agents, as an agent’s investment level can be used to
gauge her beliefs on the total investment from other agents. The statistical effects that we shall describe - including both
main effects and interactions in two-way designs that are crucial evidence for our major hypotheses - are much easier to
be detected when subjects can express their beliefs by choosing along a continuous scale with proper incentives, compared
with when they are only given a binary choice. Had subjects been asked only to make a binary adoption decision, we would
have needed a much larger number of data points to test our hypotheses.

The game represented by Eq. (1) bears some resemblance to the provision point public goods game, in which a public
good with a known, fixed payoff is provided to all players iff the aggregate contribution reaches a threshold or “provision
point”. But, in contrast with the typical provision point public goods game, free riding is not possible in the game we design,
and this is a necessary property given our research objective (see property (c) above). To be more precise, 77; > wiff (1) x; >0,
and (2) the total investment (including i’s own investment) exceeds the critical mass, kw; the total investment must be more
than k times the individual endowment to make the investment profitable. A detailed comparison between our game and
the provision point public goods game is available in Section A.2 in Appendix A.

To identify the equilibria of the game we use, we first look at the best response of i as a function of other players’
investments. Since other players’ investments only affect 7r; through the sum of all investments (cf. Eq. (1)), i’s best response
can be written as a function of S_;=3";,x;. Hence denote i's best response as the function x; *(S_;), which should, by
definition, satisfy:

xi(x; +S_;)
X *(S_j)earg max |w—x;+ LT
i*(S_)e gXi cow] i w

The objective function in the right hand side is quadratic and convex in x;; thus the maximum is attained only at either
x;=0 or x; = w. To determine which of these investment levels is the best response (i.e. maximizes the objective function)
given S_;, it suffices to compare their corresponding payoffs (i.e. values of the objective function), which are w when x;=0
and (w + S_;)/k when x; = w. This leads to the following:

xi%(S_j)=w when S_; > (k—1)w;

xi*(S_;)=0 when S_; <(k-1)w;

An immediate consequence is that the game is non-trivial only if 1<k<N. If k<1, (k—1)w < 0 <S_; whatever the
players’ investments, so that investing w is a dominant strategy for any playeri.If k>N, (k — 1)w > (N — 1)w > S_; whatever
the players’ investment, and investing nothing is a dominant strategy for any playeri.If 1 < k < N, the game exhibits strategic
complementarities locally (Cooper and John, 1988), as x; *(S_;) is non-decreasing and partly strictly increasing in other
player’s total investment. The rest of this paper is therefore only concerned with cases satisfying 1 <k <N. Under this
condition, the game has two and only two pure strategy equilibria3: (i) a full-investment equilibrium in which x; = w for all
i; (ii) a no-investment equilibrium in which x; =0 for all i. The full-investment equilibrium is Pareto optimal to the players
among all outcomes. This is because, since the payoff function of i is linearly increasing in S_;, the maximum possible 7; is
achieved when S_; is at its maximum possible value, which must be (N — 1)w, while i plays her best response against that
S_j, which must then be investing w - and this is exactly the full-investment equilibrium play.

3 In any pure strategy equilibrium, the investment of any player is either 0 or w, since these are the only possible best responses. Suppose there is a pure
strategy equilibrium with some players investing 0 and some investing w. Denote the number of players investing w as r; by our assumption, N>r>0. We
must have rw < (k — 1)w, otherwise the players investing 0 will not find it a best response. But then (r — 1)w < (k — 1)w, so that the r players investing w can
do better investing 0. This leads to a contradiction. Therefore any pure strategy equilibrium must either have all players investing 0 or all players investing
w, implying that there can only be two pure strategy equilibria. That 1 < k < N admits both full-investment and no-investment equilibria is straightforward
to prove. Therefore, when 1 <k < N, there are two and only two pure strategy equilibria.
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If the other players play mixed strategies, the expected payoff of i is:

For) = w—x, 4 % + VEV<5,1)1 .

Thus, if i is risk neutral, her best response to others’ strategies (which would maximize her expected payoff) can only be
0 or w. This implies that, if all players are risk neutral, any mixed strategy equilibrium must only involve mixing between
investing 0 and w, and every player’s expected payoff in that equilibrium must be w (the payoff when investing 0), which is
the same as in the no-investment equilibrium and is Pareto inferior to the full-investment equilibrium. It is straightforward
to derive that the only symmetric mixed strategy equilibrium has each player investing w with probability g=(k—1)/(N-1)
and investing 0 with probability 1 — g, giving each player an expected payoff of w. Given the focal nature of the pure strategies,
the disincentives to be unpredictable in this task, and the fact that the expected payoff of the mixed strategy equilibrium can
be guaranteed by the no-investment strategy (x; =0), we do not expect experimental subjects to attain any mixed strategy
equilibrium.

More generally, if players are risk neutral and always play the best-response strategy for the stage game based on their
probabilistic belief of what other players may play, then we shall only observe investments of either O or w in our experiment.
However, we do not expect this to be the case for two reasons. First, a player may be risk averse and invest an amount that
is less than w even if she believes that the expected total investment from other players exceeds kw. Second, if, in any round
before the last, a player believes that the expected total investment from other players is less than kw, she may still invest
a positive amount to “cue” other players to coordinate in reaching an efficient outcome.* Hence we expect to observe a
significant proportion of players investing amounts other than 0 or w (at least before an equilibrium is reached in a finitely
repeated game).

Our experimental setting is a fixed-matching, finitely repeated game with the stage game represented by Eq. (1). The
feedback to any player after any round, apart from her own investment and payoff, consists only of the total investment.
Our objectives are to observe first-round investments, dynamics, and equilibrium convergence, in conditions with different
critical mass and group size.

3. Behavioral hypotheses

In this section, we present a number of behavioral hypotheses regarding how subjects play the game in our experiment.
We shall then test the hypotheses with experimental data in the next section.

3.1. First-round investment

While equilibrium selection (as a convergence result) is an important issue in this study, we are also interested in the
first-round investments despite their “noisy” nature. The reasons are twofold. First, it is not difficult to imagine real-life
situations in which the game is virtually one-shot or lasts few repeated interactions, so that agents’ overall gains or losses
depend crucially on how much to invest in a new market with little information regarding how other agents might decide.
Second, given our hypotheses of the dynamics of this game (to be presented next), first-round investments are crucial in
determining whether the full-investment or no-investment equilibrium is reached.

Our aim is to investigate how x;;, the first-round investment of any subject, i, might vary with critical mass and group size
as represented by the parameters k and N (we shall keep the endowment w constant across all conditions). We first consider
how x;; might change with k holding group size and endowment constant. We take our cue from research in linear public
goods games, with which it has been found that the Marginal Per-Capita Return (MPCR, the marginal increase in public good
payoff incurred by a unit increase in an individual’s contribution) positively influences contribution behavior (Isaac et al.,
1984). Croson and Marks (2000) extend the concept behind MPCR to the provision point public goods game with the notion
of SR (see Section 1 for definition). They similarly find that SR has a major impact on the success rate of public good provision.
There is no straightforward analogy in our game to either MPCR or SR. However, the spirit behind those measures is the
marginal increase in public good payoff to a subject per unit increase in the subject’s private good contribution. Translated
to our game, the term in 77; that most resembles a “public good payoff” (despite the important difference that there is no

free riding) is xinj /kw. And we have:
Jj

i (Xizj‘xf) _ ix,-(xi—i-s,i) _ 2x;+S_;

ox; kw T ox;  kw kw

)

which is decreasing in k holding the investments and endowment constant. That is, ceteris paribus, the marginal increase
in the gain of i’s investment due to a small increase in i's investment itself is a decreasing function of k. Extending the

4 This is different from signaling as usually discussed with repeated game equilibrium, as there is no issue of adverse selection here.
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insights from linear and provision point public goods game, we then hypothesize that first-round investment decreases
with k holding the group size and endowment constant, or:

H;. x;; increases with k controlling for N and w.

The variation of x;; with N is more complicated. First, we need to clarify how we should formulate the related hypotheses:
what is to be held constant as N changes? Here we follow Isaac et al. (1984)’s study on linear public goods game, in which
they formulate hypotheses for group size effect controlling for MRCP and the “group production technology”, respectively.
To be more specific, they study a game with payoff function ®; defined as follows:

G (o)

N )
wherex; is the contribution of iand G( - ) is a function of the total contribution only. Controlling for MRCP means controlling for
the function G'( -)/N, while controlling for “group production technology” means controlling for the function G( - ). Following
earlier discussion, controlling for MRCP is analogous to controlling for k in our settings (the endowment being made constant
in all conditions); this also has the intuitive appeal of controlling for the form of the payoff function. Next, for “group
production technology”, we first write our payoff function in a form that is more readily comparable with @, i.e.:

Nx; (Xi + i £ in)
X]> =
#i

@iZW—X,'-i-

H (x;, X
ni=w—xi+M, where H(xi, Z

N

i kw

This suggests that controlling for G( -) in Isaac et al.’s case is analogous to controlling for H( -, - ) in ours, which means
controlling for N/kw. This is equivalent to controlling for kw/N, which also has an intuitive appeal, as it is the minimum
average investment needed to reach critical mass. In our experiment, as the endowment is made constant in all conditions,
controlling for kw/N is equivalent to controlling for k/N. Therefore, to sum up, we shall formulate hypotheses for group size
effect controlling for k (effectively the critical mass) and k/N (effectively the minimum average investment needed to reach
critical mass), respectively.

We next derive our hypotheses in detail. Van Huyck et al. (1990, 2007) (see also Crawford, 1995; Broseta, 2000) suggest
that, in general, strategic uncertainty increases as group size increases—an intuition that is transferrable to our case. Denoting
each condition of the game (controlling for w) by the order pair (N, k), we thus proceed with the following reasoning:
(a) Assume Hj is correct. Suppose initially the parameters of the game are (N, kq). If k; is small compared with N; (or,
equivalently, kq /N7 is small compared with unity), x;; must be relatively large, so that first-round investments are nearer the
full-investment equilibrium than the no-investment equilibrium; (b) the parameters are then changed to (N3, k»), where
N, >Ny, while either k; =k; (i.e. controlling for k) or, in another hypothesis formulation, k{/Ny =k, /N5 (i.e. controlling for
k/N). In either case, we hypothesize that the change induces higher strategic uncertainty among players, so that first-round
investments are “pulled away” from the full-investment equilibrium, thus resulting in a decrease in first-round investments.
To sum up:

Hya. Suppose the parameters of the game change from (Ny, k1) to (Na, k2 ), where N, > N7, while w is kept constant. Then:

(a) If k1 =k and ky is small compared with Ny, x;; decreases as a result of the change;
(b) If k1/N1=ky/N, and kq/N; is small compared with unity, x;; decreases as a result of the change.

However, if kq is close to Ny (or kq/N; is close to unity - recall that we are only concerned with the non-trivial case of
1 <k <N)asimilarline of reasoning leads to an opposite conclusion: (a) assume Hy is correct. Suppose initially the parameters
of the game are (Nq, kq). If kq is close to Ny (or, equivalently, k1/N; is close to unity), x;; must be relatively small, so that
first-round investments are nearer the no-investment equilibrium than the full-investment equilibrium; (b) the parameters
are then changed to (N, ky ), where N, > Ny, while either ki =k, (i.e. controlling for k) or, in another hypothesis formulation,
k1/N1=ky/N, (i.e. controlling for k/N). In either case, we hypothesize that the change induces higher strategic uncertainty
among players, so that first-round investments are “pulled away” from the no-investment equilibrium, thus resulting in an
increase in first-round investments. To sum up:

Hg. Suppose the parameters of the game change from (N1, kq) to (N, k2 ), where N5 > Ny, while w is kept constant. Then:

(a) If k1 =k, and kq is close to Ny, x;; increases as a result of the change;
(b) If k1/N1=ky/N, and k1 /N7 is close to unity, x;; increases as a result of the change.

3.2. Dynamics

We now formulate hypotheses for the dynamics of the game after round 1. Our purpose is to relate first-round invest-
ments to equilibrium convergence, and as such, we look for hypotheses that require parsimonious parametrization and
assumptions. We thus assume that subjects use the following simple reinforcement learning rule to adjust their invest-
ments from round to round (see Erev and Rapoport, 1998 for a more elaborate use of reinforcement learning models in
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coordination game experiments): if a subject invests a positive amount in round t — 1 and makes a (net) profit or breaks even
in that round, she increases her investment in round t unless her investment in t — 1 is already w, in which case she invests
w again in t. But if she invests and incurs a (net) loss in t — 1, she decreases her investment in t. If she does not investint—1,
she considers what would have happened had she invested a very small but positive amount in that round; if she would
have incurred a loss, she invests zero again in t; otherwise, she increases her investment to a positive level in t. Essentially,
what we assume is that a subject will “increase her bet” in the next round if she “wins” in the current round, and vice versa.
Note that an investment in t-1 makes a profit/breaks even iff S;_; > kw. Thus, formally, our hypotheses are that, for any
round t (T>t>1):

Hs. IfS;_1 > kw, then

(a) if x;_1=w, then Xy =x;_1=Ww;
(b) if xj;_1 = w, then x; >x;;_1.

Hy. IfS;_1 > kw, then

(a) if xj_1 =0, then xj =x;_1 =0;
(b) if x;_1 >0, then Xx; <Xj¢_1.

If hypotheses H3 and H, are valid, any subject’s investment will be strictly increasing (unless it has reached w) from round
to round in the finitely repeated game if the sum of the investments in round 1 reaches the critical mass. Conversely, any
subject’s investment will be strictly decreasing (unless it has reached 0) from round to round in the finitely repeated game
if the sum of the investments in round 1 fails to reach the critical mass. Since any investment is bounded by 0 and w, both
monotonic sequences must approach some finite limits as the number of rounds becomes large; two natural candidates for
these limits are the equilibrium investments. Hence, we also set out the following hypothesis to be tested:

Hs. The game converges towards the full-investment equilibrium if S; > kw; it converges towards the no-investment
equilibrium if S1 < kw.

We now propose hypotheses regarding how the likelihood of convergence towards full-investment equilibrium varies
with k and N. This is obviously an important variable as it indicates the likelihood of coordination success. To proceed, we
need to relate the first-round investment hypotheses with Hs. Consider, for example, the case when there is an increase
in k controlling for N and w from one experimental condition to another. Suppose that, for each condition, one group of
subjects is chosen at random from the same, large population, to play the game. Consider how the probabilistic distribution
of x;; and S; might then differ between the groups playing the two conditions. By Hy, we predict a shift in the distribution
of x;; and hence S; towards lower values as k increases. That is, the probabilistic distribution of x;; and S; in the condition
with lower k first-order stochastically dominates that in the other condition. Nevertheless, if the distribution starts out to
lie largely above kw, it may still lie largely above (the new) kw after the increase. Conservatively speaking, the likelihood of
convergence towards the full-investment equilibrium-which, by Hs, is equal to the probability that S; > kw - may be the
same in both conditions. But this likelihood at least cannot be higher after the increase in k, because of the predicted shift in
the distribution of S; and the fact that kw has increased. Thus we hypothesize that:

Hg. The likelihood of convergence towards the full-investment equilibrium is non-increasing in k controlling for N and w.

Next consider a change of parameters pertaining to Hyg(a) i.e. an increase in N controlling for k and w, where k is close
to the initial value of N. The hypothesis predicts that the distribution of x;; will shift towards higher values. This, together
with the fact that N has increased while kw is kept constant, leads to us to hypothesize that:

H;. Suppose the group size changes from N7 to N», where N, > Nq, while k and w are kept constant, and k is close to Nj.
Then the likelihood of convergence towards the full-investment equilibrium is non-decreasing as a result of the change.

However, we cannot make a corresponding hypothesis regarding the change of parameters pertaining to Hya(a), because,
while the distribution of x;; will shift towards lower values with an increase in N in that context, the fact that N itself has
increased makes it ambiguous whether the distribution of S; will shift towards any definite direction. Similarly, for the
changes of parameters pertaining to Hya(b) and Hyg(b), since k increases together with N in the context of both hypotheses
(so that k/N is kept constant), it is ambiguous as to whether a shift in the distribution of x;; as predicted by these hypotheses
will lead to a higher or lower likelihood of S1 > kw.
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4. Experiment
4.1. Method

4.1.1. Subjects
Two hundred and forty undergraduate subjects at a university in Hong Kong participated in the experiment. All the
subjects volunteered to take part in a decision-making experiment with payoff contingent on performance.

4.1.2. Design and procedure

We used a between-subject design with five conditions. All the games comprised 20 rounds (T=20) with fixed matching.
Each subject had an endowment of w = 30 francs (the experimental currency) at the beginning of each round. The conditions
differed in N, the total number of players in a game, and k, a measure of the critical mass. By denoting each condition by the
ordered pair (N,k), the experimental conditions were (5,2), (5,4), (10,2), (10,4), and (10,8), respectively. Note that we have
not included the condition (5,8) to form a complete 2 x 3 design because (5,8) is not a “meaningful” condition: the critical
mass, 8w, is larger than the maximum possible total investment, 5w. To keep the incentive constant for all subjects, we
varied the exchange rate between francs and the subjects’ real currency across conditions so that the maximum possible
real currency payoff per round per subject (= Nw/k), which was achievable at the full-investment equilibrium, was the same
in all conditions and equal to HK$75 (US$1 =HK$7.8).

There were six groups in each condition. Subjects were randomly assigned into conditions and groups, and they were
seated at maximal distances apart in front of computer terminals through which the games were conducted. At the beginning
of each session, subjects read the instructions about the “money pot investment game” that they were going to play. They
were also informed about their endowments, w, in francs, their condition, N, the critical mass, kw, and the exchange rate
between the experimental and real currency. The payoff function (1) was presented in the instructions in the following way
(this is for the case k=4):

For every 1 franc that a player invests in the money pot, the money pot will return an amount that is equal to the sum of
investments from all the players (including him) divided by 120. That is, if a player has invested x francs in the money pot,
and the sum of investments from all the players (including himself) is S francs, then the money pot will return S/120 francs
for every 1 franc of his investment, or a total of x*(S/120) francs.

Payoff in a Round. Suppose Player A invests x francs in the money pot and therefore keeps (30 —x) francs for himself in a
round. Suppose the sum of investments from all the players in that round, including Player A’s own investment, is S francs.
Then:

Player A’s payoff in this round [in francs] is:

S
(30 —x)| + |x*x——0m
120
The money that A The revenue that A earns from
keeps for himself (not the investment in the money
invested) pot

The full instructions for condition (5,2) are in Section A.3 in Appendix A. It was explicitly stated in the instructions that
an investment is profitable iff total investment exceeds the critical mass, kw. As the game proceeded, after each round, each
subject was informed about the total investment in that round, in addition to her own payoff and investment. After all 20
rounds were played, two rounds were chosen at random. Each subject was paid her average payoff in real currency in the
chosen rounds plus a show-up fee of HK$10 and then dismissed.

4.2. Basic results and analysis

Fig. 1A and B shows the mean investment normalized by w, that is, St/Nw, over all 20 rounds for all groups in all con-
ditions. For ease of exposition, each sub-figure represents data from three groups. The game clearly converged towards the
full-investment equilibrium in conditions (5,2), (10,2), and (10,4); we call these conditions the “w-equilibrium conditions”.
The game predominantly converged towards the no-investment equilibrium in conditions (5,4) and (10,8); we call these
the “0O-equilibrium conditions”. Note that one group out of the six in the (5,4) condition did succeed in attaining the
full-investment equilibrium.> In general, convergence towards the no-investment equilibrium was “noisier” than towards

5 A closer inspection of individual data reveals that one player in this group continued to invest at least 2/3 of her endowment in the first three
rounds despite other players sharply decreasing their investments at the same time. His/her insistent signaling successfully led to two other players’
high-investment responses in round 4 and the game moved gradually towards the full-investment equilibrium afterwards.
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Table 1
Mean data (standard deviation) and percentage convergence to the full-investment equilibrium, by condition.
N=5
k=2 k=4 -
First-round investment, normalized wrt w .57 (.38) .35 (.40) -
S¢/Nw averaged over the last five rounds 1.00 (.01) .20 (.40) -
Percentage convergence to the full-investment equilibrium 100% 16.7% -
N=10
k=2 k=4 k=8
First-round investment, normalized wrt w 48 (.37) 46 (.34) 45 (.43)
S¢/Nw averaged over the last five rounds .99 (.01) .99 (.01) .04 (.07)
Percentage convergence to the full-investment equilibrium 100% 100% 0%

Note: The standard deviations for first-round investments are calculated with individual players as the unit of observation; all other standard deviations

are calculated with groups as the unit of observation.

the full-investment equilibrium, possibly because of players’ tendency to cue other players to “resist” the Pareto inferior

equilibrium.

Table 1 shows the means of the last five rounds’ average investments (normalized with respect to Nw). A non-parametric
sign test shows that S; averaged over the last five rounds is not significantly different from Nw for each w-equilibrium
condition and not significantly different from 0 for each 0-equilibrium condition, with p>.1 in both cases. This supports
the observation about equilibria stated in the last paragraph. For each group, we define that it has converged towards the
full-investment equilibrium iff Sy averaged over the last five rounds is at least 0.95Nw. Table 1 lists the percentage of groups
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Fig. 1. ( Continued ).

which have converged to the full-investment equilibrium in each condition; an inspection of this variable across conditions

again reflects our observations in the last paragraph.

Fig. 2 shows the distributions of the first-round investments under different conditions. Kolmogorov-Smirnov tests
show that the distributions for (5,2), (5,4), and (10,8) are significantly different from the uniform distribution at p <.05,
while those for (10,2), (10,4) is significantly different from the uniform distribution at p~.1. Overall, the results indicate
that first-round investments are not random decisions. The distributions between the w-equilibrium conditions and the
0-equilibrium conditions are also dramatically different. In every condition, at least half of the players invested neither 0 nor
w in round 1. This lends support to our expectation that, before an equilibrium is reached, a significant number of players
does not play as if they responded to their probabilistic belief in what other players may play in a risk-neutral manner.
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Fig. 2. Histogram of first-round investment by condition.

Finally, it is observed from our data that, in each of the games, individual investments predominantly stabilized around
0 or w as the game proceeded, but they did not fluctuate over these two extreme values. This indicates that the risk-neutral
mixed strategy equilibrium was indeed not attained.

4.3. Testing the hypotheses

4.3.1. First-round investment

The means of the first-round investments are shown in Table 1. Hypothesis H; is supported for N=5 with statistical
significance (t(1)=2.16, p<.05); this indicates also that first-round investments are indeed sensitive to the critical mass.
However, the hypothesis is only directionally supported for N=10 without statistical significance (F(2,177)=.13, p>.8).5
To confirm these conclusions, we leave out condition (10,8) and group the conditions (5,2), (5,4), (10,2), (10,4) into a 2
(N=5,10) x 2 (k=2,4) design. ANOVA then reveals a significant main effect in k (F(1,176)=4.16, p <.05) but also a marginally
significant interaction (F(1,176)=2.99, p=.086), suggesting again that H; is only supported statistically at N=5. We thus
conclude that the data provide partial support for H; statistically and are consistent with H; directionally.

Another interpretation of the aforementioned interaction is that it provides support for hypotheses H,4(a) and Hyg(a).
Indeed, the data are consistent with both hypotheses directionally; moreover, ANOVA does not reveal a significant main effect
in N at p<.1, which is also consistent with the two hypotheses taken together. However, none of the pairwise comparisons
testing simple effects in N at k=2 and k=4 yields significant results at p <.1. Next, to test hypotheses Hya(b) and Hag(b), we
leave out condition (10,2) and group the conditions (5,2), (5,4), (10,4), (10,8) into a 2 (N=5,10) X 2 (k/N=2/5,4/5) design.
Again, the data provide directional support and partial statistical support for both hypotheses, and the more general claim
that first-round investments are sensitive to group size. ANOVA reveals a main effect in k/N (F(1,176)=3.73, p=.055), which
is consistent with Hy. There is also a marginally significant interaction effect (F(1,176)=2.72, p=.10), and no main effect in
N at p<.1. Both results lend support to Hy4(b) and Hog(b). However, none of the pairwise comparisons testing simple effects
in N at either k/N=2/5 and k/N=4/5 yield significant results at p<.1. Overall, we thus conclude that there is directional

6 Incidentally, since H; is at least supported at N=>5, we can also reject the hypothesis that subjects invest the same amount in the first round regardless
of k and N.
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(A) Response Plots at the Individual Level
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(B) Response Plots at the Aggregate (Group) Level
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Fig. 3. (A) Response plots at the individual level and (B) response plots at the aggregate (group) level.

support for all the statements in Hps and Hyg, while ANOVA provides partial statistical support for them mainly through the
marginally significant interaction effects.

4.3.2. Dynamics

Fig. 3A and B is one-lag response plots at individual and aggregate levels, respectively. Consistent with hypotheses Hs
and Hy4, when S;_1 > kw, players seem to be optimistic and increase their investments in round t (observe that most points
in the right-hand figures are above the diagonal). When S;_; < kw, players believe that they face a trend towards the no-
investment equilibrium and trade off between investing less to cut their losses (observe that most points in Fig. 3B are below
the diagonal) and investing some amount to “cue” others to “resist” the trend. Hence, responses fluctuate more when the
trend is decreasing, a fact supported also by Fig. 1A and B.

To test hypotheses H3 and H4 more rigorously, we classify and count responses according to the hypothesis premises and
predictions, producing Table 2 as a result. Chi-square tests support all the statements in both hypotheses at the p <.05 level
and in fact at the p<.0001 level in all but one case. The higher p value in the test of statement (b) of H4 corresponds to the
fact that a lot of the points in the S;_1 < kw panel of Fig. 3A are below the diagonal, indicating that subjects have a tendency
to “resist” convergence towards the inefficient no-investment equilibrium. In fact, even the x2(1) for testing Hy(a) is smaller
than that for testing Hsz(a), which also suggests a tendency to “resist” making the inefficient equilibrium investment of zero.

Next, we check whether Hs is supported. We first code each group in each condition such that all groups that converge
towards the no-investment equilibrium are coded as type 0, while all groups that converge towards the full-investment
equilibrium are coded as type 1. Then, for each group, we define a dummy variable, d, which is equal to 1 if S;_; > kw and
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Table 2
Individual response counts.

Condition in round ¢ — 1 (related hypothesis)

St-1= kw, X1 =1(H3(@))  Se-1 = kw, X1 <1(H3(b))  Se1 < kw,xie 1 >0(Ha(b))  Se1 < kw,
Xie—1 =0 (Ha(a))

Response counts Xit <Xjt—1 56 37 220 NA
Xit =Xit—1 2351 68 95 1214
Xie > Xig_1 NA 368 79 72
Chi-square test for Xx%(1)=2,188, x2(1)=146.2, p<.0001 x2(1)=5.371,p~.02 x%(1)=1,014, p<.001

related hypothesis p<.0001

Note: For the appropriate chi-square test for H3(b), we collapse the counts of x;; <x;_1 and x;; = x;;_1 ; for the appropriate chi-square test for H4(b), we collapse
the counts of x; > xj;_1 and X;; =Xj¢_1.

0 otherwise. A chi-square test of the distribution of type and d among groups shows that if S;_; > kw predicts the type
of convergence (x2(1)=19.85, p<.0001); in fact, only three out of the 30 experimental groups do not satisfy the predicted
relation. Hence Hjs is supported.

Hypothesis Hg receives directional support by the percentage of convergence to the full-investment equilibrium in the
relevant conditions, as shown in Table 1. Chi-square test yields significant effects for comparison between (5,2) and (5,4)
(x%(1)=8.57, p=.0034), as well as for comparison over (10,2), (10,4), and (10,8) (x2(2)=18.00, p=.0001); both provide
additional statistical support for Hg. Hypothesis H7 is supported by comparing the percentages of convergence to full-
investment equilibrium in (5,4) and (10,4), for which chi-square test yields significant effect (x2(1)=8.57, p=.0034). We
conclude that the convergence hypotheses are directionally and statistically supported by our data.

5. Conclusions and future research

In this paper, we investigate investment decisions and the associated coordination problems in a market with network
externalities. For this purpose, we adopt an experimental approach with behavioral hypotheses and modeling. Specifically,
we examine how critical mass (which arises naturally in the presence of network externalities) and group size influence
investment decisions. To single out the effects of these two factors, we have kept out other complicating factors, so that
there is only one type of investment and agents are homogeneous in our experimental setting.

We first establish a multi-person game with desirable properties for our objectives. The design of our game resembles
the provision point public goods game but there are also substantive differences - such as free riding being impossible
in our case - that cater to features of network externalities. We propose a number of behavioral hypotheses regarding
first-round investments, dynamics, and equilibrium convergence, for our experiment to test. We then present experimental
results showing that the Pareto optimal equilibrium is sometimes, but not always, attained. This observation is common
with previous studies on coordination game.

Our hypotheses on first-round investments and equilibrium convergence are supported by the data. They reveal a subtlety
about strategic uncertainty that has not been picked up by previous studies on coordination problems. What previous
literature (e.g. Croson and Marks, 2000) suggests by analogy, and what we have observed, is that first-round investments
and the likelihood of convergence towards full-investment equilibrium are non-increasing in critical mass holding group
size constant. Previous literature (e.g. Van Huyck et al., 2007) also suggests a weakening of coordination to reach the Pareto
optimal equilibrium as group size increases, but our findings present a more complicated picture. While an increase in group
size (controlling for either the critical mass or the minimum average investment needed to the reach the critical mass, as
stated in our hypotheses) is expected to lead to an increase in strategic uncertainty, if investments are inclined towards
the no-investment equilibrium when group size is small, they may actually increase as it becomes bigger. This is because,
in this case, when subjects want to reduce opportunity cost in a more uncertain environment, in which they are less sure
that others would not try to reach the Pareto optimal equilibrium, they tend to invest more when group size increases.
This mechanism is indeed evident in our data both in the short run (the first-round investments) as well as the long run
(equilibrium convergence).

In accordance with experimental results on order statistic games such as VHBB, convergence to the efficient equilibrium
is sensitive to what happens in the first round; in our case, it is clearly predicted by whether or not the total investment
reaches a critical mass in the first round. Thereafter, S;, the total investment in a round, becomes a “market reputation”
signal with positive feedback characteristics as a side effect of the reinforcement learning process that we posit. As a result,
S1 becomes important in determining the direction of convergence. This finding leads us to suggest a managerial insight
regarding the initial market share of a newly launched product or newly introduced technology with network externalities:
if such a product/technology is to succeed in capturing the market, the network size must be “jump-started” past a critical
tipping point at which payoff for joining the network is greater than the cost of joining (in time, effort, and resources). Our
results also offer the insight that, even if total investment fails to reach critical mass, if at least a portion of the investors
realize that full investment is Pareto optimal, then convergence towards the no-investment equilibrium will not be smooth
but will meet with noisy “resistance”. This is reflected in Fig. 1A and B, the response plots Fig. 3A and B, as well as the smaller
x2(1) statistics in the right columns of Table 2 relative to those in the left columns.
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As an experimental setup, the game we have used can be modified and generalized in several directions. For example,
competition between products with externalities can be investigated by allowing subjects to invest in more than one product,
so that product m has critical mass kmw and offers network externalities gainx; , > i+ i%Xm /kmw to subjectiwith investment
Xim on m. Heterogeneity can also be introduced. Each player, i, may have her own endowment, w;, and parameter, k;, that
can be different from other players’ endowments and parameters, thus allowing for heterogeneity in critical mass. It may
also happen that the “intrinsic” utility the player has from investing in the product is 8; times the network externalities she
gains from other players’ investments, so that her payoff is:

X (Bixi + j#ixj)

=W Xt kiw;
11

with Vi w; >x; > 0.

Note that ;=1 for all i in the present setup; the economic model put forward in Section A.1 in Appendix provides an
example for when this might be a reasonable assumption. Another direction for extension is that players are given a one-off
endowment at the beginning of round 1 that is not replenished thereafter, and any investment in round ¢t becomes a sunk
investment that persists in the calculation of the payoff in every round after t. This brings the experiment nearer to the
durables market, while the present setup can be interpreted as approximating the market of a rental or subscription product
with network externalities characteristics, such as a new telecommunications service (see also Section A.1 in Appendix A)
or new software products (e.g. multiplayer online games) operating on a per period subscription model.
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