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In a previous study, Zwick, Budescu and Wallsten (1988) found that the member- 
ship functions representing the subjective combinations of two independent linguistic 
probabilistie judgements could not be predicted by applying any dual t- and 
co-t-norm to the functions of the underlying terms. Their results showed further that 
judgements involving the "and" connective were best modelled as the fuzzy mean of 
the two separate components. The present experiment extended those results by 
manipulating the instructions regarding the "and" connective and also including an 
additional task in which subjects selected a third phrase to represent the integration 
of the two independent judgements. Again, no t-norm rule predicted subjects' 
responses, which were now best modelled by the point-wise arithmetic or geometric 
means of the functions. In addition, most subjects selected phrases and provided 
membership functions in response to two identical forecasts that were more extreme 
and more precise than the individual forecast, a result inconsistent with any t-norm 
or averaging model. A minority of subjects responded with the same phrase 
contained in the forecasts. The entire pattern of results in the Zwick et al. (1988) and 
the present study is used to argue against the indiscriminate application of 
mathematically prescribed, but empirically unsupported operations in computerized 
expert systems intended to represent and combine linguistic information. 

1. Introduction 

1.1. BACKGROUND 
In many situations our own opinions or decisions depend on the probabilistic 
judgements and forecasts of external agents. For example, we depend on expert 
forecasts of interest rates and market fluctuations when selecting among invest- 
ments. Thus our own decisions and choices are affected by the capability of others to 
properly express and communicate their beliefs, and by our ability to understand 
and use them. A well-known phenomenon in the forecasting literature (e.g. 
Beyth-Marom, 1982) is that many experts, like laypeople, prefer to communicate 
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their opions by means of verbal probabilistic phrases rather than by means of 
numbers. Typically, this preference for words over numbers is linked to the 
vagueness of opinion, claiming that it would be misleading, improper, or even 
unethical to use a precise expression of a fuzzy opinion. 

The preference for words over numbers has led many researchers to investigate 
the relationships between linguistic and numerical expressions of probabilistic 
opinions (see Budescu & Wallsten, 1985, 1987 for partial reviews). These studies 
show that most probabilistic phrases are understood to cover large ranges of 
probabilities and to overlap considerably. In addition, there exist consistent 
individual differences in the use and interpretation of these words (e.g. Beyth- 
Marom, 1982; Nakao & Axelrod, 1983; Budescu & Wallsten, 1985). Recently, 
Wallsten, Budescu, Rapoport, Zwick and Forsyth (1986) and Rapoport, Wallsten 
and Cox (1987) have shown that the vague meanings of probability phrases can be 
described reliably by means of membership functions over the [0, 1] interval. 

The present investigation is a follow-up to the one by Zwick et al. (1988), and 
employs the theoretical framework of fuzzy set theory to evaluate various 
aggregation connectives (e.g. Dubois & Prade, 1985). Specifically, we are interested 
in how subjects combine the vague probability judgements of two observers or 
forecasters with regard to the likelihood of an event. These opinions are expressed 
linguistically and are independent (in the sense that the two observers do not 
communicate with each other prior to their expression of opinion). Further, there is 
no reason for the receiver to believe that one observer is more reliable than another. 
This situation was studied extensively from a prescriptive point of view (e.g. see 
Clemen, 1988 for a review) but little is known about the descriptive power of the 
fuzzy aggregation models and even less about the case when opinions themselves are 
expressed in an inexact linguistic manner. 

1.2. F U Z Z Y  SET A G G R E G A T I O N  C O N N E C T I V E S  

Given a generalized concept of membership, operations on sets are no longer 
restricted to the boolean binary algebra, and a much richer class of operations can 
be defined. Numerous definitions for the logical operators "and" and "or"  have 
been suggested (Czogala & Zimmermann, 1984; Smithson, 1984, 1987; Dubois & 
Prade, 1985) on the basis of various normative, empirical, or purely mathematical 
considerations. Various definitions can be considered proper, in that they all yield 
the regular results for classical (crisp) sets as a special case, and this fact has led to 
confusion regarding which definitions are "correct". However, it is logically and 
mathematically impossible to determine the appropriate "general" rule on the basis 
of a special case, central as it may be. Indeed, since fuzzy set theory was offered as a 
more flexible model that is better suited for systems affected by human judgement, 
perception and emotion (Zadeh, 1975), it is a mistake to search for a single best set 
of definitions of the "and" and "or" operations. Zadeh's (1976) position, fo r  
example, has been that the choice of these definitions should reflect the unique 
characteristics of the particular situation at hand. However, it is important for both 
applications and basic theory to identify individual and situational factors that make 
more appropriate any given class of operators. 
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1.2.1. Aggregation connectives based on triangular norms  and their duals 
Dubois and Prade (1985) suggest that a consensus has formed in the literature that 
the concept of triangular norms and conorms proposed by Menger (1942) is 
appropriate for representing the fuzzy logical operators for "and" and "or" (see also 
Weber, 1983). Examples of t-norms and their duals that have been proposed in the 
literature to represent the pointwise fuzzy set-theoretic intersection or union are: 

T 0) = rain (a, b), S O) = max (a, b) (Zadeh, 1965) (1) 

T c2) = ab, S t2) = a + b - ab (Bellman & Zadeh, 1970) (2) 

T c3) = max (0, a + b - 1), S (3) = rain (1, a + b) (Bellman & Zadeh, 1977) (3) 

where T t~ is a particular t-norm and S ~~ is its corresponding conorms. 
Smithson (1984; 1985) pointed out that these three classes can be thought of 

representing various degrees of extremity since for all (a, b) in [0, 1] • [0, 1] 

T O) > T (2) ~> T(3) 
and 

S O ) < S (2) ~ S (3). 

It was therefore suggested that the three classes can be incorporated into one 
general family of connectives with one or more free parameters. For an excellent 
review of the class of fuzzy set aggregation connectives based on triangular norms 
see Dubois and Prade (1982, 1985) and for specific examples of general rules see 
Yager (1980); Czogala and Zimmerman (1984) and Smiths0n (1984, 1985). 

Little psychological understanding of the parameters can be claimed. It is not 
clear whether one or more of them might be descriptive of subjective union or 
interaction, and if so how they depend on individual or situational factors, how 
stable or reliable they are, and what other factors may affect them. In fact, 
estimation procedures for most of the parameters have not been developed. 
However the t-norm conceptualization is useful, since it allows us to test simul- 
taneously the appropriateness of a large class of possible dual connective operators. 

1.2. 2. Aggregation connectives based on compensatory  operators 
Another class of operators is based on the notion that in everday life people rarely 
use "and" and "or"  in their respective strict noncompensatory and fully compensa- 
tory senses. Rather, people's judgements are based on a partially compensatory 
interpretation, represented by a free parameter, g, which can be called "grade of 
compensation". The first to introduce this idea were Zimmermann and Zysno (1980) 
who suggested a weighted geometric mean: 

m~,B(X) = [m~n~(X)]~-qmwB(X)P (4) 

Here (.4 &B) denotes the generalized compensating connective, which varies 
between the regular "or"  when g = 1 and the regular "and" when g = 0. Note, that 
this approach does not eliminate the need to decide on a definition of the strict "or"  
and "and". Thus, any of the operations described earlier can be used. In a similar 
fashion Luchandjula (1982), and Smithson (1984) proposed different forms of 
generalized connectives that include the pure union and intersection formulas as 
special cases. In a recent development Dyckhoff and Pedrycz (1984) suggest the use 
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of generalized means to model the compensatory connective. This model yields a 
variety of simple well know rules as special cases. Among them are the minimum, 
maximum, as well as the weighted arithmetic, geometric and harmonic means of the 
membership functions. 

The importance of this approach is that it offers a definition of a compensatory 
connective without explicitly adopting a set of definitions for the strict "and" and 
"or". Although this approach simplifies the situation conceptually and computation- 
ally, it is questionable whether the Dyckhoff and Pedrycz model is comparable with 
the others. It appears that this model should be considered a general model of 
combination and aggregation of levels of membership. 

1.2.3. Aggregat ion connective as a f u z z y  mean  
Other forms of averaging the two individual membership functions can also be 
considered as models of aggregation. One deserving particular mention is the "fuzzy 
mean", i.e. the mean of two fuzzy numbers. Dubois and Prade (1980) define a real 
fuzzy number as a fuzzy subset with a continuous membership function satisfying 
some mild regularity conditions, and the mean of two fuzzy numbers, A and B, as: 

~lMean(a,B)(X )" = max [min ([Ia(y), pta (Z) )  ]. 

x = ( y  + z ) / 2  (5) 

1.3. PREVIOUS EMPIRICAL RESULTS 

Norwich and Turksen (1982, 1984), Wallsten, et al. (1986) and Zwick (1987) have 
pointed out the relationships between the axiomatic formulation of the algebraic 
difference (ratio) structure (e.g. Krantz, Luce, Suppes and Tversky, 1971) and the 
measurement of memberships functions. This approach was recently refined and 
successfully tested by Wallsten, et al. (1986), who developed a graded pair- 
comparisons procedure (Oden 1977b), that allows simultaneous testing of the 
necessary axioms, scaling of the responses in order to obtain memberships, and tests 
of goodness of fit. In a subsequent study Rapoport et al. (1987) demonstrated a high 
level of similarity between membership values determined through graded pair- 
comparison and direct magnitude estimation. Thus, a sound theoretical and 
empirical justification was established for the quantification of the vague meanings 
of linguistic terms by means of direct scaling. 

Several studies have tested empirically the various combination rules. Hersch and 
Caramazza (1976) tested the max rule (Equation 1) for the union operator. The 
shape of the "or" function resembled the max rule, but was consistently lower. 
Oden (1977a, 1979) contrasted the min-max and sum-product operators for the two 
connectives. Group and individual analyses indicated that both classes of operators 
fit the data quite well, but the sum-product connectives clearly outperformed the 
rain-max rules. Thtle,  Zimmerman and Zysno (1979) compared intersection 
operators. Their group analyses slightly favored the min rule over the product 
operator. 

Zimmermann and Zysno's study (1980) has the distinction of being the most 
realistic. Subjects were presented with exemplars of fire resistant tiles whose quality 
was to be judged according to solidity and dovetailing. Group membership functions 
were obtained for "solidity", "dovetailing", and "ideal tile". The subjects' 



LINGUISTIC PROBABILITIES 661 

judgements of "ideal" were best represented as a combination of the two 
membership functions that did not fit any of the rules proposed for conjunctions and 
disjunction. The authors ultimately advocated the generalized operator described 
earlier (Equation 4). 

To summarize, the evidence regarding the "and" and the "or"  operations is 
inconclusive. Oden (1977a; 1979) advocates the sum-product rule; ThiSle et aI. 
(1979) favors the min rule for "and",  and Hersh and Caramazza report (at least 
weak) support for the max rule for "or". Furthermore, given the various methods 
used to quantify the degrees of membership and the variety of experimental 
procedures used to elicit the judgements, it is impossible to determine whether the 
different results are really contradictory, or can be linked to the use of different 
methodologies. 

Finally, Zimmermann and Zysno's (1980) work clearly illustrates thatinformation 
is sometimes combined according to an averaging rule (e.g. Anderson, 1981; 1982) 
that allows for compensation between the extreme alternatives. Their results are 
intriguing. They suggest that although the duality between the union and intersec- 
tion operations, and the corresponding "or" and "and",  may reflect a nice 
mathematical normative structure (imposed by DeMorgan's theorem), they do not 
necessarily reflect a psychological reality. 

1.3.1. The experiment of  Zwich et al. (1988) 
Zwick et al. (1988) performed an experiment in order to investigate this possibility. 
The experiment tested a series of requirements which must hold if the dual rules for 
intersection and union are based on t-norms and their corresponding co-t-norms. 
Let T(a, b) stand for the t-norm of two values, and S(a, b) be its dual co-t-norm. 
Then under any of the dual rules (e.g. 1, 2 and 3) the following three conditions 
must hold: 

(i) T(a, b) <-. min (a, b) -< max (a, b) <- S(a, b) 
(ii) T(0, 0) = 0; T(a, 1) = S(a, O) = a and S(1, 1) = 1 (boundary conditions) 

(iii) T and S are monotonic in both arguments 

In addition, under any strict dual rule, 

(iv) T and S are strictly increasing in both arguments. 

Finally if T belongs to the Frank family (Frank, 1979) then: 

(v) T(a, b) + S(a, b) = a + b. 

In the study of Zwick et al. (1988) 16 graduate students performed three 
judgemental tasks in two experimental sessions. In one task, they estimated 
membership functions of individual probability phrases, in another they estimated 
membership functions of pairs of phrases connected by "and",  and in the third they 
estimated membership functions of pairs of phrases connected by "or". Three low 
probability phrases (doubtful, slight chance, and improbable) and three high 
probability ones (likely, good chance, and fairly certain) were used separately and in 
all possible pairs. Individual phrase membership functions were assessed for 11 
probabilities equally spaced across the 0-20-0.98 range. Membership functions for 
the pairs connected by "and" and "or"  were obtained for five probabilities each. 
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The data obtained were used to test the five properties of the dual rules, and to 
identify the best models for the judgements. The monoticity and boundary 
conditions were confirmed, but the others were not. Specifically, for all subjects, 
T(a, b) + S(a, b) > a + b, in violation of condition (v). This result was mainly due to 
the fact that in a majority of cases T(a, b ) > m i n  (a, b), in clear violation of 
requirement (i). 

Thus, the results show that no dual t- and co-t-norm could fit the empirical data, 
and that the violations are due mainly to the "and" operator. This conclusion was 
further confirmed in the metric comparison of the models, where the max rule best 
described the "or" judgements for 15 of the 16 subjects, but "averaging" models 
yielded the best description of the "and" judgements. Specifically, the judgements 
of a majority of the subjects (9 out of 16) were best captured by the fuzzy mean 
model and the remaining were better described by simple pointwise arithmetic or 
geometric means. 

In previous research (Hersh & Caramazza, 1976; Hersh, Caramazza & Brownell, 
1979; Thrle et al., 1979; Oden, 1977a, b, 1979; Zimmermann & Zysno, 1980; Kulka 
& Novak, 1984) it was found that the logical (fully noncompensatory) "and" 
operator does not describe the linguistic "and" as applied to two linguistic categories 
referring to different scales (e.g. a high brewing speed and low capacity 
coffeemaker). In these cases "not only are the idempotent intersection and union 
not a good model, but one may drift out of the domain of triangular norms and 
conorms, and get operations such as the arithmetic or the geometric means as 
proper models" (Dubois & Prade, 1985, p. 97). Zwick et al. (1988) confirmed this 
phenomenon, with two linguistic categories referring to the same scale (i.e. 
probability). 

Zwick et al. (1988) suggested that when subjects judge whether a probability value 
is well described by at least one expert (the "or" task), they effectively decide which 
expert had come closest to the value and then ignore the input from the other 
person. In the more common situation, where the individual integrates verbal 
probabilities inputs to form a single overall judgement, he or she uses an averaging 
process. Consequently, the final judgement may be very different from either of the 
two inputs, just as in many other situations when integrating precise values (e.g. 
Anderson, 1981, 1982). 

A possible explanation of this somewhat surprising result is that it was 
an artifact induced by the instructions to the subjects. Perhaps the description of 
the task was understood as a call for a "compromise" between the two forecasts, 
instead of an integration. 

1.3.2. The new experiment 
The primary goal of this study is to replicate the results of Zwick et al. (1988) and to 
test the possibility that they were caused by the particular instructions. To this end 
the "And" task was run under two different sets of instructions, and the number of 
judgements was increased to obtain more stable data. In addition, a task was 
included in which the subjects were explicitly required t o  select a single phrase 
(possibly, but not necessarily, one of the two presented to them) that best described 
the integrated meaning of the two forecasts. 

The primary analysis attempts to identify the model that fits best the subjects' 
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responses in the various integration tasks, given their membership functions for the 
individual forecasts. The six models we examine are the three operators suggested in 
the fuzzy sets literature (min, product and bounded sum), two pointwise means 
(arithmetic and geometric) and the fuzzy mean. To keep the comparisons simple 
and meaningful, no model involving free parameters is used. 

An interesting special situation occurs when the subject is presented with two 
identical forecasts by two independent agents judging the same information (e.g. 
two radiologists who look at the same X-Ray and both tell you it is "likely" that you 
have a tumor). With numerical forecasts the subject can either adopt the unanimity 
principle (Morris, 1983; Winkler, 1986) stating that if the two forecasts coincide the 
combined value should be equal to this common probability, or combine the two 
values in a Bayesian analysis yielding a probability higher than each of the forecasts 
(Lindley, 1986; Winkler, 1986). In the verbal  case the three types of means 
(arithmetic, geometric and fuzzy) and the min rule all predict the unanimity 
principle, while the product and bounded sum rules both predict uniformly flatter 
functions for the integrated forecast than for each of the individual forecasts. A 
third possibility, which is more consistent with the Bayesian analysis, but which is not 
predicted by any of the models considered here is that the integrated forecast is 
more precise and extreme than the original one. A secondary goal of the present 
study is to characterize how people integrate two independent identical forecasts. 

2. Method 

2.1. SUBJECTS 

Twenty graduate students in social sciences and business at the University of North 
Carolina at Chapel Hill were recruited by placing notices advertising the experiment 
in the departmental mailboxes. They received $25 for participation in all three 
sessions of the experiment. 

2.2. GENERAL PROCEDURE 

All subjects participated in one practice session and two data collection sessions in 
which they performed three tasks: (i) . estimation of membership functions of 
individual probability phrases; (ii) estimation of membership functions for pairs of 
phrases connected by "and",  which we call the "And" task; and (iii) selection of a 
single phrase, which we call the "Selection" task. The experiment was controlled by 
an IBM/PC computer. 

2.2. i. Membership estimation 
The instructions for this task read in part: 

You are to imagine that you are to predict whether a spinner you cannot see will land on 
white on the next random spin. A friend of yours can see the spinner, although not too 
well, because it is rotating at a moderate rate. Your friend will use a non-numerical 
probability phrase to give you his or her best opinion about the chances of the spinner 
landing on white. This gives you some basis for judging the probability of that event. 
Thus a phrase (from your friend), a spinner, and a response line will come on the screen 
for a single trial. You are to indicate how close the displayed probability of landing on 
white is to the judgement you would form upon hearing the particular phrase. If the 
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displayed probability is not all close to your judgement, move the arrow (on the response 
line) all the way to the left. If it is as close as possible to your judgement, move the arrow 
all the way to the right. If the displayed probability matches your judgement to some 
degree, then place the arrow accordingly. 

Subjects responded by pushing the arrow buttons of  the keyboard.  The  precision 
of the response was determined by the resolution of the monitor ,  and allowed 201 
locations anchored by two verbal  labels: "no t  at all" on the left, and "absolu te ly"  on 
the right. 

2.2.2. " A n d "  task 
We used two sets of  instructions for this task. Both started with the following 
description: 

Two friends have viewed the rotating spinner. They have not spoken to each other, so 
neither knows what the other thinks, but each uses a non-numerical phrase to tell you his 
or her opinion about the chances of the spinner landing on white. They may use the same 
or different phrases. 

Now we are interested in how well the displayed probability of landing on white was 
described by both of your friends. Thus, two phrases (one from each friend), a spinner 
(perhaps the one they saw, perhaps not), and a response line will appear on the screen 
for a single trial. 

In one set of  instructions (Group  A) ,  identical to those used by Zwick et aL 
(1988), the subject 's  task was described as the following: 

The question is, to what degree is the displayed probability simultaneously consistent 
with the judgements of friend 1 and friend 2? As before, move the cursor all the way to the 
left for probabilities that are not at all consistent with both judgement 1 and judgement 
2, and all the way to the right for probabilities that are as consistent as possible with both 
judgement 1 and judgement 2. If the displayed probability matches the two judgements 
to some intermediate degree, place the arrow accordingly. 

In the second set of  instructions (Group  B) the subjects were told: 

On the basis of the two phrases, you can form some judgement about the probability of 
landing on white for the spinner your friends saw. The question is, how close does the 
displayed probability of landing on white come to the judgement you formed based on 
the two phrases? As before , . .  

Thus,  these instructions explicitly called on the subject to create his or  her  own 
estimate on the basis of  t h e t w o  forecasts. 

2. 2. 3. Selection Task 

The instruction for this task read in part:  

We will not present any spinners at all in this type of trial. Rather, two non-numerical 
probability phrases will be printed at the top of the screen on each trial, each phrase 
representing the chances that the spinner will land on white as was told to you by two 
friends. Now imagine that on the basis of this information you have to convey the 
probability of the spinner landing on white to a fourth person, using a word rather than a 
probability number. 

At the bottom of the screen, there is a list of probability words on the right, and a list 
of modifiers on the left. You must respond with a probability word, and you may also 
add one or two modifiers before the word. To indicate your response, simply type in the 
appropriate combination. 
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The list of possible responses included seven phrases (good chance, likely, 
probable, doubtful, unlikely, improbable, and slight chance) and nine modifiers 
(very, not, quite, rather, fairly, highly, somewhat, extremely, and pretty). 

2.2.4. Stimuli 
Six phrases were used, three (fairly certain, likely, and good chance) representing 
probabilities higher than 0-5(H), and three (doubtful, improbable, and slight 
chance) representing probabilities lower than 0.5(L). Nine probabilities were 
employed, with values randomly selected on a given trial from nine uniform 
distributions of values over the ranges Pi + 0.03, where Pi = 0.1, 0.2 . . . .  ,0.9. This 
particular technique was employed in order to minimize the effects of replication of 
the same nine probabilities across all trials. Membership judgements were obtained 
for each of the six phrases a lone at all nine probabilites (a total of 6 • 9 = 54 
judgements), and for each of the (6 x 7/2=) 21 combinations of phrases at all nine 
probabilites (a total of 21 x 9 = 189 judgements). The selection task was performed 
for each of the (6 x 6=) 36 pairs of phrases. Finally, membership judgements were 
also obtained at the nine probabilities for all new words selected by the subject. The 
number of these judgements varied across subjects according to their selections. 

2.3. PROCEDURE 

Subjects were randomly allocated to two groups, differing only in terms of the 
instructions for the "And" task. During the first session all three types of judgements 
were explained and practised, but no data were collected. All judgements were 
performed in the second session and then replicated in the third. The order of the 
tasks and the order of stimuli presentation within each session and task was 
randomly determined. Also, in the "And" and "Selection" tasks the left/right loca- 
tion of the two words was randomly counterbalanced for each subject. All subjects 
completed the three sessions within two weeks and were paid at the conclusions of 
the last one. Because of a computer malfunction the data from the last session of 
one subject were lost. 

3. Results 

All the results are reported at the individual subject level, because there is no logical 
or theoretical reason to expect the same integration rule to apply universally. In 
most cases we report separately data in response to pairs of similar (LL and HH) 
and mixed (LH) terms. In the former case the subjects must integrate two congruent 
pieces of information, while in the latter the two forecasts are inconsistent. Thus, we 
must consider the possibility that the subjects employ different integration rules, and 
that our models have differential predictive validity in the two cases. Prior to the 
analysis all judgements were re-expressed on a scale ranging from 0-1. 

In summarizing the results we used the Mean Absolute Deviation (MAD) as the 
primary criterion of goodness of fit. It is simple, straight forward and easy to 
interpret, especially when dealing with results bounded, by the response scale, in the 
[0, 1] interval. This measure was selected over more commonly used statistics, such 
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as the mean squared deviation or the product moment correlation, because its 
properties fit our goal: MAD measures the absolute closeness between the observed 
and the predicated values while disregarding the direction and pattern of the 
deviations. Also, many of the membership functions to be compared are relatively 
flat, and under such circumstances the regular correlation would be misleading. 

3.1. STABILITY 

Table 1 presents MADs between repeated judgements as a measure of the 
responses' stability across the two sessions. In this, and all the other tables, a value 
of 0 indicates a perfect result (stability or fit), and a value of 1 indicates the worst 
possible results. Since stability measures are typically reported as correlations, and 
in order to allow the reader to form an impression regarding the relationship 
between MAD and the usual measure of reliability, we also report in this table the 
regular correlations for each case in parentheses. 

The first column is based on the judgements of the membership functions of the 
six phrases and it indicates a good level of stability for most subjects. The next two 
columns summarize the results of the "And" task, for the two types of pairs 
separately. Note that the stability of the responses is about equal for the two groups, 

Mean absolute 
TABLE 1 

deviations (and correlations) between repeated judgements in the 
various tasks (Decimal points omitted) 

Membership "And" Selection 
Group Subject judgements (LL+ ttH) LH (LL+HH) LH 

A 1 16(73) 16(75) 25(24) 15(78) 21(32) 
2 07(95) 09(93). 13(61) 09(90) 14(70) 
3 13(87) 14(84) 16(09) 11(88) 20(40) 
4 18(73) 11(89) 11(37) 12(83) 18(38) 
5 08(94) 09(92) 20(39) 09(89) 20(36) 
6 09(90) 14(82) 11(00) 10(88) 21(34) 
7 07(96) 08(95) 10(87) 08(91) 15(27) 
8 08(94) 07(95) 08(63) 08(91) 36(25) 
9 11(87) 16(75) 20(14) 12(84) 15(35) 

10 11(90) 08(42) 12(-11) 11(84) 25(-13) 
Mean 11(88) 11(82) 15(32) 10(86) 20(32) 

B 1 08(94) 14(78) 13(31) 14(80) 18(31) 
2 11(94) 14(88) 17(40) 14(81) 25(53) 
3 15(70) 19(59) 13(12) 18(26) 24(-05) 
4 12(85) 08(92) 18(51) 12(80) 26(32) 
5 12(90) 11(92) 20(44) 12(85) 27(45) 
6 10(90) 11(87) 13(59) 10(86) 25(02) 
7 14(77) 15(71) 10(53) 15(67) 15(30) 
8 08(95) 09(92) 19(69) 07(96) 25(37) 

10 09(93) 11(90) 15(41) 12(84) 20(12) 
Mean 11(87) 12(83) 15(44) 13(76) 23(26) 

Mean 11(88) 12(82) 15(38) 11(82) 21(30) 

Note; Data from second session of Subject 9 in group B are missing. 
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and that most subjects are slightly more consistent in judging similar (i.e. LL and 
HH) than dissimilar (LH) pairs. Generally, the stability is only slightly under the 
level recorded for the simple membership functions judgements. 

i The last two columns display the results from the selection task. It is important to 
keep in mind that in most cases these data reflect similarity between potentially 
different phrases. For example, for a given pair of terms (w~ and w2) a subject might 
have selected w3 in Session 1 and w4 in Session 2. (In fact, the proportion of cases in 
which the same phrase was selected for a given pair is a relatively low 0-25). A quick 
glance at this part of the table shows that despite this factor the judgements for the 
similar words are stable and at a level of consistency close to that achieved for the 
other tasks. However, the judgements for the incongruent pairs are less consistent 
than for the congruent ones (on the average twice as different). This result indicates 

~that this task was much more difficult and all subsequent analyses based on these 
i data must be interpreted with great caution. It is also interesting to note that the 
I 

stability of judgements in the "And" and the "Selection" tasks is very similar for the 
congruent terms ( r=0.82,  p <0.05),  but not for the incongruent ones ( r =  
0.003, p > 0.05). 

3.2. FIT OF THE MODELS 

All analyses in this section are based on the average of the two judgement per 
stimulus over the two sessions for each person. These analyses use the individual 
membership functions to predict the functions representing the integrated judge- 

ments .  We compare the min, product and bounded sum rules (Equations 1-3, 
respectively), two pointwise means (the arithmetic and the geometric) and the fuzzy 
mean (Equation 5) for combining the separate functions. The fit of the various 
models can be easily compared, as they are all parameter-free and simply different 
formulas for combining the membership functions of the individual terms. A 
preliminary inspection of the data shows that the geometric and arithmetic mean are 
almost always the best two models. Therefore, we present in the following tables a 
complete summary of their fit. In those cases where one of the other four models is 
the best, or the second best, we also present its fit. 

3.3. THE "AND" TASK 

Tables 2 and 3 summarize the two best fitting models for the similar (LL and HH) 
and mixed (LH) pairs of terms, respectively, and indicate when other models are 
equally good or better for a particular subject. Not surprisingly, the MADs are 
much better for the similar pairs (Table 2). If Subject 10 from Group A whose 
data are not well described by any model is excluded, the average MAD of the 
geometric and arithmetic mean is in this case, an impressive 0.07, which is as good 
as one can expect given the stability of the judgements. The fit is worse, yet 
satisfactory, in the case of incongruent pairs (Table 3). However, even in this case 
the average MAD of the best model for each subject is 0-12. For the HH and LL 
pairs the two types of means are equally good predictors as reflected in their average 
MAD and in the number of best fitting models (eight subjects best fitted by the 
arithmetic mean and nine by the geometric one). For the HL pairs the geometric 
mean seems to be doing a slightly better job in terms of its overall fit and the 
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TABLE 2 
Mean absolute deviation from the best two models for the "and" 

task (LL + HH Pairs) (Decimal points omitted) 

Arithmetic Geometric Other 
Group Subject mean mean model 

A 1 10 10 09t (Fuzzy) 
2 05t 05 - -  
3 07 07t 
4 09 08 - -  
5 06 06 06t ( M i n )  
6 05t 06 05 (Fuzzy) 
7 08 07t 07 (Min) 
8 06 05t - -  
9 lOt 10 - -  

10 47t 47 - -  
Mean 10t 11 

B 1 08t 08 - -  
2 08 08t - -  
3 15t 15 - -  
4 07 07t 
5 08 07t - -  
6 08 07t 07t (Fuzzy) 
7 08 08 08t (Fuzzy) 
8 05 06 - -  
9 08t 08 08 (Fuzzy) 

10 08 08t 
Mean 07t 08 

Mean 09t 10 

t Best fitting model. 

number  of  cases in which it is best (12 vs 5 for the arithmetic mean). Finally, note 
that only for nine subjects (45%) is the same model best for both types of pairs (in 
six cases the geometric mean, in three the arithmetic one),  and that the more 
reliable subjects seem to have bet ter  levels of  fit (the correlation between the 
stability and fit of  the best model r = 0.6, p < 0.05). 

3.4. THE SELECTION TASK 

Tables 4 and 5 display the two best fitting models as well as others that approach 
them for each subject when presen ted  with two congruent  and incongruent terms, 
respectively. As in the previous task the MADs are excellent, and equally good for 
both types of  means when the words are similar (Table 4). On the other  hand, 
neither model fits well when the words are different (Table 5). In this case 
arithmetic mean is the best model for  16 subjects (80%) but its fit is poor.  Only 
seven subjects (35%) are best described by the same model for the two types of 
pairs (five by arithmetic and two by geometric means). Finally, there is no indication 
that the more reliable subjects can be better  modelled (the two statistics correlate 
only r = 0.12, p > 0.05). 
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TABLE 3 
Mean absolute deviation from the best two models for the "and" 

task (LH Pairs) (Decimal points omitted) 

669 

Arithmetic Geometric Other 
Group Subject mean mean model 

A 1 16 14t 
2 13t 20 
3 13 lOt - -  
4 14t 14 
5 17t 20 
6 30 06t 06 (Min) 
7 21 13 12t (Min) 
8 38 06t 07 (Min) 
9 16 11 l l t  (Min) 

10 32 19 0St (Product) 
Mean 21 13t 

B 1 09t 14 - -  
2 13t 24 22 (Fuzzy) 
3 10 10t - -  
4 27 21t 21 (Fuzzy) 
5 22 15t 21 (Fuzzy) 
6 11 l i t  - -  
7 O9 08t 
8 28 29 15t (Fuzzy) 
9 l l t  13 - -  

10 13 12t - -  
Mean 1St 16 

Mean 18 15t 

t Best fitting model. 

3.5. COMPARISON BETWEEN GROUPS AND TASKS 

In order to evaluate the effect of the instruction on the results reported by Zwick et 
al. (1988), two groups of subjects were run in this study with different sets of  
instructions. It is apparent  in Tables 2 and 3 that the groups do not differ in either 
the overall goodness of fit of  the various models or the proport ion of cases in which 
a certain model is best. 

An additional issue that merits some attention is the degree of correspondence 
between the " A n d "  and the "Select ion" tasks. Several analyses point to dissimilatities 
between them. First, as should be evident from Tables 2-5 ,  different models are 
best for the two tasks. The  geometric mean is, on the average, bet ter  for the " A n d "  
task and the arithmetic mean is bet ter  for the "Select ion" one. In fact, it is impossible 
to predict reliably the best fitting model for one task on the basis of the results of the 
other. Second, there is no significant correlation between the fit of  the best models 
in the two tasks ( r=0 -33 ,  p > 0 . 0 5  for the mixed pairs, and r = 0 - 1 2 ,  p > 0 . 0 5  for 
the congruent ones). 

Finally, it was impossible to predict the phrase selected by the subject on the basis 
of his or her membership judgements in the " A n d "  task. Recall that phrases were 
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TABLE 4 

Mean absolute deviation from best two models for the section task 
(HH + LL pairs) (Decimal points omitted) 

Ari thmet ic  Geometr ic  Other  
Group Subject mean mean model 

A 1 l l t  11 11 (Fuzzy) 
2 06 0 6 t  - -  

3 10 10 10t (Min) 
4 13 12 12 (Min) 
5 08 08 07t (Fuzzy) 
6 04 04 03t (Fuzzy) 
7 05t 06 05 (Fuzzy) 
8 10 09 07t (Fuzzy) 
9 04 0 4 t  - -  

10 08 08 07t (Fuzzy) 
Mean 08 08 

B 1 0St 08 - -  
2 05t 05 -- 

3 13 13t J 
4 08t 08 -- 

5 10t 10 -- 

6 04 04t -- 

7 09 09t 09 (Fuzzy) 

8 02 0 2 t  - -  

9 03t 03 -- 

10 07 07 07t (Fuzzy) 
Mean 07 07 

Mean 07 07 

t Best fitting model. 

selected for 36 pairs of terms. On the average subjects selected 18 different phrases 
in each session, for which the membership functions were subsequently elicited. One 
would expect the membership function of the selection phrase to be very similar to 
the function obtained in the "And"  task for the same pair. However, the MAD 
between the two functions was no greater on average than the MAD between 
function for the "And"  task and the functions for the phrases selected in response to 
other pairs. 

3.6. INTEGRATION OF TWO IDENTICAL TERMS 

This section focuses on the case where the two forecasts presented to the subjects 
were identical. Although six phrases were employed in the study the analysis is 
based on only five of them (the phrase fairly certain was excluded because the 
selection procedure did not allow its generation as a response so the unanimity 
principle could not be tested for this phrase). Table 6 summarizes some of the 
results of the two tasks for this special case. The first column in the table presents 
the proportion of cases (out of 10) in which the unanimity principle was supported in 
the selection task, i.e. the proportion of cases in which the subjects used the 
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TABLE 5 

Mean absolute deviation from best two models for the selection 
task (LH pairs) (Decimal points omitted) 
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Arithmetic Geometric Other 
Group Subject mean mean model 

A 1 17t 19 - -  
2 24t 28 - -  
3 14t 20 -- 

4 23t 35 25 (Fuzzy) 
5 21t 26 -- 

6 26t 40 -- 

7 22t 28 - -  
8 27t 39 37 (Fuzzy) 
9 14 13t -- 

10 13t 18 -- 

Mean 21t 28 -- 

B 1 14t 18 -- 

2 22 23 20t (Fuzzy) 
3 l l t  13 -- 

4 30 34 25t (Fuzzy) 
5 26t 26 -- 

6 13t 16 -- 

7 12 llt -- 

8 26t 34 26t (Fuzzy) 
9 16t 16 -- 

10 17t 21 -- 

Mean 19t 21 - -  
Mean 20t 24 

t Best fitting model. 

stimulus phrase to describe the integrated meaning of the two forecasts. It is clear 
that the subjects fall into two distinct groups. Seven people (Subjects 6, 7, 9 from 
Group A and Subjects 2, 6, 8, 9 from Group B) operated according to the unanimity 
principle in over 90% of the cases. The remaining subjects did not follow this rule: 
seven of them never used the same word, and the other six used the same phrase 
only in very few cases (less than 30%). Most, (53%) of the selections of this group 
of subjects involved a modified version of the original forecast, and in only 44% of 
the cases did the subjects select totally "unrelated" responses. 

We compared the membership functions of the stimulus phrases and the 
respective responses in terms of their location and fuzzyness as measured by 
appropriate indices. Yager (1981) defined the location of the (discrete) function, by 
analogy to the expected value of a random variable, as: 

W = /t(Pl) "Pi tt(pi). 
i=1 t i = l  

By analogy to the variance of a random variable, the spread (or fuzzyness) of the 
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T,~LE 6 
Analysis o f  responses to two indentical forecasts 

Group Subject 

"Selection . . . .  And" 
Percentage Percentage Percentage Percentage Percentage 

identical more less more less 
responses extreme fuzzy extreme fuzzy 

A 

B 

Mean 

1 10 67 11 90 70 
2 30 86 71 80 10 
3 0 70 70 60 60 
4 0 100 100 40 30 
5 20 75 25 60 30 
6 100 - -  - -  90 90 
7 100 - -  - -  100 100 
8 0 90 80 40 40 
9 90 100 100 60 70 

10 10 67 33 0 0 
Mean 36 83 61 62 59 

1 0 70 80 70 60 
2 100 ~ - -  60 60 
3 10 44 53 60 70 
4 20 50 75 60 70 
5 0 60 50 50 50 
6 100 - -  - -  50 50 
7 0 70 40 70 50 
8 100 ~ - -  50- 60 
9 100 - -  - -  80 40 

10 0 70 70 70 60 
Mean 44 61 58 62 57 

40 73 60 62 58 

function was defined by Fil lenbaum, Wallsten, Cohen  and Cox (1987), as: 

V2= it(p,) .  (P~- W) z It(p~). 
i=1 t i = l  

Both summations  were per formed across all nine probabilities. The  second and 
third columns in Table  6 summarize the propor t ion of cases (out of  10) in which the 
phrases selected by the subject were more  ex t reme (i.e. its W was more  distant f rom 
0-5) and less fuzzy (i.e. its V 2 was smaller) than the original forecasts presented,  
given that the response was not identical to the original phrase.  

Clearly, in the vast and significant major i ty  of  cases ( Z  = 1-72, p < 0.05) subjects 
selected more  ext reme phrases. Usually, these phrases were also less fuzzy, but this 
proport ion is not significantly different f rom chance. The  last two columns of  the 
table indicate that in the " A n d "  task responses are also more  extreme and less fuzzy. 
This pat tern holds for the 13 subjects,  as well as for the group mean,  but it is not 
statistically significant. 

4 .  D i s c u s s i o n  

Zwick et al. (1988) repor ted two intriguing results. First subjects '  judgements  of  
probabili ty phrases in an " a n d "  and an " o r "  context did not support  any of  the dual 
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rules. Second, the "and" judgements were best fitted by some sort of an average of 
the two stimulus terms. The present experiment focused on the "And"  task and 
confirmed these conclusions. Despite the differences in design, we found again 
overwhelming support for averaging rules and practically none for any rule that can 
be represented as a t-norm. It is particularly important to point out that by 
manipulating the nature of the instructions we eliminated the possibility that the 
previous results were due to the specific wording used in describing the task. The 
results for the two groups are indistinguishable, indicating that the observed 
superiority of averaging models reflects a real phenomenon. 

Zwick et al. (1988) found that the fuzzy mean fitted the data better than the other 
simple pointwise means for about 50% of their subjects. This result was not 
replicated in the present study, where we found almost exclusive support for the 
arithmetic and geometric means in combining congruent and conflicting forecasts. It 
is not clear what caused this difference but the fuzzy mean deserves further 
considerations in the future. Further, there is no indication that either the arithmetic 
or geometric mean is the better one in this context. Their  fits are almost equally 
good and they are highly related. The median absolute difference between the two 
sets of predictions is 0.045 for L L +  LH pairs and 0-15 for LH pairs, so the observed 
differences are probably due to chance and other nonsystematic factors. 

From our point of view the most important conclusion is that when integrating 
imprecise information from two independent sources subjects use some sort of 
compensatory averaging model. As we stressed in the introduction, this result is 
consistent with a large and heterogeneous body of psychological evidence accumu- 
i lated in the context of integration of precise information (Anderson, 1981; 1982). 

The notion of integration as an averaging process receives further support in our 
case because we found that these models can account in most cases for the results of 
the selection task as well. Admittedly, the support is Weaker and is restricted to the 
case of two similar words (LL or HH). However, no model could describe well the 
process of selecting a single word for the LH pairs, simply because the subjects 
could not perform this task reliably. 

One of the most interesting aspect of the present data concens the combination of 
two identical terms. There is a well documented debate in the Bayesian literature 
(e.g. Winkler, 1986) regarding the proper normative model and axioms that must be 
invoked in this situation. Our data clearly point to the underlying cause of this 
disagreement, namely that there is no single intuitive way to combine repetitive 
probabilistic information from two independent sources regarding the same event. 
About half of the participants in our experiment implicitly adopted the unanimity 
principle, while the other half behaved more in line with a "regular" Bayesian 
notion of updating probabilistic information. It must be noted that the behavior of 
this second group of subjects in this regard is inconsistent with their results in the 
other cases, since all pointwise averaging rules prescribe the unanimity principle. 
Obviously, they do not perceive the two cases to be identical and invoke different 
rules of behavior when faced with the two. These results confirm Winkler's 
conclusion (1986) that often the important question is not which particular rule is 
employed, but rather how one perceives, structures, and models  the decision 
problem. 

Recently there has been considerable interest in the use and manipulation of 
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linguistically expressed probabilities in the context of various computerized expert 
systems (e.g. Bonissone & Decker, 1985; Degani & Bortolan, 1988; Godo, IMpez 
de Mfintaras, Sierra & Verdaguer, 1989). In these systems, the experts' probabilistic 
vocabulary is represented by triangular or trapezoidal fuzzy functions over the [0, 1] 
interval, and the terms are combined according to some version of the calculus of 
fuzzy sets. In principle, we are sympathetic to this approach. As we have argued 
elsewhere (Budescu & Wallsten, 1987; Zwick & Wallsten, 1989; Wallsten, 1990) 
in many cases numerical probabilities are not appropriate for modeling the 
vagueness and uncertainty experienced by the forecaster of the expert, and in such 
cases linguistic probabilities seem appropriate. We have also shown (Wallsten et al. 
1986; Rapoport et al. 1987) that membership functions provide excellent repre- 
sentations of such expressions, and have demonstrated empirically that decisions 
based on these terms are in some cases as good as others based on standard 
numerical representations of uncertainty (Budescu, Weinberg & Wallsten, 1988; 
Wallsten, Budescu & Erev, 1988). 

However, we object to the indiscriminate application of mathematically pre- 
scribed, but empirically unsupported, functions and operations to these forecasts. In 
many cases, the rules have little or no justification and lack any empirical support 
in the context of combination of human opinions and forecasts. Consequently their 
use might be inappropriate and lead to highly misleading inferences. This study and 
its predecessor (Zwick et al. 1988) clearly illustrate this point by demonstrating that 
human probabilistic judgements do not necessarily obey the mathematically 
compelling symmetry implied by De Morgan's theorem, and that simple averaging 
rules model the combination of vague opinions better than does any other 
operation. Thus, we urge that systems whose goal is to capture, replicate, and 
improve experts' diagnostic and inferential skills rely more heavily and make better 
use of results of empirical behavioral studies documenting these skills and their  
characteristics. 
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