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sound in a Bose±Einstein condensate. Under these conditions we
expect phonon excitation during light pulse propagation through
the condensate. By deliberately tuning another laser beam to the
j2i ! j4i transition, it should be possible to demonstrate optical
switching at the single photon level24. Finally, we note that during
propagation of the atom clouds, light pulses are compressed in the z
direction by a ratio of c/vg. For our experimental parameters, that
results in pulses with a spatial extent of only 43 mm. M
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Electron transport in conductors is usually well described by
Fermi-liquid theory, which assumes that the energy states of the
electrons near the Fermi level EF are not qualitatively altered by
Coulomb interactions. In one-dimensional systems, however,
even weak Coulomb interactions cause strong perturbations.

The resulting system, known as a Luttinger liquid, is predicted
to be distinctly different from its two- and three-dimensional
counterparts1. For example, tunnelling into a Luttinger liquid at
energies near the Fermi level is predicted to be strongly sup-
pressed, unlike in two- and three-dimensional metals. Experi-
ments on one-dimensional semiconductor wires2,3 have been
interpreted by using Luttinger-liquid theory, but an unequivocal
veri®cation of the theoretical predictions has not yet been
obtained. Similarly, the edge excitations seen in fractional quan-
tum Hall conductors are consistent with Luttinger-liquid
behaviour4,5, but recent experiments failed to con®rm the pre-
dicted relationship between the electrical properties of the bulk
state and those of the edge states6. Electrically conducting single-
walled carbon nanotubes (SWNTs) represent quantum wires7±10

that may exhibit Luttinger-liquid behaviour11,12. Here we present
measurements of the conductance of bundles (`ropes') of SWNTs
as a function of temperature and voltage that agree with predic-
tions for tunnelling into a Luttinger liquid. In particular, we ®nd
that the conductance and differential conductance scale as power
laws with respect to temperature and bias voltage, respectively,
and that the functional forms and the exponents are in good
agreement with theoretical predictions.

SWNTs are suf®ciently robust and long to allow electrical con-
nections to lithographically de®ned metallic electrodes, thereby
making it possible to probe the intriguing electrical properties of

Figure 1 The two-terminal linear-response conductance G versus gate voltage

Vg for a bulk-contacted metallic nanotube rope at a variety of temperatures. The

data show signi®cant temperature dependence for energy scales above the

charging energy that cannot be explained by the Coulomb blockade model.

Inset: average conductance as a function of temperature T. The samples used in

these experiments are made in one of two ways. In both methods, SWNTs are

deposited from a suspension in dichloroethane onto a 1-mm-thick layer of SiO2

that has been thermally grown on a degenerately doped Si wafer, used as a gate

electrode. Atomic force microscopy imaging reveals that the diameters of the

ropes vary between 1 and 10nm. In the ®rst method9, chromium±gold contacts

are applied over the top of the nanotube rope using electron beam lithography

and lift-off. From measurements of these devices in the Coulomb blockade

regime, we conclude that the electrons are con®ned to the length of rope

between the leads. This implies that the leads cut the nanotubes into segments,

and transport involves tunnelling into the ends of the nanotubes (`end-con-

tacted'). In the second method10, electron-beam lithography is ®rst used to

de®ne leads, and ropes aredeposited on top of the leads. Samples were selected

that showed Coulomb blockade behaviour at low temperatures with a single well-

de®ned period, indicating the presence of a single quantum dot. The charging

energy of these samples indicates a quantum dot with a size substantially larger

than the spacing between the leads, as found by Tans et al.10. Transport thus

occurs by electrons tunnelling into the middle, or bulk, of the nanotubes (`bulk-

contacted').
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these nanometre-sized structures7±10,13,14. Individual tubes, for
example, are either semiconducting or conducting, depending on
their chirality7,8, whereas electron transport through ropes is
typically dominated by a single metallic nanotube within the
rope9. The latter observation is in agreement with the ®nding that
most of the nanotubes in a rope are semiconductors and thus
insulating at the low temperatures of transport measurements7,8.

Electrical connections to nanotubes and nanotube ropes can be
achieved by either depositing electrode metal over the top of the
tubes (`end-contacted' samples), or by placing the tubes on top of
prede®ned metal leads (`bulk-contacted' samples). We use both
geometries to study the transport properties of nanotube ropes.
Figure 1 gives an example of the measured two-terminal conduc-
tance, G, as a function of gate voltage, Vg, for a bulk-contacted
metallic rope at different temperatures. The Coulomb oscillations15

that occur each time an electron is added to a nanotube within the
rope are clearly visible at low temperatures. The temperature
dependence of the oscillations yields a charging energy U for this
sample of 1.9 meV. At temperatures above 20 K, the thermal energy
exceeds the charging energy (that is, kBT . U , where kB is Boltz-
mann's constant and T the absolute temperature). This results in the
Coulomb oscillations being nearly completely `washed out', render-
ing the conductance independent of gate voltage. The dependence
on temperature is illustrated in Fig. 1 inset, which shows the
conductance dropping steeply as the temperature is lowered, extra-
polating to G � 0 at T � 0.

Figure 2 shows G as a function of Ton a double logarithmic scale
for two bulk-contacted and two end-contacted nanotube ropes
(Fig. 2a and b, respectively). The measured data (solid lines) show
approximate power-law behaviour, G ~ Ta, for the four samples
shown. However, the range of temperature over which this beha-
viour occurs is limited by the effects of Coulomb blockade at low

temperatures. After correcting for the known temperature depen-
dence due to the Coulomb blockade15, the corrected data (dashed
lines) show power-law behaviour over a greater temperature range,
with slightly different exponents. Above T < 100 K, G begins to
saturate for some samples. This saturation is observed in many, but
not all, of the samples studied.

The corrected data obtained for the bulk-contacted samples show
approximate power-law behaviour from 8 to 300 K with exponents
abulk < 0:33 and 0.38. In the case of the end-contacted samples, the
corrected data show approximate power-law behaviour from 10 to
100 K with exponents aend < 0:6 for both samples. The upper inset
to Fig. 2a shows the exponents determined from the temperature
dependence of a variety of samples. Exponents marked with `x' and
`o' are for bulk- and end-contacted tubes, respectively. The former
show a systematically lower exponent than the latter samples with
aend < 0:6 and abulk < 0:3.

The two insets in Fig. 3 show the measured differential con-
ductance dI/dVas a function of the applied bias voltage V. The upper
inset in Fig. 3a shows results for a bulk-contacted sample (see lower
inset) at different temperatures, plotted on a log±log scale. In linear
response, dI/dV is proportional to a (temperature-dependent)
constant, G(T) from Fig. 2. At high biases, dI/dV increases with
increasing V. The curves at different temperatures fall onto a single
curve in the high-bias regime. As this curve is roughly linear on a
log±log plot, it implies that the differential conductance is described
by a power law, dI=dV ~ Va, where a � 0:36. At the lowest
temperature T � 1:6 K, this power-law behaviour occurs over two
decades in V, from 1 to 100 mV.

The upper inset in Fig. 3b shows dI/dV as a function of V for
an end-contacted sample (see lower inset) at several temperatures.
The conductance is again a temperature-dependent constant at
low biases eV p kBT, whereas at higher biases dI/dV increases. The

Figure 2 Conductance G plotted against temperature T for individual nanotube

ropes. The data areplotted on a log±log scale. a, Data for ropes that are deposited

over pre-de®ned leads (bulk-contacted); b, data for ropes that are contacted by

evaporating the leads on top of the ropes (end-contacted). Sketches depicting the

measurement con®guration are shown in the lower insets. The plots show both

the raw data (solid line) and the data corrected for the temperature dependence

expected from the Coulomb blockade (CB) model (dashed line). We correct the

data by dividing the measured G(T) by the theoretically expected temperature

dependence in the CB model. This correction factor depends only on U/kBT, and,

because U can be independently measured from the temperature dependence

of the Coulomb oscillations, the correction procedure requires no adjustable

parameters. If the CB were the only source of the temperature dependence, the

dashed lines would be horizontal. Instead they have a ®nite slope, indicating an

approximate power-law dependence on T. The upper inset to a shows the power-

law exponents inferred for a variety of samples. Open circles denote end-

contacted samples, and crosses denote bulk-contacted ones.

Figure 3 The differential conductance dI/dV measured at various temperatures.

Inset in a, dI/dV curves taken on a bulk-contacted rope at temperatures T � 1:6K,

8K, 20K and 35K. Inset in b, dI/dV curves taken on an end-contacted rope at

temperatures T � 20K, 40K and 67K. In both insets, a straight line on the log±log

plot is shown as a guide to the eye to indicate power-law behaviour. The main

panels a and b show these measurements collapsed onto a single curve by using

the scaling relations described in the text. The solid line is the theoretical result

®tted to the data by using g as a ®tting parameter. The values of g resulting in the

best ®t to the data are g � 0:46 in a and g � 0:63 in b.
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high-bias data follows an approximate power law before rolling off
to a reduced slope for V . 30 mV. Although the range of data is
too small to conclude that a power law accurately describes the
behaviour at intermediate voltages, if a straight line is ®tted to the
range 9 mV , V , 32 mV, the exponent obtained is a � 0:87.

A possible explanation for the approximate power-law behaviour
that we see in our data is a strong energy dependence of the tunnel
barrier, with increased tunnelling ef®ciency at high energies. This
would lead to activated transport over the barrier, so that the
conductance can be described by G ~ exp�2 Vb=kBT�, where Vb is
the height of the tunnel barriers. However, this general expression
for G is inconsistent with our ®nding that the conductance extra-
polates to G � 0 at T � 0 (Fig. 1 inset). The type of power-law
behaviour that we observe could also arise if the electron transport
were to occur through multiple quantum dots in series. Multiple
quantum dots can be formed by disorder16 or by barriers produced
when the nanotubes bend over the lithographically de®ned
contacts17. But as we have chosen to study only nanotube ropes
that exhibit a single dominant period for the Coulomb oscillations
at low temperatures, our samples are likely to contain only a single
quantum dot.

A third possible explanation for the experimental observations
would be that the nanotube ropes behave as a Luttinger liquid (LL).
An LL is a one-dimensional correlated electron state characterized
by a parameter g that measures the strength of the interaction
between electrons. Strong repulsive interactions are characterized
by g p 1, whereas g � 1 for the non-interacting electron gas.
However, for any g Þ 1, the low-energy excitations of the system
are not all weakly interacting quasiparticles, and the Fermi liquid
theory used to describe conventional metals is not appropriate.

In SWNTs, the long-range Coulomb interaction between elec-
trons is expected to yield an LL with g , 1 (refs 11, 12). For a ®nite-
length tube or rope, the Luttinger parameter g is given by:

g � 1 �
2U

¢

� �2 1=2

�1�

where U is the charging energy of the tube and ¢ is the single-
particle level spacing (the two one-dimensional sub-bands of the
nanotube are assumed to be non-degenerate). From previous
measurements and theoretical estimates9,10 U=¢ < 6, yielding an
expected Luttinger parameter g theory < 0:28.

The tunnelling of an electron into an LL is dramatically different
from tunnelling into Fermi liquid. For a Fermi liquid, an energy-
independent tunnelling amplitude is expected. This yields a tem-
perature- and bias-independent tunnelling conductance. For a clean
LL, on the other hand, the tunnelling amplitude is predicted to
vanish as a power law in the energy of the tunnelling electron. This
leads to a power-law variation of G with T at small biases
(eV p kBT);

G�T� ~ Ta
�2�

or, with V at large biases (eV q kBT):

dI=dV ~ Va
�3�

The exponent of these power laws depends on the number of one-
dimensional channels18 and on whether the electron tunnels into the
bulk or the end of the LL. For a SWNT with four conducting modes
at EF, the exponents are11,12:

aend � �g 2 1 2 1�=4 �4a�

abulk � �g 2 1
� g 2 2�=8 �4b�

Using equations (1) and (4), we obtain aend�theory� � 0:65 and
abulk�theory� � 0:24.

To compare these theoretical predictions for tunnelling into an
isolated nanotube through a single barrier to the experimental data
obtained for ropes connected by two contacts, we must make two

assumptions. First, we assume that transport in the rope is domi-
nated by a single metallic tube, as discussed previously. Preliminary
theoretical studies (L.B. and C. Kane, manuscript in preparation) of
ropes composed of SWNTs with a relatively small fraction of
metallic tubes support this assumption. These studies ®nd that
the only signi®cant inter-tube coupling is electrostatic. Such an
interaction will introduce extra screening of the Coulomb inter-
action but, because of the weak (logarithmic) dependence of g on
the screening length, the LL predictions are essentially unchanged.
Second, we assume that the tunnel resistances into and out of the
tube are the dominent resistances in the system. The circuit thus
consists of two tunnel junctions in series, with the current response
of each junction described by equations (1)±(4). We note that the
voltage drop across the highest-impedance junction will be some
fraction g of the total applied bias V, where 1=2 < g < 1. If the
barriers are equal, the voltage will divide equally between these
junctions and g � 1=2. Alternatively, if the resistance of one junc-
tion dominates, g � 1.

With these assumptions, the approximate power-law behaviour
as a function of T or V observed in Figs 2 and 3 then follows from
equations (1)±(4). The predicted values of the exponents are in
good agreement with the experimental values. This agreement may
be somewhat fortuitous owing to the experimental uncertainty in
the value of U=¢ and complexities associated with the screening of
the Coulomb interaction by the metallic leads11,12. Nevertheless, the
measurements are described both qualitatively and quantitatively by
LL theory. Power-law behaviour in T is observed up to 300 K in the
bulk-contacted samples, indicating that nanotubes are LLs even at
room temperature.

At present, we do not understand the origins of the high-energy
saturation observed in the end-contacted tubes. One possibility is
that, at high energies, electrons can tunnel in both directions and
hence the end-contacted tubes behave as bulk-contacted tubes, with
a correspondingly lower exponent. Further experiments are neces-
sary to clarify this issue.

The LL theory makes an additional prediction for this system.
The differential conductance for a single tunnel junction is given by
a universal scaling curve19,20:

dI

dV
� ATacosh g

eV

2kBT

� �
¡

1 � a

2
� g

ieV

2pkBT

� ����� ����2 �5�

where ¡�x� is the gamma function, g is the constant introduced
earlier that takes into account the voltage division between the two
tunnel junctions, and A is an arbitrary constant. This equation assumes
that the leads are at T � 0 K. For leads at a ®nite temperature, dI/dV
is given by the convolution of equation (5) and the derivative of the
Fermi distribution: df =dE � �1=4kBT�sech2�geV =2kBT�.

If the above scaling relation is correct, it should be possible to
collapse the data at different temperatures onto a single universal
curve. To do this, the measured dI/dV at each temperature was
divided by Ta and plotted against eV/kBT, as shown in Figs 3a and b.
For both geometries, the scaled conductance is constant as eV/kBT
approaches zero, but increases when eV/kBT is signi®cantly greater
than one. The data collapse quite well onto a universal curve for the
bulk-contacted device over the entire bias range (Fig. 3a). For the
end-contacted device, the data deviate from power-law behaviour
for biases V . 30 mV, as discussed previously. This is re¯ected in
Fig. 3b in a roll-off that occurs at lower values of eV/kBT as the
temperature is increased.

The solid lines in Fig. 3a and b are a plot of the curve obtained by
®tting equation (5) (convolved with df/dE) to the data, with g as a
®tting parameter. The theory ®ts the scaled data reasonably well,
especially for the bulk-contacted tube, and yields g � 0:5 6 0:1 and
g � 0:6 6 0:1 for the bulk-contacted and end-contacted tubes,
respectively. Given the associated experimental uncertainty, these
values fall within the allowable range (0:5 , g , 1) for two barriers
in series.
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Taken as a whole, the data shown in Figs 2 and 3 provide
strong evidence that the electrons in metallic carbon nanotubes
constitute an LL. Future work will test other predictions of this
theory, such as tunnelling between LLs in end-to-end1 and in
crossed geometries21. M
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Explanations for the anomalously high mobility of protons in
liquid water began with Grotthuss's idea1,2 of `structural diffusion'
nearly two centuries ago. Subsequent explanations have re®ned
this concept by invoking thermal hopping3,4, proton tunnelling5,6

or solvation effects7. More recently, two main structural models
have emerged for the hydrated proton. Eigen8,9 proposed the
formation of an H9O+

4 complex in which an H3O+ core is strongly
hydrogen-bonded to three H2O molecules. Zundel10,11, meanwhile,
supported the notion of an H5O+

2 complex in which the proton
is shared between two H2O molecules. Here we use ab initio path
integral12±14 simulations to address this question. These simu-
lations include time-independent equilibrium thermal and
quantum ¯uctuations of all nuclei, and determine interatomic

interactions from the electronic structure. We ®nd that the
hydrated proton forms a ¯uxional defect in the hydrogen-
bonded network, with both H9O+

4 and H5O+
2 occurring only in

the sense of `limiting' or `ideal' structures. The defect can become
delocalized over several hydrogen bonds owing to quantum
¯uctuations. Solvent polarization induces a small barrier to
proton transfer, which is washed out by zero-point motion. The
proton can consequently be considered part of a `low-barrier
hydrogen bond'15,16, in which tunnelling is negligible and the
simplest concepts of transition-state theory do not apply. The
rate of proton diffusion is determined by thermally induced
hydrogen-bond breaking in the second solvation shell.

Simulating an excess proton in liquid bulk water has proved to be
immensely challenging. Based on the efforts of numerous groups,
many insights into the microscopic nature of proton hydration
and diffusion have been deduced17±31,38. Structural diffusion2 as a
dynamical process was ®rst `seen' in microscopic detail in an ab
initio molecular dynamics study of D+ in D2O (ref. 23). It was seen
that proton diffusion does not occur via hydrodynamic Stokes
diffusion of a rigid complex, but via migration of a structural defect
due to a continual interconversion between covalent and hydrogen
bonds. Solvent ¯uctuations modulate the proton transfer barrier
and preselect a migration path. The rate-limiting step is the
¯uctuation-induced breakage of a hydrogen bond between the
®rst and second solvation shell of H3O

+, which reduces the coordi-
nation number of a water molecule in the ®rst solvation shell23. It
was subsequently suggested that quantum effects could potentially
be important for the rattling of the proton in the hydrogen bond24,
but it has recently been shown that this depends sensitively on a
qualitatively correct model for the interactions27.

The quantum-mechanical particle density `snapshots' from the
present simulations of the hydrated proton give a pictorial realiza-
tion of the structural diffusion process. Initially, the defect is
localized as an H9O

+
4 structure possessing an H3O

+ core that donates
three hydrogen bonds to neighbouring water molecules (Fig. 1a). In
the second frame (Fig. 1b), one of the three protons of the H3O

+

core migrates along its hydrogen bond and forms an H5O
+
2 complex,

in which this proton becomes equally shared between two water
molecules. As the transfer is completed, an H9O

+
4 complex is formed

once again, but now centred on a neighbouring core molecule
(Fig. 1c). The onset of further migration is shown in Fig. 1d, where
the defect converts into another H5O

+
2 con®guration. Overall

(Fig. 1a±d), the structural defect is displaced over a distance
corresponding to approximately twice the average water±water
distance, that is, about 5 AÊ . Each individual particle, however,
moves by only a fraction of an aÊngstroÈm.

The controversial details of this process can be revealed by
examination of the two-dimensional distribution P(d, ROO) of the
displacement coordinate d � ROaH 2 RObH of a given proton relative
to the instantaneous hydrogen-bond centre and the corresponding
bond distance ROO. (See Fig. 1 legend for nomenclature.) For the
analysis to be as unbiased as possible, we begin by including all
OaHOb triples, that is, all hydrogen bonds present in the periodic
sample. This distribution (not shown) is characterized by two
prominent peaks around �d; ROO� < � 6 0:9; 2:8� ÊA arising from
the hydrogen bonds of bulk water but is manifestly non-zero
around jdj < 0 ÊA. This supports the existence of centrosymmetric
complexes, in which the proton is equally shared between two water
molecules, and thereby opposes a description solely in terms of
H3O

+ or H9O
+
4 complexes and/or proton transfer entirely associated

with tunnelling.
The analysis can be re®ned by excluding `irrelevant' hydrogen

bonds in a two-step procedure. First, the H3O
+
a defect site is located,

and only its three OaHOb triples are taken into account. Then, from
these three triples, the hydrogen bond with the smallest jdj is
selected, an intuitive choice based on events of the type in Fig. 1.
This second step focuses on the `most active proton', that is, the one


