Dark Matter

Hai-Bo Yu University of California, Riverside

Teacher Academy 06/27/2014

Physics at Different Scales

Particle Physics

Nuclear Physics

Condensed Matter Physics

Cosmology

Astronomy

Biophysics

Large Scale Frontier

|--|--|--|--|

Stars	Galaxies	Clusters	Observed Universe
~10 ¹¹ m	~10 ²¹ m	~10 ²³ m	~Ⅰ0 ²⁶ m

History of the Universe

• We try to understand the universe as a whole

Evidence for Dark Matter

• Galaxy clusters

In the 1930's Fritz Zwicky found that the galaxies in the Coma cluster were moving too fast to be contained by the visible matter

Evidence for Dark Matter

Evidence for Dark Matter

• Spiral galaxies (Rotation curves of galaxies)

Vera Rubin and her collaborators (1970s)

- Expect v drops beyond luminous region
- Find v is nearly a constant
- The discrepancy is resolved by dark

matter

Milky Way Dark Halo

Dark halo mass: $\sim 10^{12} M_{sun}$ Total stellar mass: $\sim 6 \times 10^{10} M_{sun}$

Components of the Universe

local dark matter information: density: about one particle per coffee cup (if the mass is 100 times the proton mass) velocity: about 220 km/s

Small Scale Frontier

Size: about 10⁻¹⁰ m

Fundamental Interactions

Dark Matter Properties

Not luminous Not short-lived Not hot Not baryons

The successful standard models of cosmology and particle physics are inconsistent

Dark Matter Interactions

Dark matter candidate:

Add a new massive particle X
Interacts with us through the weak interaction

Weakly-Interacting Massive Particle (WIMP)

The WIMP Paradigm

• The WIMP Miracle

Expected event: less than I event/kg/year

Direct Detection Cryogenic Dark Matter Search (CDMS)

Operating at milli-Kelvin temperatures in a mine in Minnesota

1 cm

Annihilation Signals

IceCube at the South Pole

Look for neutrinos from dark matter annihilation

International Space Station

Look for electrons/photons from dark matter annihilation

Collider Search

Large Hadron Collider

L.H.C.b

A STATE OF A DESCRIPTION OF A DESCRIPTIO

Detector at the LHC

More than 10,000 tonnes

Beyond the WIMP Paradigm

- WIMPs are a good dark matter candidate
- Physicists are searching for WIMPs
- But what if dark matter is not a WIMP...

Beyond the WIMP Paradigm

• Hidden sector dark matter

• An example: hidden charged dark matter

Self-interacting Dark Matter

• Self-interactions can affect dark matter dynamics

The self-interacting dark matter can behave like hot gas

randomize the dark matter velocity dispersion; lead to spherical dark halos

Limit on the Hidden Charge

Summary

- We have two successful theories of the large and small, but they are not consistent
- A quarter of the universe is dark matter, but we don't know what it is
- We have some ideas and many search experiments are underway