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The Systems Dynamics Approach

The State Space

The state space of any system is simply the list of variables and their
ranges describing the boundaries of the system.’ The term state is used
synonymously with the term variable, defining some characteristic of
the phenomenon which takes arange of values. System states, like other
variables, may be discrete (that is, “qualitative®) or continuous (that 1s,
“quantitative”). For example, the state space of a model describing
political relations between two nations might contain the qualitative
state “war,” which is thought of as being either present or absent; an
alternative formulation of the same problem might see the state space as
containing a quantitative variable “level of aggression” that varies .
continuously from none to total war. In studying the dynamics of
interaction among a small group of actors (individual persons, business
firms, clans, etc.) one might conceive of the problem of the structure of
network connections among the actors as one of qualitative states (i..,
each pair of actors are or are not “tied” to one another) or quantitative
(i.e., the strength of the tie between each pair of actors varies in intensity
from zero to some upper limit). |

~ The system dynamics approach generally, and the DYNAMO
language in particular, has a bias in favor of quantitative states. Because
of the nature of the language it is easier to talk about continuously
varying quantities than discrete states. Other languages for modeling
continuous time dynamics are more balanced in this regard, but have
other features that can create awkwardness of use.?.

The systems dynamics tradition is somewhat unusual amongsystems -
approaches for the way that it conceptualizes and describes state spaces.
All quantities describing the status of the system In question are
regarded as being either “material” or “informational,” with separate
vocabularies and syntaxes being applied to the two categories.? Other
approaches within the systems tradition do not draw this sharp
distinction.¢ While the distinction between material and informational
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states is not necessary in the DYNAMO language, the structure of the
language predisposes one to think in these terms.

“Material” and “informational” states are distinguished by writers in
the systems dynamics tradition because it is felt that the principles
governing the dynamics of physical quantities are fundamentally
different from the dynamics of informational quantities. Material
quantities are regarded as “conserved”in that they persist over time and
must occupy some state at all times. The most obvious examples of such
things are physical objects such as people, money, and machines. These
objects may occupy only one status at a time (¢.g., each person is either
young, middle aged, aged, or deceased). Another, less elegant way of
nutting it, is that material quantities are *“used up” by being “used.” For
example, once the transition from youth to middle age has been made,
“individuals who fall in the middle aged category do not fall in the youth
category (however much they may wish to).

“Information” states, in contrast, are regarded by systems dynamma
as being fundamentally “nonconserved.” That is, “information” is not
“used up” by being “used.” If I know something and tell you, we both
know. This is a “nonconserved” dynamic. Material objects (such as
money) may used by actors as “signals” to convey information, but are
nonetheless conserved quantities. If I have a dollar and I give it to you, I
no longer have it. This is a material or “conserved” dynamic. The
distinction between kinds of states in the system dynamics tradition is
both conceptual and mathematical. Quantitics that persist—*“material”
states—are described by the mathematics of integration and the
calculus, whereas quantities that are nonconserved—“information”
states—are described by the algebra of differences.S

The distinction between material and informational states in the
- system dynamics approach is both attractive and troubling. At a
philosophical level, critics both within and without the systems tradition
reject the distinction as a false dichotomy. Information theorists, for
example, insist on the treatment of all “states” as informational; the new
physics is, struggling with the seemingly no longer valid distinction
between material and informational. At the mathematical level as well,
there has been criticism of the distinction between “conserved” and
“nonconserved” states. One consequence of rigidly maintaining the
distinction is to lead to models that contain both differential and
difference equations and hence draw on both calculus and algebra to
describe state space dynamics. As the more mathematically mclined
correctly point out, the distinction is unnecessary and inelegant from a
mathematical point of view, and restricts the applicability of the tools of
direct solution to systems dynamics mﬂdels T
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The systems dynamics approach distinction between material and
informational states can also be defended against these criticisms, at
least on pragmatic grounds. While both the philosophical and mathe-
matical critiques have a good deal of validity, the particular distinction
between conserved and nonconserved quantities can be of considerable
utility in social science construction. |

At the philosophical and conceptual level, the distinction between
material things that are persistent and “conserved” on one hand and
“informational” things that are nonconserved on the other accords well
with the way that most social scientists conceptualize social behavior.
In thinking about social dynamics, most theorists tend to distinguish
between acts and the meanings attached to acts. “Action” and “inter-
action” by themselves are most often seen as having a physical (behav-
ioral) character that is logically separable from the me aning attached to
them; action and interaction become “social action” and “socia!
interaction” when they take on meanings as symbols for other actors. By
distinguishing sharply between material and informational states, the
systems dynamics approach and the DYNAMO language tend to
structure the analyst’s thinking about dynamics along those same lines
most commonly used by sociologists, anthropologists, political scien-
tists, and historians. - | |

The mixed difference and differential mathematics peculiar to
~ systems dynamics models restrict their analyzability by direct solution,
At this point, there is a clear disjuncture of approach between that of
mathematically inclined practitioners {especially in political science,
economics, and sociology) and the intent of modelers in the systems
dynamics tradition. Mathematical modelers dealing with continuous
state/continuous time dynamics have shown a strong preference for
models expressed as simultaneous linear differential equations. This
preference is based on the use of direct solution as the method of choice
for analysis of, and deductions from, the formalized theories. The
systems dynamics approach is predicated on experimentation and
simulation, rather than direct solution, as the primary method by which
theorists can understand and make deductions from their theories.
Simulation and experimentation are less powerful methods of under-
standing and analyzing a theory and its consequences than direct
solution; however, greater flexibility of expression is obtained, and as a
consequence far more complex phenomena and theorics can be
expressed, The mixed mathematics capabilities of the systems dynamics
approach does not prevent the formulation of strict differential or strict
difference equation models. It does lead one in the direction of flexible
expression and away from mathematical analyzability. |



The Systems Dynamics Approach 55

The distinction between material states and informational states in
the systems dynamics approach and the DYNAMO language 1s,
therefore, consequential and reflects certain biases. By and large, these
biases may be appealing to theorists interésted in constructing formal
theories of social dynamics. The distinctions between “conserved” and

“nonconserved” quantities or between “material” and “informational”
things seems to accord well with the distinctions between behaviors and
meanings common in social science discourse. The greater ease of
expression possible utilizing mixed mathematics and abandoning direct
solution as a method of deduction is also appealing because it allows for
the expression of quite complex relationships and for analysis by
simulation, experimentation, and discovery, rather than by direct
deduction and solution. |

Material States: “Levels”

The most basic elements of theories expressed in the system dynamics
language of DYNAMO are material states, cailed levels. In approaching
the construction of a dynamic model, the identification of the levels of
the system is the place to start. For example, in the simple model we
examined above as Figure 2.1 and Figure 2.2, the levels of the system
were the number of young, middle aged, aged, and deceased persons.
These levels are continuous variables that are “conservative” and
accumulate over time at rates governed by causal variabies.®

In the diagraming conventions of the DYNAMO language, “levels”
are represented as rectangles, with arrows flowing into and/or out of
them.? The imagery is from fluid dynamics, and is intended to suggest a
tank or storage location for quantities that flow into and out of the state,
as in the flow of water into and/ or out of a tank. There is no necessity in
adopting the particular conventions of the DYNAMO language to
represent the states and connections among them in a theory about
dynamics. We will use these symbols throughout the volume, however.
The more general languages of flow diagrams and circuit diagrams
could also be used effectively to represent dynamics, but do not have
quite the same evocative quality as the DYNAMO symbols, and are not
as closely tied to the DYNAMO language.!o At various times in this
volume we will use both DYNAMO diagrams and simpler (but less
specific) “circles and arrows” diagrams of connectivity, as suits the needs
of the presentation. All theory building exercises usually begin with the
simpler form of diagrams that show only the elements and cﬂnncctmty
among them; DYNAMO diagraming conventions are a useful taﬂl n

the step of translatmg such dmgrams into equation form.,
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«] evels” are used in the DYNAMO language with a very specific
syntax. The content and structure of the “sentences” are important in
helping to structure thinking about dynamics. The statement below is a
fairly typical “level equation™ describing the “material state” of the
number of persons in a population (POP.K). It illustrates all of the
important features of the the systems dynamics language for describing
the dynamics of such states.

L POP.K = POP.J+DT(BIRTHS.JK+IMMIG.JK-DEATH.JK-EMIG.JK)

This somewhat intimidating-looking expression can be readily
translated into plain English: The number of persons at time point “K”
(POP.K) is equal to the number of persons at the previous time point “J”
(POP.J), plus the integration or accumulation over time (DT) of a
quantity, The quantity, in this case, includes the rate of births during the
time interval between J and X (BIRTHS.JX), the rate of immigration
(IMMIG.JK), the rate of deaths (DEATH.JK), and the rate of
emigration (EMIG.JK). The “L”in at the beginning of the line is used to
identify the “equation type,” and is used by the DYNAMO simulation
routines to control the order in which calculations are performed. There
are a number of things to note about the way that this sentence is
constructed. o | |

First, note that the dynamic relation is conservative in the sense
discussed previously. Population at a later point in time is equal to
population at the earlier point in time, except as modified by births,
deaths, immigration and emigration.}! . -

Second, note that the “dependent variable” on the left side of the
equation has a single time script: It describes the status of the variable at
some particular instant in time (that is, “K”’). Because this is the case, the
level or status of the variable in the state space always refers to a quantity
of things—such as numbers of people, percentages of national product,
or degree of attitudinal support. It is a good practice, in thinking about
the states of a system, to ciearly define the “units” of all such variables as
part of the process of defining terms. |

Third, in contrast to the single time script of the “dependent”
_variable, each of the quantities in the expression to be integrated (that is,
births, deaths, immigration, and emigration) carry two time referents:
“JK.” These quantities are called “rates” (more on them later), and are
expressed in units per unit time. That is, for example, BIRTHS.JK in
the level equation above are measured in numbers of events occurring
between time point J and time point K. The “causal” factors determining
population (that is, the independent variables in the equation, if one
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~ prefers), then, are explicitly dynamic quantities. They express the rates
at which certain processes are occurring with respect to time.

The final important thing to note about the syntax. of statements
. about “material states” is that there are numerous eiements on the
. righthand side of the equation. Alternatively, one might say that there
- are several simultaneous causal processes producing change in the
~ system state. In this particular case, two processes produce increments
_ in the population (the rate of births and the rate of immigration), and
- two produce decrements (the rate of deaths and of emigration). Each of
- these processes is explicated in greater detail in “rate” and supporting
~ equations that we will consider shortly.

- The syntax of the level statement with its multiple possible causal
~ processes is a good stimulus to clear thinking about the dynamics of

states. The structure of the statement itself leads one to ask what causes
the level to go up or down, and do each of these causal processes have the
same or separate determinants? The syntax should lead one to consider
whether the causes for increases and decreases are the same. In the case
of population dynamics, of course, they are not; many social processes,
however, may be reversible in the sense of having the same causes for
both increases and decreases in level over time.

The syntax of the level statement also urges one to think in
multivariate terms by allowing the easy expression of multiple simulta-
neously operating causal processes. This is the “normal” way of thinking
about problems in multivariate statistical models, but is not always the
language of verbal theory. Verbal formulations tend to be highly
simplified (and perhaps oversimplified) ways of stating theories as
bivariate “propositions”; the systems dynamics level equation leads one
to automaticaily consider the simultancous operation of multiple causal
processes. The syntax of the level staternent makes quite explicit what
most social scientists mean when they refer to changes in the levels of
particular variables over time as resulting from the simultaneous
operation of many factors or the “conjuncture” of historical forces,

Occasionally it is useful to think about a level that has only things
“flowing into” it, or only “flowing out™ of it. In the simple population
dynamic that we examined as Figure 2.1 and 2.2, for example, the level
“deceased” is such a quantity. Individuals flow into this level, but they
do not exit (at least for the purposes of most social science models). In
the language of systems, states that have only processes incrementing
them over time are called absorbing states, while states that have only
processes decrementing them over time are called sources. In the
~ peculiar jargon of the language of the system dynamics tradition, these
~ special kinds of levels are termed sources and sinks and are represented
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in diagrams with a special symbol resembling an amoeba.

While it is perfectly possible to formulate a dynamic model without
giving special consideration to the question of where material quantities
ultimately come from and where they finally go, the existence of the
special symbols and concepts of sources and sinks can lead one to ask
important questions that help to clariiy and specify theories. Too often
we do not realize that we are theorizing about a part of a process in our
theories, not the whole phenomena from source to sink. These devices,
of course, also lead to asking silly questions that result in trivial answers,
as in the simple population model example. -

Most of the dynamic processes addressed by social scientists tend to
involve relatively simple chains of leveis governed by quite complex
control systems. The notions of sources and sinks are helpful in
improving theory specification about such processes in two ways. First,
they lead one to consider, for each statein the theory, what the previous
link in the causal chain was, and what the next link in the causal chain
may be. This can often lead to elaboration of the model in interesting
and valuable ways. Second, the specification of the sources and sinks of
“conserved” processes provides one way of understanding the bounda-
ries of the phenomenon analyzed by the theory. We may choose, for
some purposes, to regard the source of a material state as exogenous. In
representing this as a diagram or level equation, the exogenous variable
. becomes a “source.” Designation of a level as a source indicates that we
are not going to specify its causes as part of the theory (i.e., it 18
“exogeneous”). Similarly, designation of a given level as asink indicates
that we regard it as having no consequences for other variables in the
theory. Both types of statements are thus clear ways of identifying some
of the “limits” of the theory we are developing. As with all statements of
limits, the choice of which states are sources and sinks is a pragmatic

one, defining the boundaries of the phenomenon for the purposes of the
construction of the theory. R -
«  Specification of the materiallevels or states of a system is the first
very necessary step in fully formalizing a dynamic system. Once we
understand the boundaries and limits of the material or conserved
quantities, the next step is to describe the informational levels and
connections among them that complete the definition of the state space
of the theory. | -

Information States: “Auxiliaries”

A large proportion of the state space of most models involves
deseriptions of the current levels of “information” or “nonconserved”™
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quantities. For example, the perceptions of acts, cognitions about them,
formulation of decisions, and mapping of strategy can all be considered
“informational.” Economic actors make decisions on the basis of prices,
political actors seek to gauge “public opinion,” individuals form
attitudes on the basis of observing behaviors. All of these processes
involve “levels” of information. More generally, ail of the elements of
the “control” processes that govern the dynamics of change in levels or
material chains are represented in-systems analysis generally (and
system dynamics particularly) as informational. |

In our simple model of population dynamics (Figure 2.2) for
example, the “informational” or “control structure” is the portion of
model that shows how the rates of “flow” between the “levels” (i.e.,
-young, middle aged, aged, deceased) are cantrullad by mfnrmatmn
flows. | |

Because of the special importance assigned to “information” in
systems theory, a somewhat different vocabulary and syntax has been
developed by systems dynamicists than that normally used for “material”
states. In the dlagrammg conventions of DYNAMO, informational
states are represented as circles, with “flows” of information denoted by
dashed lines. To serve as a starting point for discussion, part of our
original population dynamics model (Figure 2.2) has been elaborated
with these symbols in Figure 3.1.

The informational level “number at risk ™ in this very simple example
i3 a direct function of the material level “number of young.” The dotted
line connecting the “number of young” and the “number at risk,”
however, does not represent the actual movement of people from one
state to another. Rather, the flows of information are “nonconservative,”
and the dashed line indicates only the “take off” or “monitoring” of
information about the material state “young,” not the actual movement
of persons. Similarly, the connections between the informational state
“number at risk® and the flows between the states of young and middle
aged, or the states of young and deceased, do not represent movement or
change in physical things. The “number at risk”is a piece of information
“that is used in the determination of the rates of transition between states,
but the information is not “used up” by being used. Hence, this “flow™ as
well is represented with a broken line and the little circle representing an
information “take off” or “monitoring.” |

There are also, in Figure 3.1, two “information states” represented by
the special symbols of circles with an intersecting line segment. These
“information states” are “constants”—quantities that are used in
explicating the control system, but which are not, in themselves,
determined by other variables in the theory. These quantities are the
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Figure 3.1: The roles of suxiliaxies and cqmtmts.

informational equivalents of the “sources” and “sinks” of the conserved
parts of the state space. Of course, in our simple model, a next step of
elaboration might well be to turn one of the “constants”—the hazard
rate—into a “variable,” or information state that is a function of other
variables. | | |

The information states, or “auxiliaries,” of most models describing
social dynamics can be numerous and connected in complicated ways.
Suppose, for example, that we were modeling the interaction between
two nations engaged in an arms race. (We will develop this particular
model at some length in a later chapter.) Each nation bases its behavior
on its own goals, preferences, and capacities, but also on its perceptions
of actions being taken by the other. In the simplest case, these
perceptions might be entirely accurate and nonproblematic monitoring
of the level of armaments held by the opponent. This kind of re-
lationship would be expressed in the sentence (equation) in DYNAMO:

A PARMS.K = ARMS.K

That is, the level of arms 'perceivcd (PARMS.K) attime K is equalto
the actual number of arms at time K (ARMS.-K). Note two things about
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this statement: It is not “conservative” (at each time point, PARMS 1s
recalculated from other quantities; there is no PARMS.J in the
equation for PARM.X). And the creation of the information state
PARMS.K does not result in the destruction or transformation of
ARMS K. That is, the creatmn of mfnrmatlﬂn by perception does not
use up the object perceived.

It might well be that the informational monitoring process is not so
simple as the auxiliary equation above proposes. Lets look at an
alternative specification of the process that creates the mformatmnal
level “perceived arms” or PARMS:

A PARMS.K = DELAY3ARMSLIK,2)
X  +CONST(ARMS.K+NORMRN(FEAR,10)

Because of its length, it was necessary to carry this statement beyond
a single “logical record,” and the statement is continued on a second
(X-type) record. This formulation suggests a much more complex
process of how information about the level of an opponent’s arms Is
perceived. Roughly, this statement can be translated as follows: The
level of arms that we perceive our opponent to have at time K
(PARMS.K) is the sum of two complex quantities. The first is a delayed
perception (in this case, a third-order exponential delay with an average
length of two time periods: DELAY3(ARMSI.JK,2)) of the rate at
which our opponent has been adding to his arms stock over the
preceding time period (ARMSLJK). The second quantity is some fixed
multiplier (CONST) of our opponent’s current level of arms (ARMS.K)
plus an amount of normally distributed noise (NORMRN). The amount
of this noise, or error in perception, has a mean of some constant
quantity (FEAR), and a standard deviation of 10 units.

This particular specification is probably not a very useful one for
describing the cognitive processes that actually occur in arms races. It
does, however, illustrate some important points. By distinguishing
clearly between “material” flows on one hand, and the “information”
that is monitored and transformed to “control” these flows, a great deal
of structure is forced on the theory constructor. In this simple example
we are led to the important insight that arms races are governed by
perceptions of threat that may be imperfect reflections of the material
conditions, And we are reqmrcd to be quite specific about where
information comes from, how it is transformed, and where it goes to
create the control system that governs the flows and transformations of
the material states of the system. | |
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The syntax of statements about the dctcrnunants of mfnrmatmnal
levels (“auxiliary” statements) is very flexible.!? Virtually any kind of |
terms may be used, and they may be combined in virtually every possible
fashion, including special functions involving time and nonlinear
relations. Informational levels can be created out of information
“monitored” from material states, other informational states, rates of
change, and constant terms. In our example above, a variety of
constants (FEAR), levels (ARMS.K), and rates of change in levels
(ARMSLJK) are all used to create the perceived level of arms. None of
these quantities on the right-hand side, however, are “used up” or
transformed in the process. - | -

- The “independent variables” in the auxiliary equation can be
combined in a variety of ways. Often simple linear relations are plausible
specifications (addition, subtraction, multiplication, division), but often
nonlinear combinations (such as thresholds), or combinationsinvolving
noise, delay, and distortion are necessary to mimic the informational
processes of social actors. A variety of shorthand tools for some of the
most common types of complex relations are provided in the vocabulary
of the language itself (see Chapter 4), and others can be created (user-

‘defined macros). The much greater flexibility of the language when
dealing with information than with material things reflects the prior
assumption that mformatlon dynamlcs are fundamentally dlffercnt
from material dynamics. . .

The state space of any pattern of soclal dynamlcs then, can be
“defined using the “level” and “auxiliary” equations of the DYNAMO
language. The particular syntax of these forms of statements about the
elements of the state space reflect some peculiarities of the conceptual
approach of a particular theoretical school—that of “systems dynamies.”
These peculiarities of the language for describing the state space of a
theory are, in most cases, helpful and consistent with the way that most
theorists think about social dynamics. The language, however, is also
quite flexible (though not infinitely s0), so that questions of what are
“levels“ and “auxiliaries,” as well as what is meant by terms such as

“sources,” “sinks,” and “constants” are open to the pragmatic definition
of the theory constructor. -

Once the elements of the state spaca both matcnal and mformatmnal
have been described, the next stepin the process of theory buildingisto
describe the processes that determine the rates of change in elements of
- the state space. That is, we must next specify how the causal connections
work across states and time. |
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Rates of Change

The “levels” of a system define the status of its material states at a
point in time, but do not speak directly to the issue of the dynamics of
the system. “Level” equations make reference to rates of change (the
“JK” terms), but do not explain these rates. “Auxiliary” equations, on
the other hand, describe both the informational elements of the state
space and the over-time relations among these elements. After the state
space of a theory has been defined with the tools discussed above,
attention must be turned to the dynamics of the conserved states: That
is, what causes the state of the system to change from one time point to
the next, In the system dynamicﬁ approach, the hypotheses about the
causes of change are embodied in separate statements, called “rates
‘with their own special syntax, !

Recall for a moment our earlier cxample of a level equation
describing a very simple model of population dynamics: -

L POPK-= POP..J+DT(BIRTHS.JK+IMMIG.JKHDEATHS.JK-EMIG.JK)

Again, this statement says that the size of the population at instant K
is equal to the size of the population at some prior time point, J, plus the
integration (or accumulation, if you prefer) of births, deaths, immigra-
tions, and emigrations that dccur at certain rates per unit time across the
interval between J and K. Births, deaths, immigrations, and emigrations
‘are thought of as occurrmg continuously across the time interval

between J and K. |

- The purpose nf rate equations is to dcscr:be the “causes” of these
rates, that is, to specify the effects of causal factors on the rate at which
the level (in this case, population) is changing. Causal effects operate on
the rates of change, which are decomposed into a series of separate
processes: births, deaths, immigrations, and emigrations. The level of
the population, then, is really just a momentary snapshot of the
accumulated cnnsequcnces of causal processes (rates) that are occurring
continuously in time.

Systems dynamics models, like models f ormulated more directly into
differential equations, are really speaking to the causes of rates of
change in the states of the system. A system dynamics flow diagram of
our mmple population model will help at this point both to reiterate the
notion of dynamic models as revolving around rates of change and to
introduce diagraming conventions.

The symbol for a “rate” in the systems dynamlcs ﬂawgraph conven-
tions is “milk-can” shaped and is intended to invoke an image of a
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Figure 3.2: Rates in a simple population model.

gateway or valve controlling the “flow” into or out of a level. All flows
into and out of levels must contain such valves to define the rate at which
increments or decrements to the level in question occur. In our current
model, population change is a result of four forces that either add to or
subtract from the level of the population and which have different
determinants. If any of the flows in question (that is, any of the rates)
had the same causes, they could be combined into a single-rate
statement, though the theorist might wish to keep separate statements
for each theoretically important factor for ease of explication. Again,
mathematical elegance is not the chief goal of formal theory in the
- DYNAMO appmach | |

'The diagram is very useful in shﬁwmg what factors are hypothesized
to contribute to the rate of change in population by their effects on



The Systems Dynamics Appraach . | | . 65

* births, deaths, immigration and emigration. In our simple model, we
show the simplest possible specification: Eachrate (BR, DR, IR, ER)1s
- determined by the current level of population (that is, the system is, in
one sense “self-referencing”) and by a constant. The diagram, however,
only shows which terms are connected to which rates of change and is
usually not sufficiently for complete specification. The statement of the
determinants of rates of change in equation form is used to make these
specifications. For the model in Figure 3.2, the “rate” equations are
shown below, o |

BR.KL = POP.K*FR
DR.KL = POP.K*HR .
IR.KL = POOLK*IP

" ER.KL = POP.K*EP

ARRBA

The first statement says, rather obviously, that the number of births
occurring (BR.KL) between time point K and time point L (K and L are
used, rather than.J and K, to control the order in which calculations are
done when simulations are performed) is equal to the number of persons
in the population times a constant (FR). The fertility rate (FR) in this
case is the probability that a given person will give birth in the interval
between K and L. The other rate equations (for DR, IR, and ER) are
similar, but use different'constants: a “hazard rate” (probability of death
over the interval from K to L); an “immigration probability” (the
probability that a given member of the pool of possible immigrants
actually immigrates between time points K and L); and, an “emigration
probability” (the probability that a member of the focal population will
emigrate in the time period between K and L).

“Rate” equations are largely unrestricted in form, and they can grow
to be quite complex. One can imagine, for the current simple population
model, that one might wish to replace the constants (FR, DR, IR, and
ER) with more elaborate expressions. The fertility rate, for example,
‘'might be made a variable by making it a function (described in an
“auxiliary” equation) of the average age of the population, levels of
economic performance, values about desirable family size, etc. These
quantities, in turn, might be specified to be functions of other levels,
auxiliaries, and rates. In principle, all of this complexity would properly
be a part of the “rate equation” or sentence. In practice, since the
determinants of rates are often hypothesized to be extremely complex
and involve many other variables, “auxiliary” type equations are used to
express the portions of the rate. This can sometimes lead to confusion,
as “auxiliaries” are used in the DYNAMO language to de¢scribe both
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“levels” of “information” and to perform the auxiliary calculations that
enter the right-hand side of rate equations.!* | o

" The “rate™ equations are the focal point for hypotheses about the
dynamics of systems. In systems dynamics models {(and differential
equation models generally), the status of the system at any point in time
(that is, the state space) is the result of continuously ongoing causal
processes (that is, the rates). Hypotheses about the determinants of
variation in the rates of change in dynamic models are, consequently,
where the real “causal” theorizing occurs. | -

The syntax of the DYNAMO language is of assistance in the effortto
think clearly about the causes of change in social phenomena, For each
“level” in the system, one Or more “rates” must be defined. By
considering the specific “flows” that increment and/or decrement the
level, the problem of specifying the causes of change can often be divided
‘nto several simpler (but simultaneously operating) processes. For each
of these causal processes (i.e., rates), the language requires that we
identify the factors that explain the rate in question. That is, the
specification of the rate equation requires that we think clearly about
what other levels, rates, quxiliaries, and constants determine the rate.
This is equivalent to identifying the “independent variables” that have
dynamic causal impacts. Lastly, the language requires that we write a
specific hypothesis about how these factors “fit together” to produce
change in the rates. | | |

Because the language of rates and auxiliaries is very flexible, virtually
" any form of relation among independent variables and the “rate”can be
specified, It is often best to work backwards by first asking what
determines the rate and then what determines these factors, and so on
until the “chain” of expressions is complete. |

For example, let’s look at the birth rate in the example that we've
been considering. The birth rate itself is determined by a very simple
expression: The number of births between two points in time is equalto
‘the population “at risk” times the probability of an event—that is, the
fertility “rate” or probability. The size of the population at any pointin
‘time is not problematic; it is accounted for by, the level equation. This
part of the “chain”is complete, as it connects directly to an already fully
specified part of the model (the level of population). The causes of the
fertility rate, however, could be further elaborated. We might wish to
formulate 2 theory of fertility probability, perhaps based on the age
structure of the population and the economic wealth of the population.
This would require us to calculate these quantities, or to supply them as
constants {that is, to specify the age structure and wealth levels as the
“left-hand” side of either auxiliary or constants types of equations).
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Again the theorist faces a forced choice: To treat age structure and
economic wealth as exogenous, or to provide expressmns that spcclfy'
their causes. |

- This method of working backwards in the elaboration of the
determinants of rates creates models that are fully self-referencing (that
is, “closed systems™) or have specific points at which simplifying
- assumptions have been made. In Figure 3.2, for example, we have as
-much as stated that our “theory” of population dynamics will not deal
‘with the causes of fertility, mortality, immigration, and emigration
‘probabilities; instead these factors are treated as constants. Several
things are accomplished by this method. First, of course, we become
quite clear about the boundaries of our theory. Wherever constants
¢nter the chains that describe the causes of rates of change, limiting
assumptions are being made. Secondly, the method of working
backwards helps us to take apart what are often very complex causal
processes into a series of simpler, sequential processes. It is not
“uncommon to have as many as 10 or 20 “auxiliary” and “constant” types
of statements to specify the process that determines a particular rate.
Mathematically, this is Extrcmcly inelegant; but the clarity of thinking
-and clarity of expression gained in describing the (often complicated)
- processes that cause change is usually worth the price,

Conclusions

- - The systems dynamics approach to formalizing theories about
" dynamms is one of several traditions within “systems theory” and
- “gystems analysis.” The conceptual approach of system dynamics and
~mmuch of the method of constructing theory from this perspective is
‘¢mbodied in a particular formal language called DYNAMO. In this
‘thapter we have examined generally how the “systems” analysis
“tradition thinks about social dynamics and, more particularly, have
- examined the basic elements of the “systems dynamics” approach.
The “systems dynamics” school of theorizing about dynamics has
~provided one such “higher” language for constructing theories about
continuous state continuous time dynamics: DYNAMO. This particular
language for describing state spaces and the dynamic connections
-among the elements of state spaces has a number of conceptual
peculiarities, unique vocabulary, and uncommon syntax. The structure
- of this particular language, however, is unusually useful fﬂr formalizing
}_-_mlal scientists’ theorles |

o
A "l,il [
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Systems dynamics distinguishes between “conserved” and “noncon-
served” elements of the state Space of a theory, and provides different
vocabulary and syntax for describing these types of elements (e.g.,
“levels” and “auxiliaries”). This rather unusual distinction reflects both
a conceptual and mathematical approach. The language can be used
with or without its notions of differences between “material” and
«informational” states, and can be used with either differential mathe-
matics or difference mathematics, or both. The distinctions among types
of states, however, is often an aid to thinking about social science
problems where behaviors and meanings are regarded as separate, but
connected phenomena. Theuse of both differential and difference types
of expressions allow for great flexibility of expression, a desirable
feature to most theorists. o |

The systems dynamics language also has a somewhat peculiar
‘approach to dealing with the formalization of theory about the dynamic
connections among states. Where differential equations are written in
unified form, expressing the impacts of independent variables on the
rates of change in dependent variables, the DYNAMO approach takes
such expressions apart into (often large numbers of) “level,” “rate,” and
“auxiliary” equations. These equations are mathematically inelegant,
but allow the theorist to reason through the causal chains that determine |
the rates of change in states. While the statements are not compact, each
component expression tends to express a rather simple (and hence,
comprehensible) part of the overall causal relation, and the connections
among the parts of the causal statements can be easily traced.

The DYNAMO language, like all other specialized languages for
accomplishing particular expressive tasks, provides some shorthand
tools for accomplishing complicated and often repeated operations, In
formalizing theories about the dynamic relations among the elements of
complex state spaces we don’t need 110 names for different kinds of
snow, but our task is considerably simplified if we have some shorthand
ways of describing dynamic connections. The tool kit provides some of
- the most useful such “words™.

Notes

1. More complete discutions of the jdea of a “state space” may be found in Brunner and Brewer
(1971), Chorafas (1963), Hall (1962), and Weiner (1948). . |

" 2. Mixed discrete and continuous state languages such as SLAM, GASP, and SMOOTH tend to

be rather complicated, difficult 1o jeari to use, and require qubstantial computer power, Other

continuous state languages such as CSSL are elogant and efficient, but closely tied to the mathematics

of differential equations. Languages intended primarily for discrete state models (¢.8., SIMULA)
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 pensrally cannot be applied where there are any continuous states in the model. For some interesting

discussions of the strengths and weaknesses of particular languages, see particularly Robinson (1972)
aisd Buxton {1968). These d;sc ussions, while excellent, are cnnszdnrahly dated, as new languages appear

-Quite frequently.

3. Many system dynamics approaches differentiate kinds of clements of the state space still

- further. Information is often divided into “data® and “orders”™; material flows are often differentiated
_ isto*personnel,” “money,” “raw materials” and “capital,” These categories are ntot as “primitive” as the

_information; material distinction, but are particularly useful for modeling management problems. See

particularly Goodman (1974), Pugh (1980), and Roberts et al. (1983),

4, “Semiotics” and “information theory” tend to reduce all elements of the state space to cultural

sepresentations, or information. Many researchers in artificial inteltigence, machine systems, and
_genersl system theory draw no fundaments! distinction between types of state apace clements—
 yogarding each as & function or asserably process. See pnmculnrly Gilbert (1966) on mfurmntmn theory

- spproaches.,

5. Perhaps the best argum:nts in favor of this approach come from the founder of the systems

| J_jnmm school; see Forrester (1961, 1968). -

6. Infact, the DYNAMO language is h:glily flexible, and need not be used in accordancewith the

philosophical strictures of the “systems dynamics” school, Conserved quantitics may be treated with
 ¢ither algebra or calculus, as may nonconsérved quantities. The common practice of distinguishing
" typés of things and types of mathematics, however, is a generally useful thinking tool.

7, For a particularly insightful discussion of the peculiarities of the systems dynamics approach,

- see Day (1974). Pritsker (1974) provides an illustration of translation between DYNAMO and the more
.. axplicitly mathematical language GA.SP Robinson ( 1972) also compares several languages approaches
_:_-;io tha same problem.

" 8. Thore are a number of sxcellent introductory treatments of the details of the DYNAMO

_ lemguage and its implementation in simulation analysis. It is not our intent to duphcntc these primers
- and users manuals in this volume. Those readers who wish to become proficient in the DYNAMO
" language will have to study the following sources: Goodman (19'}'4), Pugh (193{]). Pugh-Roberts
. Aasocistes (1982), Roberts et al. {1983).

9. Onthe flow-diagraming conventions of DYNA M{} see the sources listed in the previous note,

~ particularly Goodman (1974).

10. See, for example, work on path dmgrams (a partmuiar variant of lmcar systems) in Duncan
{1975) and Bialock (1961, 1971). The more general diagraming conventions of “flow diagrams” (for
voutinucus state systems) are examined in Heise 1975, Lorens {1964}, and Stinchcombe (intuitively, at
loast, 1968). Methods for diagraming and “solving” discrete state systems by means of directed graphs
ste dealt with in a large number of sources, including Barnes (1972), Berge (1962), Busacker and Saaty

(1975), Flament (1963), Harary (1969), lear}' et nl {1965), Huivik and Gleditach {1975), and Huggms
~#nd Entwisle (1968). |

il. “Levr.l“ equations need not necessarily involve integration of rates, though most continuous

Illd conserved quantities are usefully regarded in this fashion. Nordo level eg uations have to involve
- donservation. That is, it is niot necessary that the previous level of the system enter into the calculation
| d the current level of the system.

- 12 Auxillary statements in DYNAMO may use virtually any functional form to describe relations

_among quantities and over time. Certain common functions, such as discrete lags, are more difficult
:_M others to create in the language. For much greater detail, see the sources cited in note 8, above,

13. Differential equation models can be thought of as being composed of statements of the form:

4Y/dt = £ (M.N,P). Level equations perform the task of integrating Y, while the rate and auxiliary
‘#quations are used to specify the functional forms of the effects of M, N, and P.

i4, This peculiarity represents a conceptual flaw in the DYNAMO language. The “states™ and

3. “raies” of material quantitics are clearly distinguished by the use of separate equation types; the “states”™

B v

Jﬂd “sates” of informational quantities are both represented by the single “auxiliary” equation type.
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