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Abstract

Current regression models for interval-valued data do not guarantee that the predicted lower
bound of the interval is always smaller than its upper bound. We propose a constrained regres-
sion model that preserves the natural order of the interval in all instances, either for in-sample
fitted intervals or for interval forecasts. Within the framework of interval time series, we specify
a general dynamic bivariate system for the upper and lower bounds of the intervals. By imposing
the order of the interval bounds into the model, the bivariate probability density function of the
errors becomes conditionally truncated. In this context, the OLS estimators of the parameters
of the system are inconsistent. Estimation by maximum likelihood is possible but it is com-
putationally burdensome due to the nonlinearity of the estimator when there is truncation. We
propose a two-step procedure that combines maximum likelihood and least squares estimation,
and a modified two-step procedure that combines maximum likelihood and minimum-distance
estimation. In both instances, the estimators are consistent. However, when multicollinearity
arises in the second step of the estimation, the modified two-step procedure is superior at iden-
tifying the model regardless of the severity of the truncation. Monte Carlo simulations show
good finite sample properties of the proposed estimators. A comparison with the current meth-
ods in the literature shows that our proposed methods are superior by delivering smaller losses
and better estimators (no bias and low mean squared errors) than those from competing ap-
proaches.We illustrate our approach with the daily interval of low/high SP500 returns and find
that truncation is very severe during and after the financial crisis of 2008, so that OLS estimates
should not be trusted and a modified two-step procedure should be implemented.

Key Words: Interval-valued Data, Inverse of the Mill’s Ratio, Maximum Likelihood Estimation,
Minimum Distance Estimator, Truncated Probability Density Function.
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1 Introduction

With the advent of sophisticated information systems, data collection has become less costly and,

as a result, massive data sets have been generated in many disciplines. Economics and business

are not exceptions. For instance, financial data is available at very high frequencies for almost

every asset that is transacted in a public market providing data sets with millions of observations.

Marketing data sets offer high granularity about consumers and products characteristics. Environ-

mental stations produce data sets that contain high and low frequency records of temperatures,

atmospheric conditions, pollutants, etc. across many regions. Statistical institutes, like the Cen-

sus Bureau, collect socioeconomic information about all individuals in a nation. These massive

information data sets tend to be released in an aggregated format, either because of confidentiality

reasons or because the interest of study is not the individual unit but a collective of units. In these

cases, the researcher does not face classical data sets, i.e.{yi} for i = 1, ∙ ∙ ∙ ,n or {yt} for t = 1, ∙ ∙ ∙T

whereyi or yt are single values in the real line, but data aggregated in some fashion, like interval

data [yl , yu] that offers information on the lower and upper bound of the variable of interest. For ex-

ample, information about income or net worth comes very often in interval format, or low and high

prices of an asset in a given day, or daily temperature intervals, or low/high prices of electronic

devices for several stores, etc.

Interval-valued data are also considered symbolic data sets. Within the symbolic approach (Bil-

lard and Diday, 2003, 2006), there are several proposals to fit a regression model to interval data.

For a review, see Arroyo, González-Rivera and Maté (2011). The simplest approach (Billard and

Diday, 2000) is to fit a regression model to the centers of the intervals of the dependent variable

and of the regressors. Further approaches consider two separate regressions, one for the lower

bound and another for the upper bound of the intervals, either with no constraints in the regres-

sion coefficients (Billard and Diday, 2002) or by constraining both regressions to share the same

regression coefficients (Brito, 2007). In a similar line, Lima Neto and de Carvalho (2008) propose

running two different regressions, one for the center and another for the range of the intervals, with
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no constraints. None of these approaches guarantees that the fitted values from the regressions will

satisfy the natural order of an interval, i.e. ˆyl ≤ ŷu, for all observations. Lima Neto and de Carvalho

(2010) impose non-negative constraints on the regression coefficients of the model for the range

and solve a quadratic programming problem to find the least squares solution. However, for these

constraints to be effective, the range regression must entertain only non-negative regressors (e.g.,

regressing the range of the dependent variable on the ranges of the regressors), which limit the

usefulness of the model.

In this paper we propose a regression model, either for cross-sectional or time series data, that

guarantees the natural order of the fitted interval bounds for all the observations in the sample,

and for any potential interval forecast based on the model. Within the framework of interval time

series (ITS), we specify a bivariate system for the lower and upper bounds of the time series. The

observability restrictionyl,t ≤ yu,t implies that the conditional probability density function of the

errors is truncated. Under the assumption of bivariate normal errors, the amount of truncation will

depend on the variance-covariance matrix of the errors and it will be time-varying because the

truncation is a function of the difference between the conditional means of the lower and upper

bounds. When the observability restriction is severe, i.e., the truncation of the bivariate density is

substantial, not only the conditional expectations of the errors are different from zero but also the

errors are correlated with the regressors, thus any least-squares estimation (linear or non linear)

will fail to deliver consistent estimators of the parameters of the model. We propose a two-step

estimation procedure, combining maximum likelihood and least squares estimation, that will de-

liver consistent estimators. The first step consists of modeling the range of the interval, which is

distributed as a truncated normal density, to obtain maximum likelihood estimates of the inverse

of the Mill’s ratio λ̂t−1, which embodies the severity of the restriction. Only when the restriction

is severe, the second step is necessary. This step consists of introducingλ̂t−1 in a least-squares

regression to correct the selection bias imposed by the restriction. However, the estimation in the

second step may be plagued with multicollinearity problems because in some instancesλ̂t−1 is an
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ACCEPTED MANUSCRIPT

almost linear function of the regressors. Since multicollinearity cannot be resolved by dropping

some of the regressors, we propose a modified second step by implementing a minimum distance

estimator that delivers consistent estimates of all parameters in the model. The advantage of the

modified second step is that even when the observability restriction is not severe (λ̂t ≈ 0 for most

t), we are able to identify all parameters without much loss in efficiency.

As an illustration of the methods that we propose, we model the interval of daily low/high

returns to the SP500 index before and after 2007. Before 2007, the daily interval exhibits very little

volatility, but after 2007, volatility is the dominant characteristic due to the events of the financial

crisis of 2008. These two periods have very different dynamics. We implement the modified two-

step estimator and we find that in the stable period the observability restriction is not severe, so

that simple OLS will suffice to estimate a dynamic system for the lower and upper bounds of the

interval. In contrast, in the high volatility period the restriction is very severe, thus simple OLS

estimates should not be trusted and the second step is necessary to guarantee the consistency of the

estimators.

The modeling of the low/high interval is interesting in itself for several reasons. For instance,

in technical analysis, trading strategies are based on the dynamics of an object, the ”candlestick”,

which is composed of two intervals, the low/high and the open/close. In financial econometrics, the

low/high interval also provides estimators of the volatility of asset returns, see Parkinson (1980),

Yang and Zhang (2000), Alizadeh, Brandt, and Diebold (2002) among others. However, the most

important reason for our interest in estimation and forecasting with interval-valued data lies on the

fact that the only format available for some data sets is the interval format. Financial data sets

are exceptional; they are very rich and information come in many formats, e.g., databases contain

records of prices for every transaction in the market so that we could analyze prices at the highest

and the lowest frequencies; there is an almost continuous measurement in the transaction price. But

this is not always the case in other areas within economics or in other sciences. Some examples

follow.
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The US Energy Information Administration gather electricity prices for each state in US. Since

there are so many factors affecting the prices of electricity, there is substantial variation across

states and across localities in the same state. This agency provides average retail price at the state

level in interval format, i.e. min/max price, which is more informative of the realities of this mar-

ket. The US Department of Agriculture provides livestock prices also in interval format. The

Livestock Marketing Information Center (Iowa State University) reports interval prices of several

items, for instance, min/max daily beef prices. Though they compute a weighted price, this is not

the price of a given transaction, so that the interval min/max contains more valuable information

to the participants in the market. In the appraisal industry, the objective is to find a ”fair market

price” for items, such as real estate, for which the market value cannot be observed directly unless

the item is sold. It is standard practice in this industry to record min/max prices of similar items

that have had a recent transaction so that the ”fair” market price, though non-observable, must be

contained within such an interval. Even with financial datasets, it is interesting to note that bond

market data is not as transparent as stock data and bond traders report the bid/ask interval of the

transaction, in which the price is contained. In other fields different form economics, for instance

medicine, we have databases with patient data recorded in interval format, the most indicative is

blood pressure measurements i.e., diastolic and systolic pressure (low and high numbers respec-

tively). In earth sciences, temperature records across locations also come in interval format, i.e.

min/max temperature for a given location.

These examples show that the low/high interval of a variable is a common format that pro-

vides additional information beyond an average measurement, and in some cases, it is the only

format available to the researcher. It should be noted that estimating and forecasting with low/high

interval-valued data is different from estimating and forecasting two quantiles. The low/high

bounds are extremes. In quantile regression, the loss function requires fixing the probabilityα

associated with the quantile. If we wish to approximate the low/high interval with quantile regres-

sion, it seems natural to fixα = 0 for estimation of the lower bound andα = 1 for the estimation
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of the upper bound, but if the variables of analysis are defined in the domain (−∞,+∞), these are

also the values of the corresponding (0,1) quantiles. If our interest is any other quantile, e.g. the

interquartile range [Q0.25,Q0.75], and the data is available in a classic point-valued format, then

quantile regression with monotonicity restrictions could be implemented as proposed by Cher-

nozhukovet al. (2010).

We organize the paper as follows. In section 2, we provide the general framework and basic

assumptions. In section 3, we present the two-step estimation procedure and develop its asymptotic

properties. In section 4, we conduct extensive Monte Carlo simulations that show the finite sample

properties of the two-step and modified two-step estimators. In section 5, we compare extensively

our methods with those existing in the literature. In section 6, we illustrate the empirical aspects

of our methods with the daily interval of low/high SP500 returns. In section 7, we conclude.

2 General Framework and Basic Assumptions

We introduce a general regression framework for interval-valued time series. The objective is the

estimation of a parametric specification of the conditional mean of an interval-valued stochastic

process. Generally, an interval is defined as follows:

Definition 1. An interval[Y] over a set(R,≤) is an ordered pair[Yl ,Yu] where Yl ,Yu ∈ R are the

lower and upper bounds of the interval such that Yl ≤ Yu.

We can also define an interval random variable on a probability space (Ω, F,P) as the mapping

Y : F → [Yl ,Yu] ⊂ R . In a time series framework, we further define an interval-valued stochastic

process as a collection of interval random variables indexed by time, i.e.{Yt} for t ∈ T; and

an interval-valued time series (ITS) as a realization{[ylt , yut]}Tt=1 of an interval-valued stochastic

process.

We are interested in modeling the dynamics of the process{Yt} = {[Ylt ,Yut]} as a function of

an information set that potentially includes not only the past history of the process, i.e.Yt−1 =

(Yt−1,Yt−2, ∙ ∙ ∙ ,Y0) but also any other exogenous random variablesXt = (Xt,Xt−1, ∙ ∙ ∙ ,X0) where
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Xt = (X1t,X2t, ...,Xpt). In this context, we focus the modeling exercise on establishing the joint

dynamics of the lower{Ylt} and upper{Yut} bounds taking into account the natural ordering of the

interval. Thus, a general data generating process is written as

Yt ≡




Ylt

Yut



=




Gl(Yt−1,Xt; βl)

Gu(Yt−1,Xt; βu)



+




εlt

εut



, such thatYlt ≤ Yut (2.1)

whereGl(∙), Gu(∙) are differentiable functions,βl , βu are twoJ × 1 parameter vectors, andεt ≡

(εlt , εut)
′ is the error vector. The observability restrictionYlt ≤ Yut will be imposed on the process.

The observability restriction in (2.1) is the key feature of the specification because it generates

two important issues for the estimation of the model (2.1). First, the restrictionYlt ≤ Yut implies a

restriction on the distribution of the error vector. The errors now are restricted as follows,

Gl(Y
t−1,Xt; βl) + εlt ≤ Gu(Y

t−1,Xt; βu) + εut,

εut − εlt ≥ Gl(Y
t−1,Xt; βl) −Gu(Y

t−1,Xt; βu). (2.2)

The transformed observability restriction (2.2) implies that, conditioning on the information set

=t−1 ≡ (Yt−1,Xt), the joint distribution of (εlt , εut) is truncated from below. Figure1 illustrates

a truncated joint density of the errors. In the plane formed by the variables (εlt , εut), the ellipse

represents a contour of the joint density, and the 45◦ degree lineεut = εlt+(Gl−Gu) is the truncation

line, separating the shaded area, whereYlt ≤ Yut holds, from the area where the restriction is

violated.

[FIGURE1]

From Figure1, we observe that the feasible support for the errors will depend on the error

variance-covariance matrix as well as any other parameters affecting the shape of the contours, and

on the position of the truncation line, which is a function of the difference between the two condi-

tional mean functions. Small dispersion of the errors together with a large difference, i.e.Gl << Gu

tend to mitigate the severity of the observability restriction because it reduces the probability of the
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errors falling below the truncation line to the point that the restriction might not longer be binding

and it could be safely removed from the model. However, if the restriction is binding, it cannot be

ignored in the model estimation because, on one hand, it may generated predicted values ofYlt and

Yut that do not follow the natural order of an interval, and on the other, it will affect the asymptotic

properties of the estimators as we see next. By taking conditional expectations with respect to=t−1

in (2.1),

Et−1(Ylt |Ylt ≤ Yut) = Gl(Y
t−1,Xt; βl) + Et−1(εlt |εut − εlt ≥ Gl −Gu),

Et−1(Yut|Ylt ≤ Yut) = Gu(Y
t−1,Xt; βu) + Et−1(εut|εut − εlt ≥ Gl −Gu).

When the observability restriction is binding, the conditional expectations of the errors, which are

Et−1(εlt |εut − εlt ≥ Gl − Gu) andEt−1(εut|εut − εlt ≥ Gl − Gu), will not be zero and furthermore,

they will depend on the regressors of the model through the functionsGl(∙) andGu(∙). Thus, any

least-squares estimation (linear or nonlinear) will fail to deliver consistent estimators for the model.

Before introducing our estimation procedures, we need to state some basic assumptions on

(2.1).

Assumption 1. (Weak Stationarity) The interval-valued stochastic process{Yt} = {Ylt ,Yut} is co-

variance stationary, which means that the lower{Ylt} and upper{Yut} processes are themselves

covariance-stationary. We also require covariance stationarity in the regressors Xt ≡ (X1t, ...,Xpt)′.

This assumption allows estimators with standard asymptotic properties. The proposed methods

will also apply to non-stationary data but the properties of the estimators will be non-standard.

Assumption 2. (Exogeneity) The regressors(Yt−1,Xt) are strictly exogenous variables i.e.,

E(εt|Yt−1,Xt) = 0

This assumption is standard in regression analysis to protect the estimators against endogeneity

bias. In our context, the objective is to analyze the dynamics of{Yut} and{Ylt} as a system. For

instance, in a VAR system, the right hand side of the system will have lags of{Yut} and{Ylt} . If

we were to introduce additional regressorsXt, we could proceed in several ways, either expanding

the VAR system to includeXt as another element of the system, or considering only predetermined
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regressors, i.e.Xt−1,Xt−2, ..., or requiring the weak exogeneity ofXt. By proceeding in either way,

we will focus exclusively on the endogeneity generated by the binding observability restriction,

that is, whenEt−1 (εlt |εut − εlt ≥ Gl −Gu ) andEt−1 (εut |εut − εlt ≥ Gl −Gu ), are not zero.

Assumption 3. (Conditional Independence)(XT , ...,Xt+1) and Yt are conditional independent given

Xt, i.e. (XT , ...,Xt+1) ⊥ Yt|Xt.

This assumption relates to the previous one in the sense that it opens the system of{Yut} and{Ylt}

to the effect of other regressors which are not explicitly modeled within the system. For instance,

in a VAR framework, if we were to model jointly{Yut}, {Ylt}, andXt, this assumption will not be

needed. But because we focus only on the dynamics of{Yut} and{Ylt}, we need to assume thatYt

does not Granger-causeXt to avoid biased and potentially inconsistent estimators.

Assumption 4. (Normality) The error termsεt ≡ (εlt , εut) are i.i.d. bivariate normal random vari-

ables with joint density f(εt) = (2π)−1|Σ|−1/2 exp{−ε′t Σ
−1εt/2} with the2× 2 variance-covariance

matrixΣ = [σ2
l ρσlσu ; ρσlσu σ2

u].

This assumption may seem restrictive but it provides at least a quasi-maximum likelihood ap-

proach to the estimation of{Yut} and{Ylt} . If the observability restriction is not binding, estimation

by maximum likelihood under normality or by least squares, will produce consistent but inefficient

estimators. If heteroscedasticity is present, the estimators are still consistent but we would need

to implement a heteroscedasticity-consistent estimator of the variance for a correct inference. If

we were to assume any other density, and again running the risk of a false assumption, we would

not be sure whether QMLE results hold (Newey and Steigerwald, 1997). If the observability re-

striction is binding, bivariate normality implies that the distribution of the errors is conditionally

truncated normal with conditional heteroscedasticity. Our estimation procedures take care of the

heteroscedasticity, and since we are modeling extremes, low and high, the density of these vari-

ables cannot be symmetric, thus the truncation takes care of the asymmetry. Furthermore, the

simulations presented in Sections 4 and 5 show that our estimators are very robust to misspecifi-

cation of the density when there are relevant dynamics in the conditional means of{Yut} and{Ylt}.

9
ACCEPTED MANUSCRIPT

D
ow

nl
oa

de
d 

by
 [

G
lo

ri
a 

G
on

za
le

z-
R

iv
er

a]
 a

t 1
1:

36
 2

7 
A

ug
us

t 2
01

3 



ACCEPTED MANUSCRIPT

The potential misspecification of the regressorλt−1 seems to affect mainly the estimation of the

constant but we will show that the estimation of the system generates good fitted intervals with

substantially smaller losses than other competing methods.

3 Estimation

Given the implications of the observability restriction for a least squares estimator of the parameters

in (2.1), it is natural to think that a full information estimator, like maximum likelihood (ML), will

be better suited to guarantee consistency. In this section, we will introduce the conditional log-

likelihood function of a sampleyT in order to underline the contribution of the restriction to the

estimation. However, our main objective is to develop a two-step estimation procedure that delivers

consistent estimators but it is easier to implement and it overcomes some of the limitations of the

ML estimator.

3.1 Conditional log-likelihood function

For a sample of sizeT, yT ≡ (yT , ∙ ∙ ∙ , y1) andxT ≡ (xT , ∙ ∙ ∙ , x1), and for a fixed initial valuey0,

let fY
(
yT

∣∣∣xT ; θ
)

be the joint conditional density ofyT, whereθ ∈ Θ is an open subset ofRK. The

conditional likelihood̀ (yT , θ) of yT is fYT (yT |xT ; θ) if ylt ≤ yut and 0 otherwise. It follows that

`(y, θ) = fYT (yT |yT
l ≤ yT

u , x
T ; θ) × Pr(yT

l ≤ yT
u |x

T ; θ) =
T∏

t=1

fYt(yt|yt−1, xt; θ)
Pr(ylt ≤ yut|yt−1, xt; θ)

(3.1)

where fYt is the density ofYt conditional on the information (Yt−1,Xt). In (3.1), we have also called

assumption3. Under assumption4, the conditional log-likelihood function of a sampleyT is

L(yT , θ) = − log 2π −
1
2

log |Σ| −
1

2T

T∑

t=1

[
yt −G(yt−1, xt; β)

]′
Σ−1

[
yt −G(yt−1, xt; β)

]

−
1
T

T∑

t=1

logRt(y
t−1, xt; θ). (3.2)
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whereθ = (β,Σ); andRt(yt−1, xt; θ) is defined as

Rt(y
t−1, xt; θ) ≡ Pr(ylt ≤ yut|y

t−1, xt; θ) = 1− Φ




Gl(yt−1, xt; βl) −Gu(yt−1, xt; βu)
√
σ2

u + σ
2
l − 2ρσuσl




in whichΦ(∙) is the standard normal cumulative distribution function.

The maximum likelihood estimator̂θML is the maximizer of (3.2). This estimator will be highly

nonlinear, even for a linear system as in (2.1), because of the contribution of the observability

restriction termRt(yt−1, xt; θ) to the log-likelihood function.Rt(yt−1, xt; θ) provides the probabil-

ity mass that is left in the joint density after the truncation takes place. It is easily seen that

0 ≤ Rt(yt−1, xt; θ) ≤ 1. If the restriction is not binding,Rt(yt−1, xt; θ) = 1 for all t, and its contri-

bution to the log-likelihood function is zero.1 In this case the restriction is redundant and it can

be removed from the specification of the model. On the other hand, if the observability restriction

is binding i.e.Rt(yt−1, xt; θ) < 1 for somet, it must be taken into account in the estimation of the

model. Ignoring the restriction will result in the inconsistency of ML estimator. In theory, the ML

estimator has obvious advantage. If the true distribution ofεt is normal as in assumption4, un-

der certain regularity conditions, the ML estimatorθ̂ML is consistent and asymptotically normal.2

However in practice, given the nonlinearity of the ML estimator induced by the observability re-

striction, we should expect multiple local maxima in the log-likelihood function leading to multiple

solutions and non-trivial convergence problems in the maximization algorithm. Thus, the consis-

tency of ML estimator will depend on a good guess of the initial value of the parameters. For these

reasons, we propose a two-step procedure that combines maximum likelihood and least squares

estimation, that it is easy to implement and will deliver consistent estimators of the parameters of

the model.

1A sufficient and necessary condition for a non-binding restriction isGl (yt−1,xt ;βl )−Gu(yt−1,xt ;βu)√
σ2

u+σ
2
l −2ρσuσl

� 0 for all t.

2Regularity conditions that guarantee the consistency and asymptotic normality of ML estimatorθ̂ML are in
Amemiya (1985, Theorems 4.1.1 and 4.1.3) and in White (1994,Theorem 4.6).
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3.2 Two-Step Estimation: General Remarks

Given the popularity of VAR models, we will consider the process (2.1) to follow a linear autore-

gressive specification of orderp. However, the two-step procedure to be described next will be

also applicable to nonlinear models by properly choosing a nonlinear estimation technique in the

second step.

The interval autoregressive model, IAR(p), is described as follows


yl,t

yu,t




=




βlc

βuc



+

p∑

j=1




β
( j)
11 β

( j)
12

β
( j)
21 β

( j)
22







yl,t− j

yu,t− j



+




εlt

εut




with observability restrictionylt ≤ yut, and an error termεt that is bivariate normali.i.d.. Condi-

tioning on the information set=t−1 = (yt−1, ..., yt−p, ...), the conditional mean of the IAR(p) process

is

Et−1(ylt |yut ≥ ylt) = βlc +

p∑

j=1

β
( j)
11yl,t− j +

p∑

j=1

β
( j)
12yu,t− j + Et−1(εlt |yut ≥ ylt)

Et−1(yut|yut ≥ ylt) = βuc +

p∑

j=1

β
( j)
21yl,t− j +

p∑

j=1

β
( j)
22yu,t− j + Et−1(εut|yut ≥ ylt)

Under the normality assumption4, we derive the conditional expectation of the errors (see web

appendix), which areEt−1(εlt |yut ≥ ylt) = Clλt−1 and Et−1(εut|yut ≥ ylt) = Cuλt−1, whereCl =

−(σ2
l − ρσuσl)/σm, Cu = (σ2

u − ρσuσl)/σm, σ2
m = σ2

u + σ
2
l − 2ρσlσu, and

λt−1 =
φ(Δ(yt−1,Δβ)/σm)

1− Φ(Δ(yt−1,Δβ)/σm)
(3.3)

Δ(yt−1,Δβ) ≡ Gl −Gu = Δβc +

p∑

j=1

Δβ
( j)
1 yl,t− j +

p∑

j=1

Δβ
( j)
2 yu,t− j

Δβ = (βlc − βuc, β
(1)
11 − β

(1)
21 , β

(1)
12 − β

(1)
22 , ∙ ∙ ∙ , β

(p)
11 − β

(p)
21 , β

(p)
12 − β

(p)
22 ). (3.4)

Therefore, the regression models can be explicitly written as

ylt = βlc +

p∑

j=1

β
( j)
11yl,t− j +

p∑

j=1

β
( j)
12yu,t− j + Clλt−1 + vlt (3.5)

yut = βuc +

p∑

j=1

β
( j)
21yl,t− j +

p∑

j=1

β
( j)
22yu,t− j + Cuλt−1 + vut (3.6)

where nowvlt = εlt −Clλt−1 andvut = εut−Cuλt−1 are martingale difference sequences with respect

to=t−1, i.e. Et−1(vlt |yut ≥ ylt) = 0 andEt−1(vut|yut ≥ ylt) = 0.
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Two remarks are in order. First, sinceCu −Cl = σm, we needσm > 0 to be strictly positive for

Cu andCl to be well defined. This implies that the specific caseσ2
u = σ2

l andρ = 1 must be ruled

out. This could happen when the interval [εlt , εut] is degenerate and collapses to a single value.

Secondly,λt−1 is the inverse of the Mill’s ratio and embodies the severity of the observability

restriction. When the restriction is non-bindingRt(yt−1, xt; θ) = 1 for all t, which implies that

λt−1 = 0 for all t.

Based on regressions (3.5) and (3.6), the two-step estimation strategy consists of estimatingλt−1

first and assessing how binding the observability restriction is. The second step is only meaningful

when the restriction is binding. In this case, we proceed to plug inλ̂t−1 in (3.5) and (3.6) and per-

form least squares. The proposed two-step estimation strategy resembles Heckman’s (1979) two-

step procedure for sample selection models. However, there are important conceptual differences.

In Heckman’s, the selection mechanism (the first step) includes the full sample of observations,

e.g. women who participate and who do not in the labor market, and the regression model (the

second step) includes a partial sample, those for which the dependent variable of interest is ob-

served, e.g. the wage of those women who work. In our strategy, we carry the same sample in both

steps because those observations that violate the observability restriction will never be observed.

Hence, from the start, our first step will focus on a truncated normal regression that arises very

naturally when we model the range of the interval, and from which we will estimateλt−1. Our

second step is analogous to Heckman’s in that the objective is to correct the selection bias of the

least squares estimator in the regression of interest. However, Heckman’s bias is inconsequential

when the error terms of the selection equation and of the regression of interest are uncorrelated.

In our second step, even if the errors of the lower and upper bound regressions are uncorrelated,

the inconsistency of the least squares estimator will remain when the observability restriction is

binding and is omitted in the second-step regression.
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3.3 Two-step Estimation: The First Step

Our objective is to estimateλt−1. To this end, we model the range of the intervalΔyt = yut − ylt ,

which according to the IAR(p) model will exhibit the following dynamics

yut − ylt = −


Δβc +

p∑

j=1

Δβ
( j)
1 yl,t− j +

p∑

j=1

Δβ
( j)
2 yu,t− j


 + Δεt (3.7)

Under normality assumption4, and imposing the observability restriction, the difference of the two

error terms,Δεt, follows a truncated normal distribution. Thus, the conditional density ofΔyt is,

f (Δyt|Δyt ≥ 0, yt−1;Δβ, σm) =
1
σm

φ(Δyt/σm + Δ(yt−1,Δβ)/σm)
1− Φ(Δ(yt−1,Δβ)/σm)

. (3.8)

Based on (3.8), we can construct the log-likelihood function of a sample ofT observationsΔy

T−1L(Δy;Δβ, σm) =
1
T

T∑

t=1

log f (Δyt|Δyt ≥ 0, yt−1;Δβ, σm) (3.9)

to obtain the maximum likelihood estimatorŝΔβ and σ̂m as the arg maxΔβ,σm
[T−1L(Δy;Δβ, σm)].

The ML estimators will be plugged in (3.3) to finally obtain̂λt−1.

There are two advantages in modeling the range of the interval. The number of estimated pa-

rameters is reduced from 2(1+ 2p)+ 3 in the full ML estimation (3.2) to 1+ 2p+ 1 in (3.9). More

importantly, for the truncated normal regression, there is a unique solution to the maximization

problem so that the ML estimator is the global maximizer of the likelihood function. Consis-

tency and asymptotic normality of the ML estimators andλ̂t−1 are easily established. We add the

following assumption

Assumption 5. (Mixing Conditions) The interval-valued stochastic process{Yt} = {Ylt ,Yut} is

either (a) φ-mixing of size−r/(2r − 1), r ≥ 1 or (b) α-mixing of size−r/(r − 1), such that

E|Ylt |r+δ < Δ < ∞ and E|Yut|r+δ < Δ < ∞ for someδ > 0 for all t.

Theorem 1. (Consistency and Asymptotic Normality of the first-step ML Estimator) Letθ∗ ≡

(Δβ/σm, σm) ≡ (Δβ∗, σm) be a1× (2p+ 2) parameter vector corresponding to model(3.7). Under

assumptions1 – 5, the maximum likelihood estimatorθ̂∗ has the following properties,

(a) θ̂∗ML converges to the true valueθ∗0 in probability, i.e.,̂θ∗ML

p
−→ θ∗0;

(b) θ̂∗ML is asymptotically normally distributed, i.e.
√

T (̂θ∗ML−θ
∗
0)

d
−→ N(0,V), where the asymptotic

covariance matrix isV = − plimT→∞[E(∂2L/∂θ∗∂θ∗′|θ∗0)]
−1.
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The truncated normal regression model has been extensively studied for cross-sectional data.

Tobin (1958) proposed the maximum likelihood estimator and Amemiya (1973) proved its con-

sistency and asymptotic normality. Orme (1989), Orme and Ruud (2002) proved that the solution

to the likelihood equations is unique and that there is a global maximizer of the log-likelihood

function. The proofs of the asymptotic properties in Amemiya (1973) are directly applicable to

time series data by strengthening the moment conditions. With assumption5, we replace the Kol-

mogorov’s strong law of large numbers and Liapounov’s central limit theorem for non-identically

distributed random variables in Amemiya (1973) with McLeish(1974)’s strong law of large num-

bers (Theorem 2.10) and Wooldridge-White (1988)’s central limit theorem for mixing processes

(Corollary 3.1) to guarantee that Theorem1 holds. The asymptotic properties of the estimator of

the inverse of the Mill’s ratio follow as a corollary of Theorem1 becauseλ(∙) is a continuous and

differentiable function with respect toθ∗.

Corollary 1. (Consistency and Asymptotic Normality of the Inverse of the Mill’s Ratio) The esti-

mator of the inverse of the Mill’s ratiôΛ ≡ (λ̂0, ∙ ∙ ∙ , λ̂T−1) has the following properties

(a) λ(yt, Δ̂β
∗

ML) converges in probability to the trueλ(yt,Δβ∗0), i.e.,λ(yt, Δ̂β
∗

ML )
p
−→ λ(yt,Δβ∗0);

(b) Λ̂ is asymptotically normally distributed, i.e.,
√

T(Λ̂ − Λ)
d
−→ N(0,S0), where the asymptotic

covariance matrixS0 = J(Δβ∗0)VΔβ∗0
J(Δβ∗0)

′ andVΔβ∗0
is the asymptotic covariance matrix of

√
T(Δ̂β

∗

ML − Δβ∗0), a leading principal minor of matrixV. The t-th row of matrixJ(Δβ∗0) is,

jt = λ(yt−1,Δβ∗0)[λ(y
t−1,Δβ∗0)−zt−1Δβ

∗
0]zt−1, and vectorzt−1 is (1, yl,t−1, yu,t−1, ∙ ∙ ∙ , yl,t−p, yu,t−p).

3.4 Two-step Estimation: The Second Step

We plug the estimatêλt−1 in the regressions (3.5) and (3.6) to obtain the feasible model. We need

to redefine the new error terms in the feasible regressions asult anduut, which have two sources

of variation, one coming from theλ estimator, and the other coming from the error term in the

infeasible regression, i.e.ult = Cl(λt−1 − λ̂t−1) + vlt anduut = Cu(λt−1 − λ̂t−1) + vut. As a result,

the error term of the feasible regression will be heteroscedastic. Writing the feasible regressions in
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matrix form

yl = Ĥγl + ul , yu = Ĥγu + uu (3.10)

where

yl = (yl,1, ∙ ∙ ∙ , yl,T)′, yu = (yu,1, ∙ ∙ ∙ , yu,T)′,

γl = (βl ,Cl), γu = (βu,Cu),

ul = Cl(Λ − Λ̂) + vl , uu = Cu(Λ − Λ̂) + vu,

Λ̂ = (λ̂0, ∙ ∙ ∙ , λ̂T−1)′, Ĥ = (Z, Λ̂),

Z =




z0

...

zT−1




=




1 yl,0 yu,0 ∙ ∙ ∙ yl,1−p yu,1−p

...
...

...
...

...

1 yl,T−1 yu,T−1 ∙ ∙ ∙ yl,T−p yu,T−p




.

The least squares estimators of the parametersγl andγu are

γ̂l = (Ĥ′Ĥ)−1Ĥ′yl , γ̂u = (Ĥ′Ĥ)−1Ĥ′yu (3.11)

The next theorem establishes the asymptotic properties of the two-step estimatorsγ̂l andγ̂u.

Theorem 2. (Consistency and asymptotic normality of the second step OLS estimator) Under the

following assumptions,

(i) plimT→∞H′H/T = B−1, which is nonsingular;

(ii) H′J(Δβ∗)/T converges uniformly in probability to the matrix functionQ(Δβ∗); J′(Δβ∗)J(Δβ∗)/T

is bounded uniformly in probability at least in a neighborhood of true valueΔβ∗0;

(iii) E |ht−1,ivlt |2 < ∞, E|ht−1,ivut|2 < ∞, and E| jt−1,ivlt |2 < ∞ for all t and i = 1, ∙ ∙ ∙ ,2p+ 2;

(iv) Ψl,T ≡ var(T−1/2H′vl)
p
−→ Ψl andΨu,T ≡ var(T−1/2H′vu)

p
−→ Ψu, andΨl , Ψu are finite and

positive definite;

Then, the two-step estimatorsγ̂l and γ̂u

(a) converge to their true values in probability,

(b) with asymptotic normal distributions, i.e.,
√

T (̂γl − γl)
d
−→ N(0,BΞlB′), and

√
T (̂γu − γu)

d
−→

N(0,BΞuB′), whereB ≡ plimT→∞(Ĥ′Ĥ/T)−1 = plimT→∞(H′H/T)−1, and

Ξl = Ψl + C2
l Q′0S0Q0 + M l0 + M ′

l0 (3.12)

Ξu = Ψu + C2
uQ′0S0Q0 + M u0 + M ′

u0 (3.13)
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with

Q0 = plimT→∞H′J(Δβ∗0)/T, S0 = J(Δβ∗0)VΔβ∗0
J(Δβ∗0)

′,

M l0 = plimT→∞ E
(
H′vl(Λ − Λ̂)′HCl

)
/T, M u0 = plimT→∞ E

(
H′vu(Λ − Λ̂)′HCu

)
/T.

In equations (3.12) and (3.13), the first termsΨl andΨu are the variance-covariance matrices

of the errorsvlt andvut respectively, ifΛ were observable. The second termQ′0S0Q0 captures the

uncertainty induced by the estimates ofΛ̂. The last two terms,M l0 andMu0, capture the covari-

ances between the error termsvlt andvut with Λ̂. Althoughvlt andvut are martingale difference

sequences, they are correlated withλt+i for i = 0,1, ∙ ∙ ∙ ,T − t. This is a further difference with

Heckman’s two-step estimator. In Heckman’s covariance matrix, the matrixM0 is zero because

in a cross-sectional setting the errorv is uncorrelated with the inverse of the Mill’s ratio. Since

the asymptotic variance-covariance matrices in (3.12) and (3.13) capture the heteroscedasticity in-

duced by the observability restriction together with the time dependence induced byΛ̂, Newey

and West (1994)’s HAC variance-covariance matrix estimator should suffice to estimateBΞlB and

BΞuB consistently. We also estimate the unconditional variancesσ2
l andσ2

u of the respective errors

εlt andεut and their correlation coefficientρ by implementing a simple method of moments (see

web appendix).

3.5 Two-step Estimation: Implementation Issues

The implementation of the two-step estimator may be subject to multicollinearity, and conse-

quently the parametersγl andγu in the second step, equations (3.10), may not be precisely es-

timated or, in extreme cases, they may not be identified at all. There are two reasons for multi-

collinearity. First, the functional form (3.3) of the inverse of the Mill’s ratioλ (∙) is nearly lin-

ear over a wide range of its argumentΔ(yt−1,Δβ)/σm so that the estimated regressorΛ̂ is almost

collinear with the regressors inZ. This multicollinearity issues cannot be resolved by just dropping

some of the regressors because the inclusion ofΛ̂ is necessary to guarantee the consistency of the

estimatorŝβl andβ̂u.

The second reason pertains to those cases in which the observability condition is not binding.
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When the observability condition is not binding, the population value ofλ (∙) is zero. Within a

sample, we will observe values close to zero and very small variance inλ̂t. The direct consequence

is thatCl andCu are not identifiable. In the simulation section, we will discuss cases in which this

problem is severe.

For these two reasons, we propose amodifiedsecond step estimator that overcomes the identi-

fication problem ofCl andCu, and in addition, provides a direct identification of the unconditional

variancesσ2
l andσ2

u of the respective structural errorsεlt andεut and their correlation coefficientρ.

3.6 Two-step Estimation: A Modified Two-step Estimator

The first step of the estimation is identical to that explained in section 3.3 , from which we obtain

the estimateŝΛ andσ̂m. In the second step, we exploit the relationships amongCl, Cu, σ2
u, andσ2

l ,

i.e.,

Cu + Cl = [σ2
u − σ

2
l ]/σm and Cu −Cl = σm. (3.14)

If σ2
l ,σ

2
u andσm were known, the system of equations (3.14) would have a unique solution, and

Cl andCu will be uniquely identified. By writingσ2
u andσ2

l as functions ofCl andCu, i.e. σ2
u(Cu)

andσ2
l (Cl), we propose the following minimum distance estimator, which permits identifyingCl

andCu,

(C̃l , C̃u) = arg min
(Cl ,Cu)

{Cu + Cl − [σ2
u(Cu) − σ

2
l (Cl)]/σ̂m}

2, such that Cu −Cl = σ̂m. (3.15)

Our first task is to findσ2
u(Cu) andσ2

l (Cl). In order to do so, observe that theunconditional

varianceσ2
u andσ2

l of the error termsεut andεlt can be written as follows

σ2
l = var(εlt) = var(E(εlt |Δεt ≥ Δ(yt−1;Δβ))) + E(var(εl,t|Δεt ≥ Δ(yt−1;Δβ)))

= C2
l var(λt−1) + E(var(vlt |y

t−1)). (3.16)

Similarly,σ2
u = C2

u var(λt−1) + E(var(vut|yt−1)), and

σ2
m = var(Δεt) = σ

2
m var(λt−1) + E(var(Δvt|y

t−1)), (3.17)

with Δvt = vut − vlt = Δy+ zt−1Δβ −σmλt−1 by subtracting (3.5) and (3.6), andΔβ defined by (3.4).

From (3.17), we have var(λt−1) = 1−E[var(Δvt|yt−1)]/σ2
m, so that we need consistent estimators
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for the population momentsE(var(vlt |yt−1)), E(var(vut|yt−1)) andE(var(Δvt|yt−1)) to obtainσ2
u(Cu)

andσ2
l (Cl) as functions of sample information. The following Proposition1 guarantees that this is

the case. First, let us call

Δ̂vt = Δyt + zt−1Δ̂β − σ̂m̂λt−1, (3.18)

ûlt = ylt − zt−1βl(Cl) −Cl λ̂t−1, (3.19)

ûut = yut − zt−1βu(Cu) −Cûλt−1, (3.20)

whereΔ̂β andλ̂t−1 are the estimates from the first step, andβl(Cl) andβu(Cu) are the concentrated

OLS estimates ofβ in (3.10), i.e.

βl(Cl) = (Z′Z)−1Z′(Y l −ClΛ̂), βu(Cu) = (Z′Z)−1Z′(Yu −CuΛ̂), (3.21)

Proposition 1. Under assumptions 1 to 5 and forφ- or α-mixing sequences vlt and vut with at least

finite second moments, we have that
∑T

t=1 Δ̂v
2

t /T
p
−→ E(var(Δvt|yt−1)),

∑T
t=1 û2

lt/T
p
−→ E(var(vlt |yt−1)),

∑T
t=1 û2

ut/T
p
−→ E(var(vut|yt−1)), and therefore,̂σ2

l (Cl) ≡ C2
l (1 −

∑T
t=1 Δ̂v

2

t /Tσ̂
2
m) +

∑T
t=1 û2

lt/T
p
−→ σ2

l

andσ̂2
u(Cu) ≡ C2

u(1−
∑T

t=1 Δ̂v
2

t /Tσ̂
2
m) +

∑T
t=1 û2

ut/T
p
−→ σ2

u.

The implementation of the minimum distance estimator in (3.15) is described in Figure2.

[FIGURE2]

We proceed as follows:

1. pick any point (C∗l ,C
∗
u) on the lineCu = σ̂m + Cl;

2. compute the corresponding concentratedβl(C∗l ) andβu(C∗u) as in (3.21);

3. compute the corresponding residualsûlt , ûut, andΔ̂vt as in (3.19), (3.20), and (3.18) respectively;

4. calculate the intercept (σ2
u(C

∗
u) − σ

2
l (C

∗
l ))/σ̂m to obtain the point (C∗l ,C

∗∗
u ) on the lineCu =

[σ2
u(C

∗
u) − σ

2
l (C

∗
l )]/σ̂m + Cl;

5. assess the distance (C∗u −C∗∗u )2;

6. go back to 1. Repeat until the distance function (3.15) is minimized by the minimizer (̃Cl , C̃u).

Given the optimal solution (̃Cl , C̃u), the estimators of the parametersβ of the original model are
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readily available as well as the variance-covariance matrix of the errorsεlt andεut, i.e.

β̃l = βl(C̃l) = (Z′Z)−1Z′(Yl − C̃lΛ̂), β̃u = βu(C̃u) = (Z′Z)−1Z′(Yu − C̃uΛ̂)

σ̃2
l = σ

2
l (C̃l), σ̃2

u = σ
2
u(C̃u), ρ̃ =

σ̂2
m−σ̃

2
l −σ̃

2
u

−2σ̃l σ̃u
.

(3.22)

Theorem 3. (Consistency of Modified Two-step Estimator) The modified two-step estimator(C̃l , C̃u)

and those defined in(3.22) converge in probability to the true values of the parameters.

In order to prove Theorem3, which states the consistency of estimatesC̃l andC̃u in (3.15),

we only need to verify the assumptions stated in Theorem 7.3.2 in Mittelhammeret. al. (2000)

that guarantee the consistency of extremum estimators.3 Proposition1 shows that the restricted

objective function in (3.15) converges in probability to that provided in (3.14). In addition, since

the system of equations (3.14) has a unique solution and the restricted objective function (3.15) is

a continuous and convex function inCl andCu, it is uniquely minimized at the true values ofCl

andCu.

4 Simulation

We perform Monte Carlo simulations to assess the finite sample performance of the two proposed

estimation strategies: the two-step and modified two-step estimators; and compare these estimators

with a naive OLS estimator that does not take into account the observability restriction.

The data generating process (DGP) is specified as an IAR(1)


yl,t

yu,t



=




βlc

βuc



+




β11 β12

β21 β22







yl,t−1

yu,t−1



+




εl,t

εu,t



, such that yu,t ≥ yl,t (4.1)

and with an error term that is bivariate normally distributedεt ≡ (εl,t, εu,t)′ ∼ N(0,Σ).

The interval time series
{[

yl,t, yu,t
]}T

t=1 is generated sequentially to guarantee that the bounds are

not crossing each other i.e.yl,t > yu,t. We proceed as follows. Given the interval datum
[
yl,t−1, yu,t−1

]

at time t − 1, we draw error termsεt =
[
εl,t, εu,t

]
from the bivariate normal density and calculate

3See Newey and MacFadden (1994, pp. 2133-34) for the proof. The four assumptions are (a)m(θ,Y,X) converges
uniformly in probability to a function ofθ, saym0(θ); (b) m0(θ) is continuous inθ; (c) m0(θ) is uniquely maximized at
the true valueθ0; and (d) the parameter spaceΩ is compact.
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[
yl,t, yu,t

]
for time t. If a cross-over happens (i.e.yl,t > yu,t), we draw another pair of error terms

until the observability restrictionyl,t ≤ yu,t is met. In doing so, we guarantee that the errorsεt

are truncated bivariate normally distributed, and that the truncation varies across time because it

depends on the past interval-valued data
[
yt−1

]
as well as on the assumed parametersβ’s in the

IAR(1) DGP.

We have designed eight different specifications as follows:

Binding Cases Non-bindingCases
Parameters B-1 B-2 B-3 B-4 NB-1 NB-2 NB-3 NB-4
βlc 0 0 0 0 −2 −2 −2 −2
βuc 0 0 0 0 2 2 2 2
β11 0.8 0.8 0.1 0.1 0.8 0.8 0.1 0.1
β12 0.1 0.1 0.05 0.05 0.1 0.1 0.05 0.05
β21 0.1 0.1 0.05 0.05 0.1 0.1 0.05 0.05
β22 0.8 0.8 0.1 0.1 0.8 0.8 0.1 0.1
Cl −1/

√
2 −1.4564 −1/

√
2 −1.4564 −1/

√
2 −1.4564 −1/

√
2 −1.4564

Cu 1/
√

2 −0.3479 1/
√

2 −0.3479 1/
√

2 −0.3479 1/
√

2 −0.3479
σ2

l 1 3 1 3 1 3 1 3
σ2

u 1 1 1 1 1 1 1 1
ρ 0 0.8 0 0.8 0 0.8 0 0.8

Sample Size 250,2000 250, 2000 250, 2000 250,2000 250, 2000 250, 2000 250,2000 250, 2000
Number of Simulation= 1000

We have simulated a block of four DGPs where the observability restriction is binding and

another block of four DGPs where it is not. Since the observability restriction for the IAR(1)

implies thatΔεt/σm ≥ Δ(yt−1, θ
∗). The right hand side of the inequality will determine whether

the observability restriction is binding or not. We guarantee that the observability restriction is

not binding whenΔ (yt−1, θ
∗) = Δβ∗c + Δβ∗1yl,t−1 + Δβ∗2yu,t−1 � 0. Otherwise, the restriction could

be mildly or severely binding depending upon the choices of the parameters of the DGP. In our

simulations, we fix the parameters inΔβ∗1 andΔβ∗2 and play with the interceptΔβ∗c to allow the

restriction to be binding or not. For the four cases, B-1 to B-4,βlc−βuc = 0, so that the observability

restriction becomes binding; and for the four cases, NB-1 to NB-4,βlc − βuc = −4, so that the

restriction is not severely binding. Within each block, we simulate two IAR(1) DGPs, one with

high persistence and another with low persistence; and for each one we assume two different
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variance-covariance matrixΣ for the errors, one with uncorrelated errors and another with highly

correlated errors. For each DGP, we also run small and large sample experiments (T = 250 and

2000) with 1000 replications per DGP. Due to space constraints, we report here our results for only

four cases, B-2 and B-4 in Table1 and NB-2 and NB-4 in Table2; the results for the remaining

cases are in the web appendix. These are our findings for all eight cases:

[TABLES 1-2]

1. When the observability restriction is binding (Cases B-1 to B-4), the mean values of the OLS

estimates are quite far from the true values, as we expected. OLS estimators are not consistent due

to the correlation of the regressors with the errors. When the restriction is not severely binding

(Cases NB-1 to NB-4), the mean values of the OLS estimates are very close to the true values. In

this case,λt−1 is very close to zero, so that the endogeneity problem does not arise.

2. When we implement the two-step estimation, the main issue that we face is identification of

the model whether or not the restriction is binding. If the restriction is binding butλt−1 is almost

linear in the regressors of the model, multicollinearity arises (Cases B-3 and B-4). The problem is

more severe when there is low persistence in the model and the errors are correlated (Case B-4).

Only whenλt−1 exhibits substantial variation (Cases B-1 and B-2), we do not face a problem with

the identification of the model and the mean values of the two-step estimates are very close to the

true values. If the restriction is not binding, we expect severe multicollinearity. In Cases NB-1 to

NB-4, the RMSE’s of̂Cl andĈu explode regardless of the persistence of the model and the sample

size. When there is low persistence in the model (Cases NB-3 and NB-4), the RMSE’s ofβ̂l,c and

β̂u,c also explode because the nearly-zero regressorλt−1 is highly collinear with the constant terms.

3. Modified two-step estimation resolves very nicely the identification problem whether the ob-

servability restriction is binding or not. If it is binding (Cases B-1 to B-4), the estimators are

consistent whether there is low or high persistence and whether the errors are or not correlated.

The modified two-step estimates are very close to the true values and their standard errors are

smaller than those of the two-step estimates, even in those cases where the model is well-identified
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(Cases B-1 and B-2). If the restriction is not binding (Cases NB-1 to NB-4) and thus redundant,

the OLS estimator is consistent and efficient but the modified two-step estimator does not seem to

be less efficient as the RMSE’s of the modified two-step estimates are very close to those of the

OLS estimates.

In practice, we do not knowa priori whether the restriction is binding. In the first step, we

assess the severity of the restriction by testing whetherλt = 0. In the second step, we gather

further information about the value of the restriction because when it is binding, the OLS estimates

should be substantially different from the two-step estimates. In addition, the regressorλ̂t−1 should

be statistically significant. Since multicollinearity affects the significance of̂λt−1, we strongly

recommend running the modified two-step estimator and assessing the differences with the OLS

estimator.

5 Comparison with Existing Approaches

We compare our two-step (TS) and modified two-step (MTS) estimators with those proposed in

the current literature. We implement the approach of Lima Neto and De Carvalho (2008, 2010),

henceforth LNC, and we also estimate a location-scale model from which we construct interval

estimates.

For an interval-valued time series{Yt} = {[Ylt ,Yut]}, we obtain the time series of the centers, i.e.,

yct = (ylt + yut)/2, and of the radius, i.e.,yrt = (yut − ylt)/2. LNC estimate the following system

yct = βc
0 + β

c
1yc,t−1 + ∙ ∙ ∙ + β

c
pyc,t−p + ε

c
t (5.1)

yrt = βr
0 + β

r
1yr,t−1 + ∙ ∙ ∙ + β

r
pyr,t−p + ε

r
t . (5.2)

Their center/range method (CRM) estimates each equation by least squares and their constrained

center/range method (CCRM) imposes the restrictionβr
j ≥ 0, j = 0, . . . , p on the equation of the

radius to ensure that ˆyrt ≥ 0 and, therefore, ˆylt ≤ ŷut. Then, the equation of the center is estimated

by least squares and the constrained equation of the radius by adapting Lawson and Hanson’s
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algorithm.

Before we proceed with the comparison among methodologies, it is very important to underline

the implications of the LNC system of center/radius equations for the system of lower/upper bound

equations. It is easy to transform the center/radius vector to the lower/upper bound vector by

defining the 2×2 matrixM = [1/2 1/2 ; −1/2 1/2] such that [yct yrt ]′ = M[ylt yut]′. Hence,

the system (5.1) and (5.2) is transformed into a system of lower/upper bounds equations as follows,


ylt

yut




=




βc
0 − β

r
0

βc
0 + β

r
0



+

p∑

l=1




(βc
l + β

r
l )/2 (βc

l − β
r
l )/2

(βc
l − β

r
l )/2 (βc

l + β
r
l )/2







ylt−1

yut−1



+




εct − ε
r
t

εct + ε
r
t



, (5.3)

which is extremely restrictive because, for each of thep coefficient matrices, the diagonal elements

must be identical, equal to (βc
l + β

r
l )/2, as well as the off-diagonal elements, equal to (βc

l − β
r
l )/2. In

the unlikely case that these restrictions hold, LNC and our approach will deliver the same results.

The second set of comparisons is with a location-scale model4 applied to the time series of

centers. We estimate a GARCH(1,1) model, i.e.,yct = μc+σtζt with σ2
t = ω+αε

2
t−1+βσ

2
t−1, where

the i.i.d. standardized errorζt follows a standard normal (GARCH-N) or Student-t (GARCH-T)

density withν degrees of freedom. Based on this model, we construct (1−α)-probability intervals,

which will depend on the density assumptions onζt, i.e.,
[
ŷlt , ŷut

]
α =

[
ȳct − zα

2
σ̂t, ȳct + zα

2
σ̂t

]
, and

[
ŷlt , ŷut

]
α =

[
ȳct − tν̂, α2 σ̂t

√
ν̂/(ν̂ − 2), ȳct + tν̂, α2 σ̂t

√
ν̂/(ν̂ − 2)

]
. Since the original data

[
ylt , yut

]
are the

observed extreme values of the process at timet, we will stretch the estimated interval
[
ŷlt , ŷut

]
α

to cover as much as 99% or 99.5% probability, so that ˆylt andŷut are far away into the tails of the

distribution.

We simulate data from four DGPs, which are characterized by whether the observability restric-

tion is binding or not, whether there is high or low persistence in the dynamics of the conditional

mean, and whether the errors of the model are drawn from a bivariate normal density or from a

bivariate Student-t density with five degrees of freedom. The four DGPs are:

4We are grateful to a referee who suggested the 5-parameter location-scale model as a classical benchmark
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β0l β0u β11 β12 β21 β22 σ2
l σ2

u ρ Notes∗

DGP1 0 0 -0.8 0.1 -0.1 0.8 3 1-0.8 B,H,N,T5
DGP2 0 0 -0.1 0.05 -0.05 0.1 3 1-0.8 B,L,N,T5
DGP3 -2 2 -0.8 0.1 -0.1 0.8 3 1-0.8 NB,H,N,T5
DGP4 -2 2 -0.1 0.05 -0.05 0.1 3 1-0.8 NB,L,N,T5
∗ B: binding observability restriction; NB: non-binding;

H: high persistence; L: low persistence; N: normal errors; T5: Student-t errors

5.1 In-Sample Evaluation Criteria : Loss Functions

For every DGP, we generate 1000 samples and evaluate the performance of each estimation method

according to: (i) Root Mean Squared Error (RMSE) for upper and lower bounds, (ii) Coverage

(CR) and Efficiency Rates (ER) of the estimated intervals (Rodrigues and Salish, 2011), (iii) Mul-

tivariate Loss Functions (MLF) for the vector of lower and upper bounds (Komunjer and Owyang,

2011), and (iv) Mean Distance Error (MDE) between the fitted and actual intervals (Arroyoet al.,

2010).

For a sample of sizeT, let us callŷt = [ŷlt , ŷut] the fitted values of the corresponding interval

yt = [ylt , yut] obtained by each methodology. These are the definitions of the four criteria:

(i) RMSE: RMS El =

√∑T
t=1(ŷlt − ylt)2/T andRMS Eu =

√∑T
t=1(ŷut − yut)2/T;

(ii) CR and ER:CR= 1
T

∑T
t=1 w(yt ∩ ŷt)/w(yt), ER= 1

T

∑T
t=1 w(yt ∩ ŷt)/w(ŷt), whereyt ∩ ŷt is the

intersection of actual and fitted intervals, andw(∙) is the width of the interval. The coverage rate

(CR) is the average proportion of the actual interval covered by the fitted interval, and the efficiency

rate (ER) is the average proportion of the fitted interval covered by the actual interval. Both rates

are between zero and one and a large rate means a better fit. Given an actual interval, a wide fitted

interval implies a large coverage rate but a low efficiency rate, on the contrary, a tight fitted interval

implies a low coverage rate but a high efficiency rate. Therefore, we take into account the potential

trade-off between the two rates by calculating an average of the two, i.e., (CR+ ER)/2.

(iii) MLF: We implement the following multivariate loss functionLp(τ, e) ≡
(
‖ e ‖p +τ′e

)
‖

e ‖p−1
p where‖ ∙ ‖p is thel p-norm,τ is two-dimensional parameter vector bounded by the unit ball

Bq in R2 with lq-norm (wherep andq satisfy 1/p+1/q = 1), ande= (el ,eu) is the bivariate residual
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interval (ŷlt − ylt , ŷut − yut). We consider two norms,p = 1 andp = 2 and their correspondingτ

parameter vectors within the unit ballsB∞ andB2 respectively,MLF1 =
∫
τ∈B∞

(|el | + |eu| + τ1el +

τ2eu)dτ, MLF2 =
∫
τ∈B2

[
e2

l + e2
u + (τ1el + τ2eu)(e2

l + e2
u)

1/2
]
dτ.

(iv) MDE: Let Dq(ŷt, yt) be a distance measure of orderq between the fitted and the actual inter-

vals, the mean distance error is defined asMDEq({ŷt}, {yt}) = [
∑T

t=1 Dq(ŷt, yt)/T]1/q. We consider

q = 1 andq = 2, with a distance measure such asD(ŷt, yt) = 1√
2
[(ŷlt − ylt)2 + (ŷut − yut)2]1/2.

In Tables3 and4, we report the values of the four aforementioned evaluation criteria for DGP1

and DGP3 respectively. Results for DGP2 and DGP4 are available in the web appendix.

[TABLES 3-4]

The numbers in boldface correspond to the minimum losses when we consider the functions

RMSE, MLF, and MDE, and to the maximum rates when we consider the weighted CR/ER rates.

In each table, we provide two scenarios: in the upper panel, the DGP is simulated with multivariate

normal errors so that our methods TS and MTS perform under the correct distributional assump-

tion, and in the lower panel, the DGP is simulated with multivariate Student-t errors to assess the

performance of TS and MTS under density misspecification. These are our findings for the four

DGPs considered:

1. Across the four DGPs, TS and MTS exhibit superior performance over the other methods.

2. Across methods, TS and MTS are superior to CCRM and CRM, and these are far better than

the GARCH models. The classical methodology embedded in normal or fat-tail location-scale

models is by far the worst performer across all evaluation functions and it is very inefficient on

delivering an acceptable fitted interval as the efficiency rates (ER) shows.

3. With misspecified Student-t errors, the losses across all methods are larger than those under

correct error specification, which is expected, nevertheless TS and MTS provide the smallest loss.

4. Across DGPs, DGP1 and DGP3, which have high persistence in the conditional mean, have

the smallest losses, and in particular, TS and MTS deliver unmatched performance even in the

cases of misspecified distributional assumptions.
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5. DGP2 and DGP4 have low persistence in the conditional mean. In these two specifications,

the coefficients are all very close to zero, thus, in these cases the constraints imposed by CCRM

and CRM are not so restrictive and, as a consequence, the performance of CCRM and CRM is

close to that of TS and MTS, but the performance of the location-scale models is still far behind

the other methods.

6. Only for DGP4 with low persistence in mean and non-binding observability restriction, the

performance of all methods is roughly equivalent, which is expected as all constraints are relaxed.

In summary, when the researcher faces an interval-valued data set, a priori, she does not know

the persistence of the data and whether the observability restriction is or is not binding, thus, it is

advisable to start the estimation of the model by implementing TS or/and MTS. If there is high

persistence in the conditional mean, even if the observability restriction is non-binding, it pays off

to implement TS and MTS as the losses are substantially smaller than those from the competing

methodologies. In addition, the implementation of a location-scale model also entails the choice

of distributional assumptions, which is subject to misspecification issues.

5.2 In-Sample Evaluation Criteria: Mean Estimates, Bias, and MSE

We compare the mean estimates of the parameters in the conditional mean delivered by TS and

MTS with those provided by CCRM and CRM. As before, we consider four DGPs with correctly

specified multivariate normal errors and with Student-t errors to assess the effect of density mis-

specification.

For DGP1 and DGP3, we present the simulation results in Table5 for the case of multivariate

normal errors and in Table6 for multivariate Student-t errors (5 degrees of freedom). Similar

tables for DGP2 and DGP4 can be found in the web appendix. The numbers in boldface are the

best estimates, the lowest bias and the lowest mean-square error.

[TABLES 5-6]

For normal errors, when the restriction is binding and there is high persistence (DGP1), CCRM
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and CRM perform very badly. The mean estimates have a large bias and frequently the wrong sign.

On the contrary, TS and MTS deliver unbiased estimates with the lowest mean-square error. When

the process has low persistence (DGP2), the best estimation method is MTS, which delivers unbi-

ased estimates. TS suffers from the multicollinearity problem explained above and thus it is not

recommended if our interest is understanding the dynamics of the conditional mean. CCRM and

CRM estimates are not recommended either because of their large bias. In DGP3 and DGP4, the

observability restriction is non-binding but the results are very similar. When the process has high

persistence (DGP3), either TS or MTS deliver unbiased estimates with the lowest mean-square

error, and CCRM and CRM generate highly biased estimates. When the process has low persis-

tence (DGP4), MTS is the best performer because it takes care of the multicollinearity problem

and delivers unbiased estimates.

For Student-t errors, when the observability restriction is binding and there is high persistence

(DGP1), the best performer is TS followed by MTS as they provide estimates with the lowest

biases and capture the right dynamics. On the other hand, CCRM and CRM do not capture the

persistence in the conditional mean and their estimates are highly biased. A common problem to

these four methods is that the estimates of the constants are very biased. However, in TS and MTS,

these biases are somehow compensated by the estimates of the coefficients corresponding to the

regressorλt−1 so that the overall estimation generates good fitted intervals with substantially lower

losses than those generated by CCRM and CRM as we have seen in Table3 (lower panel). Thus,

the misspecification of the multivariate density does not seem to affect greatly the performance of

TS and MTS. When the process has low persistence (DGP2), no method seems to deliver overall

unbiased estimates, and the problem of the estimation of the constant is severe. Note that the design

of low persistence with binding observability restriction (DGP2) represents the worst scenario

because, by construction, the intervals are very tight; the specification of the conditional means

deliver very small values around zero, so that the regressorλt−1 carries all the weight to estimate

fitted intervals with the right order. Yet TS delivers the smallest losses. In DGP3 and DGP4, the
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observability restriction is non-binding. When the process has high persistence (DGP3), TS and

MTS are superior performers, they deliver unbiased estimates with the lowest mean-square error.

CCRM and CRM produce highly biased estimates. When the process has low persistence (DGP4),

MTS is the best performer overall.

In summary, evaluating the estimation performance of the four methods, we reach similar con-

clusions as those when we evaluate their goodness of fit. Even under misspecification of the mul-

tivariate density of the errors, if there is high persistence in the conditional mean, whether the

observability restriction is binding or not, TS and MTS are superior estimation techniques. If the

persistence is low and the observability restriction is non-binding, we recommend MTS, even with

a misspecified density. Only when the persistence is low and the observability restriction is bind-

ing, the misspecification of the density may play a role on estimating the right dynamics but yet TS

and MTS are not dominated by the competing methods and they offer the advantage of preserving

the natural order of an interval.

6 Empirical Illustration: SP500 Low /High Return Interval

We highlight the most important aspects of our methodology with the interval time series of

the daily low/high returns to the SP500 index. The returns are computed with respect to the

closing price of the previous day, that is,rht = (Phigh,t − Pclose,t−1)/Pclose,t−1 and rlt = (Plow,t −

Pclose,t−1)/Pclose,t−1, wherePhigh,t andPlow,t are the highest and lowest price in the trading dayt, and

Pclose,t−1 is the closing price in the previous dayt − 1. Our sample runs from January 1st, 2004 to

April 29th, 2011. We have split the sample into two periods that have very different dynamics so

that we can showcase the role of the observability condition in the modeling exercise. The first

period goes from January 1st, 2004 to January 1st, 2007; we call it the ’stable period’ because

is characterized by very low volatility. In contrast, the second period that goes from January 1st,

2007 to April 29th, 2011 is the ’unstable period’ because of the high volatility associated with

the great panic of the 2008 financial crisis. For both periods, we plot the time series of low/high
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returns interval in Figure3aand Figure3b.

[FIGURE3a] [FIGURE 3b]

In the stable period, both low and high returns exhibit low volatilities (σ2
l = 0.1726 andσ2

u =

0.1609), varying within a range of [−2%,2%], whereas in the unstable period, the two time series

vary within a wider range of [−5%,5%], and exceptionally, in the last months of 2008, moving

within a range of−10% and 10%, thus producing a much higher volatile environment (σ2
l = 1.6539

andσ2
u = 1.3347). The unstable period is dominated by a tremendous volatility shock, which is not

present in the stable period. The correlation of low and high returns is 0.5797 in the stable period,

which is larger than the correlation of 0.2982 in the unstable period.

Due to space constraints, we offer here a summary of the estimation results and we report spe-

cific details in several tables posted in the web appendix. We run an unrestricted IAR(p) system

and select the optimal lags by minimizing the BIC. In the stable period, the optimal number of lags

is 2, and in the unstable period is 5. We implement the first-step of the estimation by modeling

the range of the interval time seriesΔrt = rut − rlt as in (3.7). By maximizing the log-likelihood

function based on a truncated normal density (3.8), we obtain the estimateŝθ∗ for the stable and un-

stable periods. We observe that the correlation between the range and lagged lower-bound returns

is negative, while the correlation between the range and lagged upper-bound returns is positive;

however the magnitude of the effect of the lower-bound returns is dominant, which implies that,

on average, the range will narrow when there is an upward movement in both bounds.

Based on the estimateŝθ∗, we produce an estimate of the inverse of Mill’s ratioλt−1, which

characterizes the severity of the observability restriction. We plot the estimated time seriesλ̂t in

Figures4aand Figure4b together with a 95% confidence interval.

[FIGURE4a] [FIGURE 4b]

In the stable period, the values ofλ̂t are very small, between 0 and 0.070; the mean is 0.027

and the standard deviation 0.014. This indicates thatλt is practically zero, thus the observability

restriction is not binding. In contrast, in the unstable period,λ̂t oscillate between 0 and 0.684
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with mean 0.213 and standard deviation 0.181; these values imply that the relevant portion of the

function λ̂t is not entirely linear in the regressors. In the unstable period, there are a few regions

wherêλt is very close to zero; this happens mainly in the highly volatile period of the end of 2008,

when the range of the interval is very large, so that the observability restriction is less binding than

in the rest of the sample.

With the estimated̂λt−1, we implement the second step of the estimation. We calculate the

second-step estimator by running the feasible regressions (3.10), and the modified second-step

minimum distance estimator by solving the problem in (3.15). We also implement a stationary

block bootstrap procedure (details reported in the web appendix) to obtain the standard errors of

the modified second-step estimator because the analytical expression of the standard errors will

be difficult to obtain as we carry three sources of uncertainty, i.e.Λ̂ andσ̂m in the first step, the

estimates (̃Cl , C̃u) in the modified second step, and the idiosyncratic uncertainty of the errors in

the IAR system. Bootstrap is a common practice to overcome the difficulties of the estimation of

asymptotic variances in various contexts, see Efron (1979), Buchinsky (1995), Ledoit, Santa-Clara,

and Wolf (2003), and Goncalves and White (2005), among others. The optimal block size for the

stable period is around 2 and for the unstable period 53. This large difference in the block size can

be interpreted as the existence of larger persistence in the IAR system of the unstable period than

in the stable period.

For the stable period, the estimatedλ̂t in the first step already suggest that the observability

restriction is not binding, thus OLS should suffice. However, in the estimation tables we also

report the estimates from the two-step and modified two-step estimation procedures to underline

the presence of multicollinearity caused byλ̂t being almost zero. We note that the OLS estimates

and the modified minimum-distance estimates are almost identical, and that there is not loss of

efficiency by implementing the modified estimator. This is what we expect when the restriction is

not binding. Furthermore, the two-step estimator is less reliable, the estimates are different from

the OLS estimates, even changing signs, and their standard errors are large as a consequence of
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the induced multicollinearity. For the unstable period, we know thatλ̂t is large and different from

zero, thus the observability restriction is binding in a substantial part of the sample. As expected,

the modified two-step estimates are different from the OLS estimates, more so in the regression

for the lower bound. We note that the estimates associated withλ̂t, though with the right signs, are

barely significant in the the two-step estimation because of some mild multicollinearity, which is

corrected in the modified two-step estimation.

The severity of observability restriction is better illustrated in Figures5aand5b.

[FIGURE5a] [FIGURE 5b]

The ellipses are contours of the bivariate normal probability density of the errors with different

confidence levels (from 50% to 99%). The contours are drawn according to the estimates pro-

duced by the modified two-step estimation procedure. The 45-degree lines indicate the role of the

observability restrictions for each timet (see Figure 1), so that the area of the density below the

line is truncated. Observe that in the stable period, Figure5a, the contours are smaller than those

in the unstable period, Figure5b, because of smaller variances. In the stable period, the lines cor-

responding to the observability restriction are clustered outside the 99% contour level, so that the

truncation is minimal; however for the unstable period, the truncation of the bivariate density is

large, mainly in the direction of the south-east quadrant, indicating the severity of the observability

restriction.

Finally, we compare the performance of the different estimation techniques by considering the

same loss functions as in Section 5, i.e. RMSE, CR & ER, MLF, and MDE, which is reported in

Table7.

[TABLE 7]

The upper panel shows the results for the unstable period (2007-2011) when the observability

restriction is binding, and the lower panel for the stable period (2004-2007) when the observability

restriction is non-binding. Overall and across panels, the estimation of a location-scale model,

either with normal or Student-t errors, is not satisfactory, as the RMSE, MLF, and MDE losses are
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the largest among all methods. The location-scale model seems to provide slightly better CR & ER

rates. In the unstable period, when the observability restriction is binding, TS and MTS provide the

smaller losses; and in the stable period, when the observability restriction is non-binding, the losses

of TS and MTS are equivalent to those of CCRM and CRM, as the restrictions become lax. The

overall performance in both periods is consistent with that described for the simulated DGP2 and

DGP4 in Section 5; these two DGPs contemplate low persistence in the conditional mean, which

is what we found in the estimation of the low/high returns for the stable and unstable periods.

7 Conclusion

The analysis of interval-valued data has mainly focused on fitting classical regression models to the

lower and upper bounds of the intervals but the natural order of the bounds has not been taken into

account in the estimation of the regression. As a result, it is possible that for some observations the

fitted lower bound could be larger than the fitted upper bound. In our analysis, we have constrained

the regression such that a reversal of the bounds will never happen. The constraint is probabilistic in

nature as the errors of the model come from a truncated bivariate probability density to guarantee

the natural order of the interval. The truncation has several consequences for the estimation of

the model. Even when the regression model is linear, an ML estimator will be non-linear and

difficult to compute. If we were to apply OLS, the estimator would not be consistent because the

truncation makes the error correlated with the regressors. To solve both predicaments, we have

proposed a two-step estimation procedure, easy to implement, that delivers consistent estimators.

It consists of a maximum likelihood estimator in the first step and either least-squares or minimum

distance estimation in the second. The minimum distance estimator is a neat solution when there

is substantial multicollinearity because identifies all parameters regardless of how large or small

the truncation is.

We have shown that our estimators are superior over the existent approaches by examining sev-

eral goodness-of-fit measures and concluded that, even when the observability restriction is non-
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binding, it pays off to implement our estimators because their losses are smaller than those from

competing methods. We have also examined the bias and mean-squared error of our estimators

with those of other methods and our conclusions remain unchanged. Even under misspecification

of the multivariate density of the errors, when there are relevant dynamics in the conditional mean

of the model, our estimators are superior. We have highlighted several empirical aspects of our

methodology with the time series of the daily interval of low/high returns to the SP500 index and

showed two instances, minimal and severe truncation, to underscore the value of implementing the

proposed two-step estimator.

WEB APPENDIX

A1. (Section 3. Estimation)

Proof of the conditional expectation of the errors (section 3.2 of the article)

The observability restrictionyut ≥ ylt is equivalent toεut − εlt ≥ Δ(yt−1,Δβ), which linearly

truncates the bivariate distribution of the errors. Now, we show the conditional mean, variance and

covariance of the errors under the linear truncation. For the detailed proofs, please refer to Nath

(1972). To easy the notation, we temporarily useΔ to denoteΔ(yt−1,Δβ), and drop all the time

subscriptst in the following expressions. Under Assumption 4 (normality of errors), we have,

m10 = E(εl |εu − εl ≥ Δ) =
ρσlσu − σ2

l

σm

φ(Δ/σm)
1− Φ(Δ/σm)

(A.1)

m01 = E(εu|εu − εl ≥ Δ) =
σ2

u − ρσlσu

σm

φ(Δ/σm)
1− Φ(Δ/σm)

(A.2)

m20 = E(ε2l |εu − εl ≥ Δ) = σ2
l +
σ2

l (ρσu − σl)2

σ2
m

Δ

σm

φ(Δ/σm)
1− Φ(Δ/σm)

(A.3)

m02 = E(ε2u|εu − εl ≥ Δ) = σ2
u +
σ2

u(σu − ρσl)2

σ2
m

Δ

σm

φ(Δ/σm)
1− Φ(Δ/σm)

(A.4)

m11 = E(εlεu|εu − εl ≥ Δ) = ρσlσu +
σlσu(ρσu − σl)(σu − ρσl)

σ2
m

Δ

σm

φ(Δ/σm)
1− Φ(Δ/σm)

(A.5)

Note that the conditional meansm10 andm01 in (A.1) andA.2 correspond toEt−1(εlt |yut ≥ ylt) and

Et−1(εut|yut ≥ ylt) respectively; and the conditional variances and covariance (A.3) – (A.5) are used

to estimate unconditional variances and correlation coefficientσ2
u, σ

2
l andρ consistently in the

two-step estimation procedure.
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Proofs of Theorem 2, and estimation of unconditional variances and correlation coefficient

(section 3.4 of the article)

(a) Consistency

We only consider the regression of lower boundsylt , the same reasoning applies to the estimators

for the upper bound. From the two-step estimatorγ̂l,

γ̂l =

[
β̂l Ĉl

]′
=

(
Ĥ′Ĥ

)−1
Ĥ′yl

= (Ĥ′Ĥ)−1Ĥ′(Ĥγl + ul)

= γl + (Ĥ′Ĥ)−1Ĥ′ul

in whichul ≡ Cl(Λ − Λ̂) + vl. Note that,

plim
T→∞

(Ĥ′Ĥ)−1Ĥ′ul = plim
T→∞



Ĥ′Ĥ

T




−1

plim
T→∞

Ĥ′ul

T

Call D ≡ Ĥ − H = ι′ ⊗ (Λ̂ − Λ), defining the row vectorι′ ≡ (0, ∙ ∙ ∙ ,0,1) taking the value of 1 for

the last element and 0 otherwise. Note that,

Λ − Λ̂ = −J(Δβ
∗
)(Δ̂β

∗
− Δβ∗0)

D = ι′ ⊗ J(Δβ
∗
)(Δ̂β

∗
− Δβ∗0)

ul = Cl

(
Λ − Λ̂

)
+ vl

= −ClJ(Δβ
∗
)(Δ̂β

∗
− Δβ∗0) + vl .

Given assumptions (i) and (ii),
1
T

H′H = Op (1)

1
T

H′J(Δβ
∗
) = Op(1)

1
T

J′(Δβ
∗
)J(Δβ

∗
) = Op(1)

and by constructionvl is a martingale difference sequence with respect to information set=t−1, and

conditioning in the observability restrictionylt ≤ yut,

E(vlt |=t−1) = E{εlt − E[εlt |Δεt ≥ σmΔ(yt−1,Δβ∗)]|=t−1}

= E(εlt |=t−1) −Clλt−1 = 0

and thus we haveE(ht−1vlt |=t−1) = 0 for all t. Given assumptions (iii) and (iv), and by the central
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limit theorem for martingale difference sequence, we have
1
√

T
J′(Δβ

∗
)vl = Op(1)

1
√

T
H′vl

d
−→ N(0,Ψl).

Then, we prove that
Ĥ′Ĥ

T
= Op(1),

Ĥ′uL

T
= Op(T

−1/2).

That is,
1
T

Ĥ′Ĥ =
1
T

(H′ + D′)(H + D)

=
1
T

H′H

+
1
T
ι′ ⊗ H′J(Δβ

∗
)(Δ̂β

∗
− Δβ∗0) +

(
1
T
ι′ ⊗ H′J(Δβ

∗
)(Δ̂β

∗
− Δβ∗0)

)′

+ιι′ ⊗ (Δ̂β
∗
− Δβ∗0)

′J
′(Δβ

∗
)J(Δβ

∗
)

T
(Δ̂β

∗
− Δβ∗0)

= Op(1)+ Op(T
−1/2) + Op(T

−1)

p
−→

1
T

H′H, (A.6)

and
Ĥ′ul

T
=

1
T

(H′ + D′)[Cl(Λ − Λ̂) + vl]

=
1
T

H′vL −Cl
H′J(Δβ

∗
)

T
(Δ̂β

∗
− Δβ∗0)

−Clι ⊗ (Δ̂β
∗
− Δβ∗0)

′J
′(Δβ

∗
)J(Δβ

∗
)

T
(Δ̂β

∗
− Δβ∗0)

+ι ⊗ (Δ̂β
∗
− Δβ∗0)

J′(Δβ
∗
)vl

T

= Op(T
−1/2) + Op(T

−1/2) + Op(T
−1) + Op(T

−1)

= Op(T
−1/2)

p
−→

1
T

H′vl −Cl
H′J(Δβ

∗
)

T
(Δ̂β

∗
− Δβ∗0) (A.7)
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Hence,

γ̂l − γl = Op(1)Op(T
−1/2)

= Op(T
−1/2)

Therefore, the two-step estimatorγ̂L is consistent, i.e., plimT→∞ γ̂l = γl

(b) Asymptotic Normality

Now we consider the asymptotic distribution of the two-step estimator,
√

T (̂γl − γl) =



Ĥ′Ĥ

T




−1
Ĥ′ul
√

T
From equation (A.6) and (A.7), we have,
√

T (̂γl − γl)
p
−→

(
H′H

T

)−1 


1
√

T
H′vl −Cl

H′J(Δβ
∗
)

T

√
T(Δ̂β

∗
− Δβ∗0)




d
−→ N(0,BΞlB′)

where

B = plim
T→∞

(
H′H

T

)−1

and

var




1
√

T
H′vl + Cl

H′(Λ − Λ̂)
√

T




=
1
T

E(H′vlv′l H) + C2
l E



H′J(β

∗
)

T
Ŝ

J′(β
∗
)H

T


 + E



H′vl(Λ − Λ̂)′HCl

T




+E



H′(Λ − Λ̂)v′l HCl

T




=
1
T

T∑

t=1

E(ht−1h′t−1v
2
lt) + C2

l Q
′
ŜQ+ M lT + M ′

lT

p
−→ Ψl + C2

l Q′0S0Q0 + M l0 + M ′
l0

≡ Ξl

where the second equality holds becauseht−1vLt is a martingale difference sequence.

(c) Estimation of Unconditional Variances and Correlation Coefficient (σ2
l , σ

2
u, ρ)

In the two-step estimation procedure,Δβ andσm are consistently estimated in the first step.

The first and second moments ofεu andεl, conditioning on the observability restriction, can be

written asm̃10, m̃01, m̃20, m̃02, m̃11, by plugging the estimateŝΔ ≡ Δ(yt−1, Δ̂β) andσ̂m into (A.1) –

(A.5). Therefore, the parameters (σ2
l , σ

2
u, ρ) can be estimated by the simple method of moments as
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follows
1
T

T∑

t=1

û2
lt =

1
T

T∑

t=1

{m̃20(t) − [m̃10(t)]
2}

1
T

T∑

t=1

û2
ut =

1
T

T∑

t=1

{m̃02(t) − [m̃01(t)]
2}

1
T

T∑

t=1

ûlt ûut =
1
T

T∑

t=1

{m̃11(t) − [m̃10(t)m̃01(t)]}

wherêult andûut are the residuals of the second step regression,

ûlt = ylt − β̂lc −
p∑

j=1

β̂
( j)
11yl,t− j −

p∑

j=1

β̂
( j)
12yu,t− j − Ĉl λ̂t−1

ûut = yut − β̂uc−
p∑

j=1

β̂
( j)
21yl,t− j −

p∑

j=1

β̂
( j)
22yu,t− j − Ĉûλt−1

Proof of Proposition 1 (section 3.6 of the article)

We need to prove (A.8) – (A.12) as follows,
T∑

t=1

Δ̂v
2

t /T
p
−→ E(var(Δvt|y

t−1)), (A.8)

T∑

t=1

û2
lt/T

p
−→ E(var(vlt |y

t−1)), (A.9)

T∑

t=1

û2
ut/T

p
−→ E(var(vut|y

t−1)), (A.10)

σ̂2
l (Cl) ≡ C2

l (1−
T∑

t=1

Δ̂v
2

t /Tσ̂
2
m) +

T∑

t=1

û2
lt/T

p
−→ σ2

l , (A.11)

σ̂2
u(Cu) ≡ C2

u(1−
T∑

t=1

Δ̂v
2

t /Tσ̂
2
m) +

T∑

t=1

û2
ut/T

p
−→ σ2

u. (A.12)

Note that we only need to prove (A.8), (A.9), and (A.11). Others can be proved similarly.
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(a) Proof of (A.8):

1
T

T∑

t=1

Δ̂vt
2
=

1
T

T∑

t=1

(Δyt + zt−1Δ̂β − σ̂m̂λt−1)
2

=
1
T

T∑

t=1

[
Δvt + zt−1(Δ̂β − Δβ) + σ̂m(λt−1 − λ̂t−1) + λt−1(σm− σ̂m)

]2

=
1
T

T∑

t=1

Δv2
t +

1
T

T∑

t=1

zt−1(Δ̂β − Δβ)(Δ̂β − Δβ)
′z′t−1

+
1
T

T∑

t=1

σ̂2
m(λt−1 − λ̂t−1)

2 +
1
T

T∑

t=1

λ2
t−1(σm− σ̂m)2

+
2
T

T∑

t=1

zt−1(Δ̂β − Δβ)Δvt +
2
T

T∑

t=1

σ̂m(λt−1 − λ̂t−1)Δvt

+
2
T

T∑

t=1

λt−1(σm− σ̂m)Δvt +
2
T

T∑

t=1

zt−1(Δ̂β − Δβ)(λt−1 − λ̂t−1)σ̂m

+
2
T

T∑

t=1

zt−1(Δ̂β − Δβ)λt−1(σm− σ̂m) +
2
T

T∑

t=1

σ̂m(λt−1 − λ̂t−1)λt−1(σm − σ̂m)

In the above expression, thefirst term is

1
T

T∑

t=1

Δv2
t

p
−→

1
T

T∑

t=1

var(Δvt|y
t−1)

p
−→ E(var(Δvt|y

t−1)). (A.13)

In (A.13), the first convergence in probability is because of the Law of Large Numbers for mixing

sequence. The second convergence in probability follows because of the ergodic theorem, since

the assumptions on the stationarity and mixing properties of{Yt} imply its ergodicity. Therefore,

we only need to prove that the rest of the terms in the summation converges to zero in probability.

In the rest of the proof, we will be using the following property extensively vec(ABC) = (C′ ⊗

A)vec(B).
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For thesecondterm,

vec




1
T

T∑

t=1

zt−1(Δ̂β − Δβ)(Δ̂β − Δβ)
′z′t−1


 =

1
T

T∑

t=1

(z′t−1 ⊗ zt−1)vec
(
(Δ̂β − Δβ)(Δ̂β − Δβ)′

)

p
−→ 0

since

1
T

T∑

t=1

(zt−1 ⊗ zt−1) = Op(1)

Δ̂β − Δβ
p
−→ 0

because of assumption (i) in Theorem 2 and result (a) in Theorem 1.

For thethird term,

1
T

T∑

t=1

σ̂2
m(λt−1 − λ̂t−1)

2 = σ̂2
m

1
T

T∑

t=1

jt−1(Δ̂β
∗
− Δβ∗)(Δ̂β

∗
− Δβ∗)′ j′t−1

where jt−1 is thet-th row of Jacobian matrixJ(Δβ∗), and therefore,

vec




1
T

T∑

t=1

jt−1(Δ̂β
∗
− Δβ∗)(Δ̂β

∗
− Δβ∗)′ j′t−1




=
1
T

T∑

t=1

jt−1 ⊗ jt−1vec
(
(Δ̂β

∗
− Δβ∗)(Δ̂β

∗
− Δβ∗)′

)

p
−→ 0,

given that

1
T

T∑

t=1

( jt−1 ⊗ jt−1) = Op(1)

Δ̂β∗ − Δβ∗
p
−→ 0

σ̂2
m

p
−→ σ2

m
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because of assumption (ii) in Theorem 2 and result (a) in Theorem 1.

The proofs for the rest terms are omitted here, since similar proof technique applies to the rest of

the summation terms. Their convergence to zero in probability relies on assumptions in Theorem

2 and the results in Theorem 1. Therefore, we prove (A.8),

1
T

T∑

t=1

Δ̂vt
2 p
−→

1
T

T∑

t=1

Δv2
t

p
−→ E(var(Δvt|y

t−1)).

(b) Proof of (A.9).

Let βc
l denoteβl(Cl).

1
T

T∑

t=1

û2
lt =

1
T

T∑

t=1

(ylt − zt−1β
c
l −Cl λ̂t−1)

2

=
1
T

T∑

t=1

[
zt−1(βl − β

c
l ) + Cl(λt−1 − λ̂t−1) + vlt

]2

=
1
T

T∑

t=1

v2
lt +

1
T

T∑

t=1

zt−1(βl − β
c
l )(βl − β

c
l )
′z′t−1 +

1
T

T∑

t=1

C2
l (λt−1 − λ̂t−1)

2

=
1
T

T∑

t=1

zt−1(βl − β
c
l )vlt +

1
T

T∑

t=1

zt−1(βl − β
c
l )(λt−1 − λ̂t−1)Cl +

1
T

T∑

t=1

Cl(λt−1 − λ̂t−1)vlt .

In the above expression, for the first term in the summation, we have

1
T

T∑

t=1

v2
lt

p
−→

1
T

T∑

t=1

var(vlt |y
t−1)

p
−→ E(var(vlt |y

t−1))

because of the Law of Large Numbers for mixing sequences and the ergodic theorem for{Yt}. The

rest of the terms in the summation converges to zero in probability by similar arguments as those

in the proof of (A.8).

(c) Proof of (A.11).

Givenσ2
l , (A.8), (A.9), and the continuous mapping theorem, (A.11) holds.
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A2. (Section 4. Simulation)

Table 1: Simulation Results for Case B-1 and Case B-3

(a) Simulation Results for CaseB-1
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanrmse
βlc = 0 −0.4957 0.5061 −0.0884 0.7240 −0.0241 0.1797 −0.4863 0.4875 −0.0141 0.2282 −0.0056 0.0653
βuc = 0 0.4979 0.5087 0.0938 0.6975 0.0295 0.1804 0.4854 0.4867 0.0226 0.2335 0.0029 0.0643
β11 = 0.8 0.6645 0.1450 0.7632 0.1813 0.7792 0.0684 0.6793 0.1222 0.7950 0.0587 0.7971 0.0240
β12 = 0.1 0.2204 0.1316 0.1215 0.1795 0.1065 0.0662 0.2191 0.1206 0.1036 0.0583 0.1015 0.0237
β21 = 0.1 0.2191 0.1317 0.1208 0.1747 0.1052 0.0700 0.2191 0.1207 0.1059 0.0596 0.1009 0.0241
β22 = 0.8 0.6637 0.1468 0.7607 0.1770 0.7767 0.0706 0.6788 0.1227 0.7920 0.0600 0.7968 0.0240
Cl = −0.7071 −0.5986 1.1124 −0.6992 0.0814 −0.6927 0.3218 −0.7052 0.0293
Cu = 0.7071 0.6050 1.0984 0.6959 0.0776 0.6797 0.3352 0.7080 0.0278
σ2

l = 1 0.7918 0.2207 0.9811 0.1231 0.9844 0.1240 0.7965 0.2051 0.9957 0.0445 0.9956 0.0437
σ2

u = 1 0.7891 0.2232 0.9763 0.1206 0.9792 0.1200 0.7988 0.2028 0.9996 0.0430 0.9994 0.0423
ρ = 0 0.2575 0.2653 0.0141 0.0875 0.0067 0.0884 0.2498 0.2509 −0.0009 0.0334 −0.0013 0.0328

(b) Simulation Results for CaseB-3
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanrmse
βlc = 0 −0.5715 0.5782 1.8196 198.5 −0.0080 0.2674 −0.5639 0.5648 −71.45 2069 −0.0004 0.0851
βuc = 0 0.5642 0.5711 −1.4060 147.8 0.0022 0.2598 0.5663 0.5672 −100.7 2825 0.0013 0.0843
β11 = 0.1 0.0764 0.0744 0.1339 3.6156 0.0843 0.1197 0.0840 0.0300 0.0920 2.9502 0.0986 0.0410
β12 = 0.05 0.0663 0.0745 0.0550 2.9242 0.0589 0.1221 0.0651 0.0295 −0.1036 3.3209 0.0507 0.0420
β21 = 0.05 0.0646 0.0733 0.0493 2.9074 0.0569 0.1205 0.0659 0.0296 −0.0284 2.7397 0.0513 0.0403
β22 = 0.1 0.0782 0.0750 0.0475 2.6718 0.0858 0.1189 0.0829 0.0302 0.0355 3.6375 0.0973 0.0412
Cl = −1/

√
2 −3.0891 230.0 −0.7011 0.1127 88.26 2576 −0.7061 0.0398

Cu = 1/
√

2 1.3011 182.6 0.6987 0.1146 128.4 3510 0.7080 0.0400
σ2

l = 1 0.6806 0.3251 0.7884 0.2263 0.9939 0.1726 0.6852 0.3156 0.7954 0.2066 0.9987 0.0584
σ2

u = 1 0.6794 0.3262 0.7868 0.2273 0.9909 0.1713 0.6862 0.3145 0.7970 0.2050 1.0014 0.0586
ρ = 0 0.4579 0.4613 0.2521 0.2600 0.0107 0.1300 0.4564 0.4568 0.2535 0.2545 0.0000 0.0454
Number of Simulation=1000, 1/

√
2 ≈ 0.7071.

Table 2: Simulation Results for Case NB-1 and Case NB-3

(a) Simulation Results for CaseNB-1
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanrmse
βlc = −2 −2.0890 0.4074 −2.1056 0.4345 −2.0883 0.4076 −2.0120 0.1551 −2.0135 0.1558 −2.0119 0.1551
βuc = 2 2.0825 0.3816 2.0907 0.4118 2.0819 0.3819 2.0263 0.1545 2.0265 0.1565 2.0262 0.1545
β11 = 0.8 0.7842 0.0401 0.7830 0.0417 0.7843 0.0401 0.7978 0.0139 0.7977 0.0139 0.7978 0.0139
β12 = 0.1 0.0975 0.0385 0.0988 0.0402 0.0975 0.0385 0.0995 0.0131 0.0996 0.0131 0.0995 0.0131
β21 = 0.1 0.0983 0.0363 0.0989 0.0376 0.0983 0.0363 0.1006 0.0134 0.1006 0.0135 0.1006 0.0134
β22 = 0.8 0.7850 0.0390 0.7844 0.0410 0.7850 0.0390 0.7967 0.0139 0.7967 0.0140 0.7967 0.0139
Cl = −1/

√
2 −161.5 9243 −0.7026 0.0553 2.8987 210.9267 −0.7067 0.0194

Cu = 1/
√

2 −151.2 4418 0.7016 0.0541 1.1828 214.8670 0.7065 0.0189
σ2

l = 1 0.9921 0.0899 0.9842 0.0906 0.9823 0.0903 0.9997 0.0321 0.9987 0.0321 0.9984 0.0321
σ2

u = 1 0.9906 0.0885 0.9830 0.0893 0.9807 0.0891 0.9994 0.0300 0.9984 0.0300 0.9982 0.0300
ρ = 0 −0.0004 0.0630 −0.0001 0.0632 −0.0066 0.0642 0.0002 0.0224 0.0002 0.0224 −0.0006 0.0225

(b) Simulation Results for CaseNB-3
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanrmse
βlc = −2 −2.0165 0.1917 −1.7197 54.2693 −2.0115 0.1929 −2.0069 0.0722 −1.2760 28.02 −2.0021 0.0724
βuc = 2 2.0246 0.2021 2.6687 63.9572 2.0196 0.2033 2.0060 0.0688 0.6512 21.94 2.0011 0.0691
β11 = 0.1 0.0945 0.0602 0.1137 0.6083 0.0948 0.0606 0.0991 0.0224 0.1031 0.2302 0.0994 0.0226
β12 = 0.05 0.0517 0.0650 0.0402 0.7072 0.0514 0.0655 0.0508 0.0226 0.0450 0.2476 0.0504 0.0228
β21 = 0.05 0.0498 0.0656 0.0385 0.8010 0.0495 0.0661 0.0504 0.0218 0.0406 0.2495 0.0500 0.0220
β22 = 0.1 0.0897 0.0649 0.0779 0.6570 0.0900 0.0653 0.0989 0.0220 0.1080 0.2774 0.0992 0.0222
Cl = −1/

√
2 225.5 12212 −0.7022 0.0548 −169.4 6526 −0.7056 0.0196

Cu = 1/
√

2 −185.8 15901 0.7038 0.0555 314.1 5409 0.7064 0.0199
σ2

l = 1 0.9843 0.0884 0.9839 0.0902 0.9817 0.0902 0.9911 0.0321 0.9972 0.0317 0.9970 0.0317
σ2

u = 1 0.9866 0.0881 0.9865 0.0901 0.9841 0.0898 0.9921 0.0320 0.9983 0.0319 0.9980 0.0319
ρ = 0 0.0063 0.0598 −0.0014 0.0614 −0.0074 0.0626 0.0082 0.0243 0.0011 0.0236 0.0003 0.0236
Number of Simulation=1000
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A3. (Section 5. Comparison with Existing Approaches)

Table 3: Methodology Evaluation for DGP2 (LOW persistence and BINDING observability re-
striction)

DGP2
Multivariate Normal Distribution

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 1.0963 0.6885 0.7992 0.6583 0.7288 1.4169 1.6765 0.7869 0.9154
CRM 1.0954 0.6896 0.7989 0.6582 0.7285 1.4171 1.6760 0.7870 0.9153
TS 1.0903 0.6809 0.8025 0.6607 0.7316 1.4062 1.6530 0.7801 0.9090

MTS 1.0906 0.6811 0.8026 0.6606 0.7316 1.4066 1.6539 0.7803 0.9092
GARCH-N (99%) 1.1266 0.7353 0.8719 0.6061 0.7390 1.5261 1.8106 0.8437 0.9513

GARCH-N (99.5%) 1.1580 0.7825 0.8959 0.5826 0.7392 1.6093 1.9539 0.8848 0.9883
GARCH-T (99%) 1.1538 0.7756 0.8926 0.5859 0.7393 1.5975 1.9340 0.8790 0.9831

GARCH-T (99.5%) 1.2220 0.8736 0.9222 0.5497 0.7359 1.7631 2.2588 0.96001.0623
Multivariate Student’s t Distribution (ν = 5)

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 1.5667 0.9612 0.8074 0.6299 0.7187 1.8297 3.3843 1.0108 1.2998
CRM 1.5655 0.9627 0.8069 0.6297 0.7183 1.8303 3.3834 1.0110 1.2997
TS 1.5583 0.9506 0.8118 0.6330 0.7224 1.8133 3.3377 0.9999 1.2909

MTS 1.5718 0.9606 0.8105 0.6326 0.7215 1.8205 3.4105 1.0034 1.3027
GARCH-N (99%) 1.6448 1.0786 0.8976 0.5454 0.7215 2.1619 3.8773 1.1771 1.3909

GARCH-N (99.5%) 1.6967 1.1556 0.9154 0.5205 0.7179 2.3202 4.2235 1.2545 1.4516
GARCH-T (99%) 1.7500 1.2253 0.9261 0.5029 0.7145 2.4576 4.5762 1.3215 1.5107

GARCH-T (99.5%) 1.9388 1.4802 0.9511 0.4515 0.7013 2.9420 5.9745 1.55781.7249

Table 4: Methodology Evaluation for DGP4 (LOW persitence and NON-BINDING observability
restriction)

DGP4
Multivariate Normal Distribution

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 1.5523 0.9149 0.8544 0.7714 0.8129 1.9957 3.2475 1.0887 1.2742
CRM 1.5508 0.9168 0.8543 0.7713 0.8128 1.9959 3.2461 1.0887 1.2739
TS 1.5448 0.9044 0.8559 0.7728 0.8144 1.9819 3.2052 1.0785 1.2658

MTS 1.5452 0.9047 0.8559 0.7728 0.8143 1.9824 3.2068 1.0788 1.2661
GARCH-N (99%) 1.6669 1.0944 0.7208 0.8421 0.7814 2.1908 3.9774 1.1824 1.4101

GARCH-N (99.5%) 1.6217 1.0242 0.7591 0.8264 0.7928 2.1043 3.6798 1.1415 1.3563
GARCH-T (99%) 1.6594 1.0816 0.7276 0.8394 0.7835 2.1755 3.9249 1.1753 1.4007

GARCH-T (99.5%) 1.6000 0.9879 0.7817 0.8155 0.7986 2.0641 3.5370 1.12271.3297
Multivariate Student’s t Distribution (ν = 5)

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 1.8565 1.0996 0.8552 0.7584 0.8068 2.2450 4.6601 1.2265 1.5258
CRM 1.8548 1.1017 0.8551 0.7583 0.8067 2.2455 4.6582 1.2266 1.5255
TS 1.8475 1.0870 0.8572 0.7603 0.8088 2.2266 4.5992 1.2131 1.5158

MTS 1.8480 1.0873 0.8572 0.7603 0.8087 2.2271 4.6015 1.2134 1.5162
GARCH-N (99%) 1.9226 1.2020 0.7640 0.8142 0.7891 2.3202 5.1454 1.2626 1.6034

GARCH-N (99.5%) 1.8892 1.1479 0.8003 0.7951 0.7977 2.2663 4.8911 1.2377 1.5632
GARCH-T (99%) 1.8989 1.1546 0.7951 0.7978 0.7964 2.2774 4.9431 1.2432 1.5716

GARCH-T (99.5%) 1.8741 1.1119 0.8508 0.7591 0.8050 2.2674 4.7536 1.23981.5410
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Table 5: Simulation Results of DGP2 and DGP4 with Multivariate Normal Errors

DGP2 (low persistence and binding O.R.) DGP4 (low persistence and non-binding O.R.)
b11 b12 b0L b21 b22 b0U b11 b12 b0L b21 b22 b0U

true value -0.1 0.05 0 -0.05 0.1 0 -0.1 0.05 -2 -0.05 0.1 2

Mean

CCRM -0.0516 -0.0588 -1.1988 -0.0588 -0.0516 0.8585 -0.0935 -0.0976 -1.8423 -0.0976 -0.0935 2.5035
CRM -0.0577 -0.0527 -1.2114 -0.0527 -0.0577 0.8710 -0.1016 -0.0895 -1.8780 -0.0895 -0.1016 2.5392
TS -0.0776 0.2367 26.5814 -0.0108 0.0674 -19.5935 -0.1671 -0.0905 -58.2921 -0.0550 0.1529 8.2993
MTS -0.1005 0.0517 0.0072 -0.0499 0.0991 -0.0048 -0.1000 0.0527 -2.0082 -0.0505 0.0980 2.0045

Bias2

CCRM 0.0023 0.0118 1.4372 0.0001 0.0230 0.7370 0.0000 0.0218 0.0249 0.0023 0.0374 0.2536
CRM 0.0018 0.0106 1.4675 0.0000 0.0249 0.7587 0.0000 0.0194 0.0149 0.0016 0.0406 0.2907
TS 0.0005 0.0348 706.57 0.0015 0.0011 383.90 0.0045 0.0197 3168.8 0.0000 0.0028 39.681
MTS 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000

MSE

CCRM 0.0025 0.0120 1.4379 0.0002 0.0232 0.7374 0.0002 0.0219 0.0261 0.0024 0.0376 0.2545
CRM 0.0021 0.0107 1.4686 0.0002 0.0252 0.7595 0.0004 0.0196 0.0181 0.0017 0.0410 0.2939
TS 11.72 41.81 2.4e+06 4.641 10.58 4.5e+05 4.722 10.59 1.76e+06 0.6072 1.609 2.77e+04
MTS 0.0051 0.0118 0.0366 0.0015 0.0034 0.0112 0.0017 0.0044 0.0165 0.0005 0.0015 0.0055

A4. (Section 6. Empirical Illustration:SP500 Low/High Return Interval)

Table 6: Simulation Results of DGP2 and DGP4 with Multivariate Student-t Errors

DGP2 (low persistence and binding O.R.) DGP4 (low persistence and non-binding O.R.)
b11 b12 b0L b21 b22 b0U b11 b12 b0L b21 b22 b0U

true value -0.1 0.05 0 -0.05 0.1 0 -0.1 0.05 -2 -0.05 0.1 2

Mean

CCRM -0.0613 -0.0685 -1.4316 -0.0685 -0.0613 1.0178 -0.0886 -0.0931 -2.0091 -0.0931 -0.0886 2.6154
CRM -0.0671 -0.0627 -1.4459 -0.0627 -0.0671 1.0322 -0.0962 -0.0855 -2.0441 -0.0855 -0.0962 2.6504
TS -0.1958 -0.2252 188.95 0.1240 0.3712 -4.9869 -0.1519 -0.0599 -22.722 -0.0417 0.1063 2.8518
MTS -0.2389 -0.0594 17.5335 0.0293 0.1663 -9.8989 -0.1031 0.0475 -1.8869 -0.0487 0.1001 1.9402

Bias2

CCRM 0.0015 0.0140 2.0494 0.0003 0.0260 1.0360 0.0001 0.0205 0.0001 0.0019 0.0356 0.3787
CRM 0.0011 0.0127 2.0906 0.0002 0.0279 1.0653 0.0000 0.0184 0.0019 0.0013 0.0385 0.4230
TS 0.0092 0.0757 3.57e+04 0.0303 0.0735 24.8691 0.0027 0.0121 429.39 0.0001 0.0000 0.7256
MTS 0.0193 0.0120 307.43 0.0063 0.0044 97.9887 0.0000 0.0000 0.0128 0.0000 0.0000 0.0036

MSE

CCRM 0.0017 0.0142 2.0508 0.0005 0.0263 1.0368 0.0003 0.0206 0.0020 0.0020 0.0358 0.3801
CRM 0.0015 0.0129 2.0925 0.0003 0.0283 1.0667 0.0004 0.0185 0.0058 0.0014 0.0388 0.4267
TS 70.43 197.8 8.0e+07 39.10 88.69 6.3e+07 4.7210 7.3450 1.5e+06 0.9674 2.0540 1.8e+05
MTS 0.2874 0.7468 753.22 0.1046 0.2813 256.81 0.0021 0.0061 0.0488 0.0007 0.0019 0.0146
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Table 7: Descriptive Statistics for Stable and Unstable Period

Stable Period UnstablePeriod
Statistics low high center radius low high center radius
Minimum −1.9170 −0.0271 −0.9721 0.1195 −9.4210 −1.3010 −4.9190 0.1463
1st Quartile −0.6570 0.1600 −0.2466 0.3092 −1.3330 0.1769 −0.4698 0.4671
Median −0.3295 0.3944 0.0239 0.4188 −0.6204 0.5889 −0.0127 0.7106
3rd Quartile −0.0817 0.6773 0.2660 0.5498 −0.1498 1.1620 0.4170 1.1040
Maximum 0.1375 2.3250 1.1610 1.1640 1.5050 11.9800 6.7410 5.6090
Mean −0.4303 0.4655 0.0176 0.4479 −0.9593 0.8593 −0.0500 0.9093
Variance 0.1726 0.1609 0.1317 0.0351 1.6539 1.3347 0.9687 0.5256
Correlation 0.5797 −0.0530 0.2982 −0.1118
Skewness −1.1166 1.1397 −0.0501 0.8604 −2.6056 3.1601 −0.0715 2.7765
Kurtosis 3.8698 4.5562 2.8328 3.5695 13.2002 21.3206 9.1251 13.7251

Table 8: First Step Estimation for Stable Period

Truncated Normal Regression
regressor coefficient s.e.

(Δβ∗)
const −1.7655 0.1407
rL,t−1 0.4315 0.1116
rU,t−1 0.0201 0.1172
rL,t−2 0.7010 0.1126
rU,t−2 −0.2849 0.1150
σm 0.3699 0.0107

Time Span: 2004/1/1 – 2007/1/1
Number of Observations:756

In the stationary block bootstrap, the block size follows a Geometric distribution with mean

equal tob. To choose the optimal block sizeb, we follow the method proposed by Politis and White

(2004) and Patton, Politis and White (2009). The optimal value ofb minimizes theMS E(σ̂2
b) with

σ2
∞ =

∑∞
s=−∞R(s), whereR(s) is the auto-covariance function. This procedure considers only the

bootstrapping for a scalar time series, however with interval time series we need to jointly bootstrap

a 2× 1 vector time series{(ylt , yut)}Tt=0. We proceed by selecting separately the optimal block sizes

bl andbu for the lower bound{ylt}Tt=0 and the upper bound{yut}Tt=0 series respectively. Then, we use

the average (bl+bu)/2 as the unified block size length to bootstrap the vector sequence{(ylt , yut)}Tt=0.
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Table 9: First Step Estimation for Unstable Period

Truncated Normal Regression
regressor coefficient s.e.

(Δβ∗)
const 0.0778 0.0731
rL,t−1 0.3312 0.0396
rU,t−1 0.0121 0.045
rL,t−2 0.3364 0.0412
rU,t−2 −0.1188 0.0451
rL,t−3 0.2356 0.0424
rU,t−3 0.0112 0.0448
rL,t−4 0.2978 0.0426
rU,t−4 −0.1404 0.0428
rL,t−5 0.2874 0.0434
rU,t−5 −0.1819 0.0404
σm 0.9534 0.0270

Time Span: 2007/1/1 – 2011/4/29
Number of Observations:1009

Table 10: Block Sizes for Stationary Block Bootstrapping

Block Size Stable Period UnstablePeriod
bl 1.8055 53.2275
bu 2.5007 53.4241

b = (bl + bu)/2 2.1531 53.3258

We report the optimal block sizes for both periods in Table10.
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Table 11: Lower/Upper Bound Regression Results of Three Models (Stable Period)

Lower Bound Regression (Dependent variable:rlt)
OLS Two-step Modified Two-step

regressors coefficient s.e. coefficient s.e. coefficient s.e.
const −0.3062 (0.0509) −0.0729 (0.1400) −0.2947 (0.0499)
rlt−1 0.0586 (0.0451) 0.1400 (0.0568) 0.0626 (0.0461)
rut−1 −0.0283 (0.0470) −0.0295 (0.0413) −0.0283 (0.0444)
rlt−2 0.1100 (0.0453) 0.2408 (0.0920) 0.1165 (0.0462)
rut−2 −0.0840 (0.0463) −0.1410 (0.0606) −0.0868 (0.0472)
λ̂t−1 −4.1883 (2.3541) −0.2069 (0.0221)

Degree of Freedom 749 748 749
S.E. of Regression 0.4143 0.4139 0.4143

AdjustedR2 0.5208 0.5217 0.5147
F-statistic 164.9 138.1 160.9

Upper Bound Regression (Dependent variable:rht)
OLS Two-step Modified Two-step

regressors coefficient s.e. coefficient s.e. coefficient s.e.
const 0.3674 (0.0485) 0.8233 (0.1363) 0.3583 (0.0486)
rlt−1 −0.0938 (0.0430) 0.0652 (0.0592) −0.0970 (0.0430)
rut−1 −0.0209 (0.0448) −0.0233 (0.0381) −0.0209 (0.0436)
rlt−2 −0.1377 (0.0432) 0.1179 (0.0898) −0.1428 (0.0468)
rut−2 0.0163 (0.0441) −0.0950 (0.0566) 0.0185 (0.0441)
λ̂t−1 −8.1843 (2.1703) 0.1630 (0.0218)

Degree of Freedom 749 748 749
S.E. of Regression 0.3954 0.393 0.3955

AdjustedR2 0.5846 0.5896 0.5802
F-statistic 213.2 181.6 209.4

σ2
l 0.1708 0.4156 0.1730
σ2

u 0.1555 0.3934 0.1568
ρ 0.6070 0.5848 0.5860
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Table 12: Lower/Upper Bound Regression Results of Three Models (Unstable Period)

Lower Bound Regression (Dependent variable:rlt )
OLS Two-step Modified Two-step

regressors coefficient s.e. coefficient s.e. coefficient s.e.
const −0.1281 (0.0649) −0.0951 (0.1162) 0.1275 (0.1583)
rlt−1 0.0434 (0.0425) 0.0456 (0.0568) 0.0601 (0.0611)
rut−1 0.0420 (0.0492) 0.0435 (0.0467) 0.0533 (0.0572)
rlt−2 0.1025 (0.0443) 0.1055 (0.0660) 0.1260 (0.0545)
rut−2 −0.1075 (0.0486) −0.1080 (0.0633) −0.1109 (0.0583)
rlt−3 0.1346 (0.0458) 0.1371 (0.0529) 0.1537 (0.0463)
rut−3 0.0094 (0.0480) 0.0102 (0.0785) 0.0159 (0.0894)
rlt−4 0.1751 (0.0462) 0.1784 (0.0836) 0.2010 (0.0969)
rut−4 −0.1581 (0.0461) −0.1595 (0.0939) −0.1690 (0.1090)
rlt−5 0.1202 (0.0469) 0.1230 (0.0582) 0.1423 (0.0615)
rut−5 −0.1100 (0.0436) −0.1117 (0.0584) −0.1232 (0.0594)
λ̂t−1 −0.0874 (0.2263) −0.6775 (0.1413)

Degree of Freedom 993 992 993
S.E. of Regression 1.142 1.142 1.144

AdjustedR2 0.4953 0.4948 0.4646
F-statistic 90.57 82.96 80.2

Upper Bound Regression (Dependent variable:rht)
OLS Two-step Modified Two-step

regressors coefficient s.e. coefficient s.e. coefficient std. err.
const 0.1210 (0.0562) −0.0469 (0.0896) 0.0169 (0.0875)
rlt−1 −0.2563 (0.0369) −0.2673 (0.0483) −0.2631 (0.0637)
rut−1 0.0622 (0.0426) 0.0548 (0.0403) 0.0576 (0.0516)
rlt−2 −0.1839 (0.0384) −0.1994 (0.0522) −0.1935 (0.0518)
rut−2 0.0191 (0.0422) 0.0214 (0.0719) 0.0205 (0.0725)
rlt−3 −0.0866 (0.0397) −0.0992 (0.0405) −0.0944 (0.0474)
rut−3 0.0626 (0.0416) 0.0583 (0.0437) 0.0599 (0.0453)
rlt−4 −0.0377 (0.0400) −0.0548 (0.0537) −0.0483 (0.0526)
rut−4 −0.0393 (0.0400) −0.0321 (0.0723) −0.0349 (0.0690)
rlt−5 −0.0823 (0.0407) −0.0968 (0.0574) −0.0913 (0.0534)
rut−5 0.0339 (0.0378) 0.0425 (0.0404) 0.0392 (0.0427)
λ̂t−1 0.4450 (0.2363) 0.2759 (0.0870)

Degree of Freedom 993 992 993
S.E. of Regression 0.9898 0.9888 0.9885

AdjustedR2 0.5294 0.5304 0.5175
F-statistic 103.7 95.49 98.88

σ2
l 1.2909 1.2080 1.3642
σ2

u 0.9699 0.9960 0.9813
ρ 0.6780 0.5752 0.6208
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Table 1: Simulation Results for Case B-2 and Case B-4

(a) Simulation Results for CaseB-2
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanrmse
βlc = 0 −1.0645 1.0813 −0.1282 1.2306 −0.0936 0.3890 −1.0054 1.0075 −0.0162 0.3819 −0.0115 0.1312
βuc = 0 −0.2738 0.3026 −0.0338 0.8377 −0.0476 0.1658 −0.2448 0.2487 −0.0050 0.2442 −0.0076 0.0544
β11 = 0.8 0.4648 0.3531 0.7542 0.3869 0.7643 0.1540 0.4852 0.3173 0.7948 0.1247 0.7963 0.0539
β12 = 0.1 0.4188 0.3430 0.1263 0.4018 0.1171 0.1744 0.4125 0.3157 0.1022 0.1281 0.1006 0.0619
β21 = 0.1 0.0253 0.1000 0.1002 0.2587 0.0951 0.0718 0.0247 0.0789 0.0999 0.0787 0.0990 0.0256
β22 = 0.8 0.8602 0.0980 0.7842 0.2655 0.7899 0.0832 0.8731 0.0780 0.7976 0.0800 0.7987 0.0292
Cl = −1.4564 −1.3899 1.8628 −1.4373 0.1344 −1.4505 0.5331 −1.4563 0.0478
Cu = −0.3479 −0.3609 1.3450 −0.3354 0.0778 −0.3523 0.3541 −0.3475 0.0280
σ2

l = 3 2.1280 0.8944 2.9323 0.3818 2.9509 0.4000 2.1494 0.8536 3.0014 0.1448 3.0008 0.1431
σ2

u = 1 0.9424 0.1009 0.9832 0.0944 0.9858 0.0940 0.9509 0.0576 0.9991 0.0343 0.9993 0.0343
ρ = 0.8 0.8268 0.0336 0.8003 0.0291 0.7956 0.0301 0.8270 0.0279 0.8002 0.0102 0.7997 0.0103

(b) Simulation Results for CaseB-4
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanrmse
βlc = 0 −1.1702 1.1777 −85.30 5807 −0.0269 0.5277 −1.1628 1.1638 239.3 5441 0.0035 0.1729
βuc = 0 −0.2769 0.2948 −5.8502 3420 −0.0073 0.1732 −0.2782 0.2805 102.5 6127 −0.0010 0.0605
β11 = 0.1 0.0498 0.1378 −0.0606 8.3845 0.0659 0.2514 0.0572 0.0609 0.2017 8.2371 0.0957 0.0863
β12 = 0.05 0.0931 0.1799 0.3443 12.6523 0.0723 0.3470 0.0919 0.0720 0.0461 9.9632 0.0538 0.1158
β21 = 0.05 0.0399 0.0949 −0.1618 6.4568 0.0438 0.1092 0.0391 0.0341 0.0276 7.0154 0.0483 0.0368
β22 = 0.1 0.1051 0.1260 0.2913 10.9189 0.0999 0.1480 0.1098 0.0446 0.1642 7.1917 0.1007 0.0499
Cl = −1.4564 124.2 7062 −1.4326 0.2111 −318.0 7340 −1.4552 0.0746
Cu = −0.3479 15.77 4069 −0.3380 0.1019 −132.8 8371 −0.3459 0.0388
σ2

l = 3 1.6612 1.3476 2.1295 0.8977 2.9675 0.6387 1.6664 1.3349 2.1328 0.8711 3.0002 0.2209
σ2

u = 1 0.9213 0.1150 0.9438 0.1060 0.9955 0.1090 0.9224 0.0830 0.9484 0.0605 0.9981 0.0393
ρ = 0.8 0.8607 0.0631 0.8274 0.0367 0.7991 0.0367 0.8595 0.0598 0.8270 0.0284 0.7990 0.0137
Number of Simulation=1000
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Table 2: Simulation Results for Case NB-2 and Case NB-4

Simulation Results for CaseNB-2
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanrmse
βlc = −2 −2.0208 0.9077 −2.0139 1.0513 −2.0204 0.9082 −2.0202 0.3932 −2.0132 0.4039 −2.0202 0.3932
βuc = 2 2.0813 0.5217 2.1187 0.6194 2.0814 0.5217 2.0137 0.2271 2.0166 0.2338 2.0137 0.2271
β11 = 0.8 0.7869 0.0632 0.7873 0.0707 0.7869 0.0632 0.7972 0.0258 0.7976 0.0264 0.7972 0.0258
β12 = 0.1 0.0910 0.0824 0.0904 0.0952 0.0910 0.0825 0.1003 0.0343 0.0997 0.0353 0.1003 0.0343
β21 = 0.1 0.0985 0.0351 0.1008 0.0401 0.0985 0.0351 0.1000 0.0149 0.1002 0.0153 0.1000 0.0149
β22 = 0.8 0.7869 0.0486 0.7836 0.0572 0.7869 0.0486 0.7980 0.0200 0.7978 0.0206 0.7980 0.0200
Cl = −1.4564 3.94E4 1.12E6 −1.4285 0.0918 −471.9 9246 −1.4530 0.0299
Cu = −0.3479 −2.70E4 6.08E5 −0.3312 0.0623 −268.3 5036 −0.3459 0.0210
σ2

l = 3 2.9536 0.2745 2.9301 0.2777 2.9167 0.2790 2.9969 0.0893 2.9939 0.0894 2.9923 0.0894
σ2

u = 1 0.9871 0.0911 0.9790 0.0920 0.9818 0.0914 1.0009 0.0312 0.9999 0.0312 1.0003 0.0312
ρ = 0.8 0.7987 0.0227 0.7987 0.0227 0.7948 0.0234 0.8000 0.0079 0.8000 0.0079 0.7995 0.0079

Simulation Results for CaseNB-4
Small Sample Size (T = 250) Large Sample Size (T = 2000)

OLS Two-step Modified Two-step OLS Two-step Modified Two-step
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse mean rmse
βlc = −2 −2.0219 0.5431 −1.6596 14.0955 −2.0210 0.5437 −1.9995 0.2019 −1.4023 21.2427 −1.9987 0.2021
βuc = 2 2.0008 0.3217 2.0827 7.5863 2.0011 0.3217 2.0006 0.1191 2.4545 16.7747 2.0008 0.1191
β11 = 0.1 0.0938 0.0996 0.0919 0.5700 0.0939 0.0997 0.0989 0.0363 0.0998 0.3399 0.0990 0.0363
β12 = 0.05 0.0542 0.1686 0.0474 0.9405 0.0541 0.1688 0.0491 0.0622 0.0414 0.5580 0.0491 0.0623
β21 = 0.05 0.0488 0.0582 0.0483 0.3187 0.0488 0.0582 0.0495 0.0212 0.0476 0.2029 0.0495 0.0212
β22 = 0.1 0.0978 0.0997 0.1015 0.5140 0.0978 0.0998 0.0995 0.0367 0.0922 0.3195 0.0995 0.0367
Cl = −1.4564 −98.20 64189 −1.4348 0.0907 −2593 78843 −1.4554 0.0312
Cu = −0.3479 160.6 34474 −0.3325 0.0633 −1757 58342 −0.3470 0.0214
σ2

l = 3 2.9703 0.2742 2.9494 0.2771 2.9356 0.2779 2.9993 0.0950 2.9989 0.0953 2.9971 0.0954
σ2

u = 1 0.9886 0.0924 0.9807 0.0932 0.9834 0.0926 0.9992 0.0315 0.9984 0.0315 0.9987 0.0315
ρ = 0.8 0.7982 0.0236 0.7981 0.0238 0.7943 0.0245 0.8001 0.0079 0.8000 0.0079 0.7996 0.0079
Number of Simulation=1000

Table 3: Methodology Evaluation for DGP1 (HIGH persistence and BINDING observability re-
striction)

DGP1
Multivariate Normal Distribution

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 1.5851 1.2286 0.7099 0.6086 0.6593 2.2377 4.0244 1.2510 1.4182
CRM 1.5201 1.2973 0.7066 0.6073 0.6569 2.2445 3.9958 1.2505 1.4131
TS 1.2735 0.7689 0.8244 0.7023 0.7633 1.6280 2.2136 0.8954 1.0519

MTS 1.2738 0.7691 0.8244 0.7022 0.7633 1.6284 2.2148 0.8956 1.0522
GARCH-N (99%) 2.9030 2.6388 0.9877 0.3604 0.6740 4.9289 15.3984 2.6293 2.7741

GARCH-N (99.5%) 3.1914 2.9510 0.9928 0.3343 0.6635 5.5520 18.9028 2.9342 3.0736
GARCH-T (99%) 2.2336 1.8782 0.9543 0.4440 0.6992 3.4777 8.5229 1.9096 2.0636

GARCH-T (99.5%) 2.5063 2.1911 0.9734 0.4064 0.6899 4.0569 11.0902 2.19882.3540
Multivariate Student’s t Distribution (ν = 5)

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 2.1135 1.6705 0.7064 0.5856 0.6460 2.8669 7.2746 1.5954 1.9050
CRM 2.0382 1.7506 0.7055 0.5864 0.6459 2.8739 7.2356 1.5951 1.8999
TS 1.6877 1.0099 0.8323 0.6894 0.7609 1.9925 3.8747 1.0921 1.3908

MTS 1.6890 1.0107 0.8327 0.6894 0.7610 1.9938 3.8815 1.0928 1.3919
GARCH-N (99%) 3.8119 3.4153 0.9819 0.3373 0.6596 6.4432 26.2352 3.4253 3.6191

GARCH-N (99.5%) 4.1732 3.8073 0.9874 0.3131 0.6503 7.2230 31.9582 3.8066 3.9945
GARCH-T (99%) 3.1679 2.6299 0.9598 0.4013 0.6806 4.9167 17.0211 2.6739 2.9115

GARCH-T (99.5%) 3.6105 3.1287 0.9761 0.3609 0.6685 5.8674 22.9462 3.14303.3783
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Table 4: Methodology Evaluation for DGP3 (HIGH persistence and NON-BINDING observability
restriction)

DGP3
Multivariate Normal Distribution

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 2.4973 2.0577 0.8655 0.8346 0.8500 3.6409 10.4764 2.0241 2.2882
CRM 2.1549 2.2905 0.8650 0.8336 0.8493 3.5523 9.8958 1.9724 2.2238
TS 1.7255 0.9964 0.9181 0.8945 0.9063 2.1732 3.9711 1.1772 1.4090

MTS 1.7259 0.9965 0.9181 0.8945 0.9063 2.1737 3.9727 1.1774 1.4092
GARCH-N (99%) 8.3435 8.0010 0.9999 0.4079 0.7039 15.6599 133.6454 8.0080 8.1741

GARCH-N (99.5%) 9.4680 9.1662 1.0000 0.3744 0.6872 18.0331 173.6818 9.1715 9.3184
GARCH-T (99%) 3.1196 2.0920 0.7845 0.8634 0.8239 4.1878 14.1224 2.3392 2.6564

GARCH-T (99.5%) 3.0973 2.0581 0.8430 0.8310 0.8370 4.0564 13.8528 2.26462.6298
Multivariate Student’s t Distribution (ν = 5)

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 3.0472 2.5013 0.8463 0.8044 0.8253 4.3590 15.5570 2.4207 2.7878
CRM 2.6563 2.7776 0.8447 0.8028 0.8237 4.2534 14.7856 2.3596 2.7178
TS 2.1303 1.2356 0.9110 0.8781 0.8945 2.5234 6.0691 1.3680 1.7415

MTS 2.1308 1.2359 0.9110 0.8780 0.8945 2.5240 6.0717 1.3683 1.7419
GARCH-N (99%) 8.9350 8.4656 0.9993 0.3992 0.6992 16.4829 151.5336 8.4814 8.7035

GARCH-N (99.5%) 10.0825 9.6664 0.9997 0.3666 0.6831 18.9300 195.1327 9.6775 9.8766
GARCH-T (99%) 3.7183 2.3954 0.8416 0.7932 0.8174 4.7388 19.6039 2.6477 3.1280

GARCH-T (99.5%) 3.8918 2.6454 0.8914 0.7533 0.8223 4.9802 22.2088 2.77033.3278

Table 5: Simulation Results of DGP1 and GDP3 with Multivariate Normal Errors

DGP1 (high persistence and binding O.R.) DGP3 (high persistence and non-binding O.R.)
b11 b12 b0L b21 b22 b0U b11 b12 b0L b21 b22 b0U

true -0.8 0.1 0 -0.1 0.8 0 -0.8 0.1 -2 -0.1 0.8 2

Mean

CCRM -0.0986 -0.0986 -0.1230 -0.0986 -0.0986 2.7143 -0.2168 -0.2168 1.5698 -0.2168 -0.2168 12.3923
CRM -0.1553 -0.0419 -0.2841 -0.0419 -0.1553 2.8754 -0.3703 -0.0634 -0.0909 -0.0634 -0.3703 14.0530
TS -0.7930 0.1081 -0.0348 -0.1017 0.7977 0.0057 -0.8002 0.1014 -2.0135 -0.0999 0.7990 2.0098
MTS -0.7970 0.1046 -0.0112 -0.1017 0.7975 0.0067 -0.7998 0.1018 -2.0184 -0.1001 0.7988 2.0123

Bias2

CCRM 0.4920 0.0394 0.0151 0.0000 0.8075 7.3676 0.3401 0.1004 12.7436 0.0137 1.0340 107.9996
CRM 0.4156 0.0201 0.0807 0.0034 0.9126 8.2677 0.1847 0.0267 3.6448 0.0013 1.3696 145.2742
TS 0.0000 0.0001 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 2e-04 0.0000 0.0000 0.0001
MTS 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 3e-04 0.0000 0.0000 0.0002

MSE

CCRM 0.4922 0.0397 0.0163 0.0002 0.8077 7.3736 0.3404 0.1007 12.7738 0.014 1.0340 108.048
CRM 0.4164 0.0202 0.0813 0.0034 0.9134 8.2792 0.1861 0.0267 3.6501 0.0014 1.3710 145.4484
TS 0.0060 0.0061 0.2076 0.0019 0.0021 0.0686 0.0002 0.0005 0.0538 0.0001 0.0002 0.0186
MTS 0.0013 0.0021 0.0295 0.0004 0.0007 0.0091 0.0002 0.0005 0.0510 0.0001 0.0002 0.0174

Table 6: Simulation Results of DGP1 and DGP3 with Multivariate Student-t Errors

DGP1 (high persistence and binding O.R.) DGP3 (high persistence and non-binding O.R.)
b11 b12 b0L b21 b22 b0U b11 b12 b0L b21 b22 b0U

true -0.8 0.1 0 -0.1 0.8 0 -0.8 0.1 -2 -0.1 0.8 2

Mean

CCRM -0.0976 -0.0976 -0.1508 -0.0976 -0.0976 3.2462 -0.2080 -0.2080 1.492 -0.2080 -0.2080 12.502
CRM -0.1461 -0.0490 -0.3158 -0.0490 -0.1461 3.4111 -0.3537 -0.0624 -0.1120 -0.0624 -0.3537 14.1055
TS -0.8889 0.0016 1.1406 -0.0522 0.8529 -0.6148 -0.7947 0.1072 -2.1132 -0.1030 0.7957 2.0657
MTS -0.9284 -0.0329 1.5307 -0.0295 0.8729 -0.8406 -0.7963 0.1059 -2.0963 -0.1021 0.7965 2.0559

Bias2

CCRM 0.4934 0.0390 0.0228 0.0000 0.8056 10.5376 0.3504 0.0949 12.192 0.0117 1.0161 110.29
CRM 0.4276 0.0222 0.0997 0.0026 0.8951 11.6359 0.1992 0.0264 3.5645 0.0014 1.3310 146.54
TS 0.0079 0.0097 1.3010 0.0023 0.0028 0.3780 0.0000 0.0001 0.0128 0.0000 0.0000 0.0043
MTS 0.0165 0.0177 2.3431 0.0050 0.0053 0.7067 0.0000 0.0000 0.0093 0.0000 0.0000 0.0031

MSE

CCRM 0.4937 0.0393 0.0244 0.0002 0.8058 10.5479 0.3508 0.0952 12.225 0.0120 1.0160 110.35
CRM 0.4285 0.0223 0.1008 0.0027 0.8960 11.6540 0.2007 0.0264 3.5710 0.0015 1.3325 146.74
TS 0.0134 0.0156 1.7679 0.0042 0.0047 0.5458 0.0003 0.0006 0.0827 0.0001 0.0002 0.0277
MTS 0.0200 0.0220 3.5410 0.0061 0.0066 1.1562 0.0002 0.0006 0.0710 0.0001 0.0002 0.0234
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Table 7: Methodology Evaluation for SP500 Daily Low/High Interval Returns

Unstable Period (2007/1/1-2011/4/29); BINDING observability r estriction

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 1.1541 0.9990 0.6811 0.5939 0.6375 1.4506 2.3300 0.7827 1.0794
CRM 1.1541 0.9990 0.6811 0.5939 0.6375 1.4506 2.3300 0.7827 1.0794
TS 1.1356 0.9828 0.6810 0.5974 0.6392 1.4337 2.2555 0.7711 1.0619

MTS 1.1379 0.9831 0.6824 0.5952 0.6388 1.4360 2.2611 0.7726 1.0633
GARCH-N (99%) 1.8625 1.8329 0.9557 0.3630 0.6594 2.9936 6.8285 1.6239 1.8478

GARCH-N (99.5%) 2.0469 2.0246 0.9671 0.3399 0.6535 3.3268 8.2886 1.7960 2.0358
GARCH-T (99%) 2.2210 2.2064 0.9735 0.3272 0.6504 3.5868 9.8010 1.9308 2.2137

GARCH-T (99.5%) 2.6042 2.5989 0.9857 0.2921 0.6389 4.2692 13.5366 2.27432.6016

Stable Period (2004/1/1-2007/1/1); NON-BINDING observability r estriction

RMS E CR& ER MLF MDE
Lower Upper CR ER CR+ER

2 p = 1 p = 2 q = 1 q = 2
CCRM 0.4146 0.3958 0.7177 0.6427 0.6802 0.6396 0.3285 0.3471 0.4053
CRM 0.4146 0.3958 0.7177 0.6427 0.6802 0.6396 0.3285 0.3471 0.4053
TS 0.4123 0.3914 0.7184 0.6466 0.6825 0.6337 0.3232 0.3435 0.4020

MTS 0.4129 0.3942 0.7173 0.6443 0.6808 0.6369 0.3258 0.3452 0.4036
GARCH-N (99%) 0.6368 0.6240 0.9473 0.4410 0.6942 1.1157 0.7949 0.6142 0.6304

GARCH-N (99.5%) 0.7025 0.6908 0.9621 0.4143 0.6882 1.2435 0.9708 0.6818 0.6967
GARCH-T (99%) 0.7415 0.7302 0.9686 0.4002 0.6844 1.3194 1.0830 0.7211 0.7359

GARCH-T (99.5%) 0.8599 0.8499 0.9818 0.3621 0.6720 1.5562 1.4617 0.84050.8549
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Figure 3: High/Low Returns of Daily SP500 Index for Stable and Unstable Periods
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Figure 4: Estimated Inverse Mill’s Ratio for Stable and Unstable Periods
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(a) Stable Period (2004/1/1-2007/1/1)
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(b) Unstable Period (2007/1/1-2011/4/29)

Figure 5: Observability Restriction for Stable and Unstable Periods
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