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Constrained Regression for Interval-valued Data

Gloria Gonalez-Riverda
Wei Lin

Department of Economics
University of California, Riverside
Riverside, CA 92521

Abstract

Current regression models for interval-valued data do not guarantee that the predicted lower
bound of the interval is always smaller than its upper bound. We propose a constrained regres-
sion model that preserves the natural order of the interval in all instances, either for in-sample
fitted intervals or for interval forecasts. Within the framework of interval time series, we specify
a general dynamic bivariate system for the upper and lower bounds of the intervals. By imposing
the order of the interval bounds into the model, the bivariate probability density function of the
errors becomes conditionally truncated. In this context, the OLS estimators of the parameters
of the system are inconsistent. Estimation by maximum likelihood is possible but it is com-
putationally burdensome due to the nonlinearity of the estimator when there is truncation. We
propose a two-step procedure that combines maximum likelihood and least squares estimation,
and a modified two-step procedure that combines maximum likelihood and minimum-distance
estimation. In both instances, the estimators are consistent. However, when multicollinearity
arises in the second step of the estimation, the modified two-step procedure is superior at iden-
tifying the model regardless of the severity of the truncation. Monte Carlo simulations show
good finite sample properties of the proposed estimators. A comparison with the current meth-
ods in the literature shows that our proposed methods are superior by delivering smaller losses
and better estimators (no bias and low mean squared errors) than those from competing ap-
proaches.We illustrate our approach with the daily interval ofthigh SP500 returns and find
that truncation is very severe during and after the financial crisis of 2008, so that OLS estimates
should not be trusted and a modified two-step procedure should be implemented.

Key Words Interval-valued Data, Inverse of the Mill's Ratio, Maximum Likelihood Estimation,
Minimum Distance Estimator, Truncated Probability Density Function.
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1 Introduction

With the advent of sophisticated information systems, data collection has become less costly and,
as a result, massive data sets have been generated in many disciplines. Economics and business
are not exceptions. For instance, financial data is available at very high frequencies for almost
every asset that is transacted in a public market providing data sets with millions of observations.
Marketing data setsfter high granularity about consumers and products characteristics. Environ-
mental stations produce data sets that contain high and low frequency records of temperatures,
atmospheric conditions, pollutants, etc. across many regions. Statistical institutes, like the Cen-
sus Bureau, collect socioeconomic information about all individuals in a nation. These massive
information data sets tend to be released in an aggregated format, either because of confidentiality
reasons or because the interest of study is not the individual unit but a collective of units. In these
cases, the researcher does not face classical data sdtg} f@.i = 1,--- ,nor{y;}fort=1,---T

wherey; or y; are single values in the real line, but data aggregated in some fashion, like interval
data y, y,] that ofers information on the lower and upper bound of the variable of interest. For ex-
ample, information about income or net worth comes very often in interval format, or low and high
prices of an asset in a given day, or daily temperature intervals, ghilglvprices of electronic
devices for several stores, etc.

Interval-valued data are also considered symbolic data sets. Within the symbolic approach (Bil-
lard and Diday, 2003, 2006), there are several proposals to fit a regression model to interval data.
For a review, see Arroyo, Goalez-Rivera and M&t(2011). The simplest approach (Billard and
Diday, 2000) is to fit a regression model to the centers of the intervals of the dependent variable
and of the regressors. Further approaches consider two separate regressions, one for the lower
bound and another for the upper bound of the intervals, either with no constraints in the regres-
sion codficients (Billard and Diday, 2002) or by constraining both regressions to share the same
regression caécients (Brito, 2007). In a similar line, Lima Neto and de Carvalho (2008) propose

running two diferent regressions, one for the center and another for the range of the intervals, with
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no constraints. None of these approaches guarantees that the fitted values from the regressions will
satisfy the natural order of an interval, iye.<¥,, for all observations. Lima Neto and de Carvalho
(2010) impose non-negative constraints on the regressidfiaests of the model for the range

and solve a quadratic programming problem to find the least squares solution. However, for these
constraints to befiective, the range regression must entertain only non-negative regressors (e.g.,
regressing the range of the dependent variable on the ranges of the regressors), which limit the
usefulness of the model.

In this paper we propose a regression model, either for cross-sectional or time series data, that
guarantees the natural order of the fitted interval bounds for all the observations in the sample,
and for any potential interval forecast based on the model. Within the framework of interval time
series (ITS), we specify a bivariate system for the lower and upper bounds of the time series. The
observability restrictiory;; < vy, implies that the conditional probability density function of the
errors is truncated. Under the assumption of bivariate normal errors, the amount of truncation will
depend on the variance-covariance matrix of the errors and it will be time-varying because the
truncation is a function of the fierence between the conditional means of the lower and upper
bounds. When the observability restriction is severe, i.e., the truncation of the bivariate density is
substantial, not only the conditional expectations of the errors #ereint from zero but also the
errors are correlated with the regressors, thus any least-squares estimation (linear or non linear)
will fail to deliver consistent estimators of the parameters of the model. We propose a two-step
estimation procedure, combining maximum likelihood and least squares estimation, that will de-
liver consistent estimators. The first step consists of modeling the range of the interval, which is
distributed as a truncated normal density, to obtain maximum likelihood estimates of the inverse
of the Mill's ratio A,_1, which embodies the severity of the restriction. Only when the restriction
is severe, the second step is necessary. This step consists of introdugiitga least-squares
regression to correct the selection bias imposed by the restriction. However, the estimation in the

second step may be plagued with multicollinearity problems because in some instapégsn
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almost linear function of the regressors. Since multicollinearity cannot be resolved by dropping
some of the regressors, we propose a modified second step by implementing a minimum distance
estimator that delivers consistent estimates of all parameters in the model. The advantage of the
modified second step is that even when the observability restriction is not sgyver® for most
t), we are able to identify all parameters without much losficiency.

As an illustration of the methods that we propose, we model the interval of dailnilghv
returns to the SP500 index before and after 2007. Before 2007, the daily interval exhibits very little
volatility, but after 2007, volatility is the dominant characteristic due to the events of the financial
crisis of 2008. These two periods have verffelient dynamics. We implement the modified two-
step estimator and we find that in the stable period the observability restriction is not severe, so
that simple OLS will sffice to estimate a dynamic system for the lower and upper bounds of the
interval. In contrast, in the high volatility period the restriction is very severe, thus simple OLS
estimates should not be trusted and the second step is necessary to guarantee the consistency of the
estimators.

The modeling of the loyhigh interval is interesting in itself for several reasons. For instance,
in technical analysis, trading strategies are based on the dynamics of an object, the "candlestick”,
which is composed of two intervals, the Igvgh and the opgulose. In financial econometrics, the
low/high interval also provides estimators of the volatility of asset returns, see Parkinson (1980),
Yang and Zhang (2000), Alizadeh, Brandt, and Diebold (2002) among others. However, the most
important reason for our interest in estimation and forecasting with interval-valued data lies on the
fact that the only format available for some data sets is the interval format. Financial data sets
are exceptional; they are very rich and information come in many formats, e.g., databases contain
records of prices for every transaction in the market so that we could analyze prices at the highest
and the lowest frequencies; there is an almost continuous measurement in the transaction price. But
this is not always the case in other areas within economics or in other sciences. Some examples

follow.
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The US Energy Information Administration gather electricity prices for each state in US. Since
there are so many factorsfecting the prices of electricity, there is substantial variation across
states and across localities in the same state. This agency provides average retail price at the state
level in interval format, i.e. mifmax price, which is more informative of the realities of this mar-
ket. The US Department of Agriculture provides livestock prices also in interval format. The
Livestock Marketing Information Center (lowa State University) reports interval prices of several
items, for instance, mimax daily beef prices. Though they compute a weighted price, this is not
the price of a given transaction, so that the interval/max contains more valuable information
to the participants in the market. In the appraisal industry, the objective is to find a "fair market
price” for items, such as real estate, for which the market value cannot be observed directly unless
the item is sold. It is standard practice in this industry to recordmmix prices of similar items
that have had a recent transaction so that the "fair” market price, though non-observable, must be
contained within such an interval. Even with financial datasets, it is interesting to note that bond
market data is not as transparent as stock data and bond traders reporfakk ipigtrval of the
transaction, in which the price is contained. In other field&edent form economics, for instance
medicine, we have databases with patient data recorded in interval format, the most indicative is
blood pressure measurements i.e., diastolic and systolic pressure (low and high numbers respec-
tively). In earth sciences, temperature records across locations also come in interval format, i.e.
min/max temperature for a given location.

These examples show that the Jtwgh interval of a variable is a common format that pro-
vides additional information beyond an average measurement, and in some cases, it is the only
format available to the researcher. It should be noted that estimating and forecasting Witghow
interval-valued data is fierent from estimating and forecasting two quantiles. The/Hayh
bounds are extremes. In quantile regression, the loss function requires fixing the prolaability
associated with the quantile. If we wish to approximate thehdagt interval with quantile regres-

sion, it seems natural to fix = O for estimation of the lower bound amd= 1 for the estimation
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of the upper bound, but if the variables of analysis are defined in the domainHeo), these are

also the values of the correspondingiPquantiles. If our interest is any other quantile, e.g. the
interquartile range@q s, Qo.75], and the data is available in a classic point-valued format, then
guantile regression with monotonicity restrictions could be implemented as proposed by Cher-
nozhukovet al. (2010).

We organize the paper as follows. In section 2, we provide the general framework and basic
assumptions. In section 3, we present the two-step estimation procedure and develop its asymptotic
properties. In section 4, we conduct extensive Monte Carlo simulations that show the finite sample
properties of the two-step and modified two-step estimators. In section 5, we compare extensively
our methods with those existing in the literature. In section 6, we illustrate the empirical aspects

of our methods with the daily interval of Ighgh SP500 returns. In section 7, we conclude.

2 General Framework and Basic Assumptions

We introduce a general regression framework for interval-valued time series. The objective is the
estimation of a parametric specification of the conditional mean of an interval-valued stochastic
process. Generally, an interval is defined as follows:
Definition 1. An interval[Y] over a se{R, <) is an ordered paifY,, Y ] where Y, Y, € R are the
lower and upper bounds of the interval such thakYy,,.

We can also define an interval random variable on a probability sgade P) as the mapping
Y:F —[Y,Y,] c R. Inatime series framework, we further define an interval-valued stochastic
process as a collection of interval random variables indexed by time{Y¢.fort € T; and
an interval-valued time series (ITS) as a realizatipn, yu.]}._, of an interval-valued stochastic
process.

We are interested in modeling the dynamics of the pro¢g$s= {[ Yy, Yu]} as a function of
an information set that potentially includes not only the past history of the proces¥'ile=

(Yi-1, Yieo, - -+, Yp) but also any other exogenous random variables (X, Xi_1, - -+ , Xo) where
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X = (Xag, Xat, ..., Xpr). I this context, we focus the modeling exercise on establishing the joint
dynamics of the lowefY;;} and uppeKY,} bounds taking into account the natural ordering of the
interval. Thus, a general data generating process is written as

Y, G (Yt1 Xt &
vo=| "= ( A +| ™|, suchthay, <Y, (2.1)

Yut Gu(Yt_l’ Xt;ﬁu) Eut

whereG(:), Gy(-) are diferentiable functionss, , B, are twoJ x 1 parameter vectors, arl =
(ex, &)’ is the error vector. The observability restrictign < Y, will be imposed on the process.
The observability restriction ir2(1) is the key feature of the specification because it generates

two important issues for the estimation of the model), First, the restrictiory;; < Y,; implies a

restriction on the distribution of the error vector. The errors now are restricted as follows,

GI(YL X5 8) + en

IA

Gu(Yt_la Xt;,Bu) + Eut;

\%

gw—en 2 GI(YTLXGB) = Gu(YH X5 Bu)- (2.2)

The transformed observability restrictiah2) implies that, conditioning on the information set
J1 = (YEL XY, the joint distribution of &, ey) is truncated from below. Figur# illustrates
a truncated joint density of the errors. In the plane formed by the variahles), the ellipse
represents a contour of the joint density, and tHed&gree lines; = g+ (G, —G,) is the truncation
line, separating the shaded area, wh¥¢ye< Y, holds, from the area where the restriction is
violated.

[FIGURE 1]

From Figurel, we observe that the feasible support for the errors will depend on the error
variance-covariance matrix as well as any other parameftexgiag the shape of the contours, and
on the position of the truncation line, which is a function of théetence between the two condi-

tional mean functions. Small dispersion of the errors together with a lafigeatce, i.eG, << G,

tend to mitigate the severity of the observability restriction because it reduces the probability of the
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errors falling below the truncation line to the point that the restriction might not longer be binding
and it could be safely removed from the model. However, if the restriction is binding, it cannot be
ignored in the model estimation because, on one hand, it may generated predicted Vg|ssdof

Y.t that do not follow the natural order of an interval, and on the other, it \ffi#lch the asymptotic
properties of the estimators as we see next. By taking conditional expectations with respect to

in (2.1),

Era(YielYie < Yu) GI(Y, X B1) + Ecalenlew — en = G — Gy),

Eca(YulYie < Yu) = Gu(YH X5 B0) + Eca(eudew — & > G — Gy).

When the observability restriction is binding, the conditional expectations of the errors, which are
Ei_i(etlew — e = G — Gy) andEi_1(eulew — er = G — Gy), will not be zero and furthermore,
they will depend on the regressors of the model through the funcBgRsandGy(-). Thus, any
least-squares estimation (linear or nonlinear) will fail to deliver consistent estimators for the model.

Before introducing our estimation procedures, we need to state some basic assumptions on
(2.9).

Assumption 1. (Weak Stationarity) The interval-valued stochastic prod&gs= {Yj, Yu} iS co-
variance stationary, which means that the low¥g} and upper{Yy} processes are themselves
covariance-stationary. We also require covariance stationarity in the regresser X, ..., Xpt)'

This assumption allows estimators with standard asymptotic properties. The proposed methods
will also apply to non-stationary data but the properties of the estimators will be non-standard.
Assumption 2. (Exogeneity) The regressof¥'~*, X') are strictly exogenous variables i.e.,

E(glYL, XY =0

This assumption is standard in regression analysis to protect the estimators against endogeneity
bias. In our context, the objective is to analyze the dynamid¥ef and{Y;} as a system. For
instance, in a VAR system, the right hand side of the system will have lap§$®and{Y;} . If
we were to introduce additional regressirswe could proceed in several ways, either expanding

the VAR system to includ#; as another element of the system, or considering only predetermined
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regressors, i.eX;_1, X¢_», ..., Or requiring the weak exogeneity &f. By proceeding in either way,
we will focus exclusively on the endogeneity generated by the binding observability restriction,
that is, wherk,_ (i lewt — e = G — Gy) andE;_1 (sutlewt — & = G — Gy), are not zero.
Assumption 3. (Conditional IndependencéX, ..., X.1) and Y are conditional independent given
X' i.e. (Xt, ..., Xeo1) L YHUXE

This assumption relates to the previous one in the sense that it opens the syStghaatl{ Y}
to the dfect of other regressors which are not explicitly modeled within the system. For instance,
in a VAR framework, if we were to model jointlyY}, {Yi}, andX;, this assumption will not be
needed. But because we focus only on the dynami¢¥gfand{Y;}, we need to assume thét
does not Granger-cau3gto avoid biased and potentially inconsistent estimators.
Assumption 4. (Normality) The error termg; = (&, &y) arei.i.d. bivariate normal random vari-
ables with joint density (&) = (27) 12|72 expl—¢ X1&/2} with the2 x 2 variance-covariance
matrixX = [0 pojoy; poioy ol

This assumption may seem restrictive but it provides at least a quasi-maximum likelihood ap-
proach to the estimation ¢Y,;} and{Y;} . If the observability restriction is not binding, estimation
by maximum likelihood under normality or by least squares, will produce consistent it
estimators. If heteroscedasticity is present, the estimators are still consistent but we would need
to implement a heteroscedasticity-consistent estimator of the variance for a correct inference. If
we were to assume any other density, and again running the risk of a false assumption, we would
not be sure whether QMLE results hold (Newey and Steigerwald, 1997). If the observability re-
striction is binding, bivariate normality implies that the distribution of the errors is conditionally
truncated normal with conditional heteroscedasticity. Our estimation procedures take care of the
heteroscedasticity, and since we are modeling extremes, low and high, the density of these vari-
ables cannot be symmetric, thus the truncation takes care of the asymmetry. Furthermore, the
simulations presented in Sections 4 and 5 show that our estimators are very robust to misspecifi-

cation of the density when there are relevant dynamics in the conditional megrig @nd{Y}}.
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The potential misspecification of the regresapr seems to fiect mainly the estimation of the
constant but we will show that the estimation of the system generates good fitted intervals with

substantially smaller losses than other competing methods.

3 Estimation

Given the implications of the observability restriction for a least squares estimator of the parameters
in (2.1, itis natural to think that a full information estimator, like maximum likelihood (ML), will

be better suited to guarantee consistency. In this section, we will introduce the conditional log-
likelihood function of a samplg' in order to underline the contribution of the restriction to the
estimation. However, our main objective is to develop a two-step estimation procedure that delivers
consistent estimators but it is easier to implement and it overcomes some of the limitations of the

ML estimator.

3.1 Conditional log-likelihood function

For a sample of siz&, y" = (yr,---,y1) andx’ = (xr,---, X1), and for a fixed initial valug®,
let fy (yT |xT; 0) be the joint conditional density of , whered € @ is an open subset ¢¥. The

conditional likelihood/(y', 6) of y' is fyr (yT|XT; 6) if yir < Y @and O otherwise. It follows that

.
fr Oy, X5 60)

f,O:fTTTST,XT;exPrTsTxT;Q:H AL

(y ) Y (y |y| yu ) (yl yu| ) L PF(Yn < yut|yt_l, Xt,g)

(3.1)

wherefy, is the density of; conditional on the informationvt-%, X"). In (3.1), we have also called

assumptior8. Under assumptio#, the conditional log-likelihood function of a sampj&is
T

Ly'6) = ~log2r— 5logIsi— o > [y~ G L el 57 [y~ G0 op)
1 T
= D logR(y. x;6). (3.2)
t=1
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whered = (8, X); andR (Y2, X'; 6) is defined as
Gy X5 8) = Gu(y ™, X; Bu)

ol + 0'|2 - 200,07
in which @(-) is the standard normal cumulative distribution function.

R, X5 6) = Priyie < yuly™.,X;0) =1- @

The maximum likelihood estimat®,, is the maximizer of.2). This estimator will be highly
nonlinear, even for a linear system as ihlj, because of the contribution of the observability
restriction termR(y*~1, x'; 6) to the log-likelihood function.R(y" 2, X; 6) provides the probabil-
ity mass that is left in the joint density after the truncation takes place. It is easily seen that
0 < R(y"%, x;6) < 1. If the restriction is not bindingR(y"1, x';6) = 1 for all t, and its contri-
bution to the log-likelihood function is zerfoln this case the restriction is redundant and it can
be removed from the specification of the model. On the other hand, if the observability restriction
is binding i.e.R(y"%, x'; 6) < 1 for somet, it must be taken into account in the estimation of the
model. Ignoring the restriction will result in the inconsistency of ML estimator. In theory, the ML
estimator has obvious advantage. If the true distributios; @ normal as in assumptiofy un-
der certain regularity conditions, the ML estimaggi is consistent and asymptotically nornial.
However in practice, given the nonlinearity of the ML estimator induced by the observability re-
striction, we should expect multiple local maxima in the log-likelihood function leading to multiple
solutions and non-trivial convergence problems in the maximization algorithm. Thus, the consis-
tency of ML estimator will depend on a good guess of the initial value of the parameters. For these
reasons, we propose a two-step procedure that combines maximum likelihood and least squares
estimation, that it is easy to implement and will deliver consistent estimators of the parameters of

the model.

1A sufficient and necessary condition for a non-binding restrictichYs=X£- G 2X5) o 0 for allt,

\/o’ﬁﬂTlZ—Zpo'um .
2Regularity conditions that guarantee the consistency and asymptotic normality of ML estéipatare in
Amemiya (1985, Theorems 4.1.1 and 4.1.3) and in White (1994, Theorem 4.6).
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3.2 Two-Step Estimation: General Remarks

Given the popularity of VAR models, we will consider the proceésg)(to follow a linear autore-
gressive specification of ordgr However, the two-step procedure to be described next will be
also applicable to nonlinear models by properly choosing a nonlinear estimation technique in the
second step.
The interval autoregressive model, IAR(p), is described as follows
Yit Bic Z BY B Yie Lo

Yuit Buc j=1 (22 (22 Yut-j Eut

with observability restrictiory; < y., and an error terng; that is bivariate normaili.d.. Condi-

tioning on the information se¥;_; = (Yi-1, ..., Yt-p --.), the conditional mean of the IAR(p) process

is

p
E1(Yielyut = Yir) Bic + Z,B(ljiylt it Z,B(ljg))’ut i + Eca(enlYur = Vi)
j:

p
Eea(YutlYut = Vi) = Buc+ Zﬁ(zjiylt it Zﬁzzyut i + EcaleulYut = Vi)

j=1
Under the normality assumptich we derlve the conditional expectation of the errors (see web
appendix), which ards_i(exlyu = Yit) = CiAdir and E_i(eulyut = Vi) = Cudi1, WhereC, =

—(0'|2 — poy01)/Tm, Cu = (0% = poyo) [om, 072, = 02 + O'IZ - 2p00y, and

SAWY ™, AB)/om)

A1 = 3.3
T 1- oA AB) o) (89
A AB) = G - Gy = AB. + Z Ay + Z APV
AB = (Bis — Buo B — B0, 5 - (212) B2 - (Zr;) ® _ g0y (3.4)
Therefore, the regression models can be explicitly written as
P
Vit = Bict Zﬁ(ljiylt it Zﬁﬁ’%yut i+ Cidie + Vit (3.5)
j=1
P
Yt = Buc+ Zﬁ(zjiylt i+ Z,Bzzyut j + Cudie1 + Vit (3.6)

where nowy;; = 8“ -CiA1 andvut = gyt — Cydi_1 are martingale dierence sequences with respect

t0 Ty, i.€. Eeor(VielYur = Yit) = 0 andE1(VuelYur = Yit) = 0
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Two remarks are in order. First, sin€g — C; = o, We needr, > 0 to be strictly positive for
C. andC; to be well defined. This implies that the specific cage= o2 andp = 1 must be ruled
out. This could happen when the intervajl,|e.] is degenerate and collapses to a single value.
Secondly,1;_; is the inverse of the Mill's ratio and embodies the severity of the observability
restriction. When the restriction is non-bindifyy'™*, x'; ) = 1 for all t, which implies that
Ai_1 = 0 for all t.

Based on regression3.p) and @.6), the two-step estimation strategy consists of estimating
first and assessing how binding the observability restriction is. The second step is only meaningful
when the restriction is binding. In this case, we proceed to plug_inin (3.5) and @.6) and per-
form least squares. The proposed two-step estimation strategy resembles Heckman'’s (1979) two-
step procedure for sample selection models. However, there are important concefgtancks.
In Heckman'’s, the selection mechanism (the first step) includes the full sample of observations,
e.g. women who participate and who do not in the labor market, and the regression model (the
second step) includes a partial sample, those for which the dependent variable of interest is ob-
served, e.g. the wage of those women who work. In our strategy, we carry the same sample in both
steps because those observations that violate the observability restriction will never be observed.
Hence, from the start, our first step will focus on a truncated normal regression that arises very
naturally when we model the range of the interval, and from which we will estithaie Our
second step is analogous to Heckman’s in that the objective is to correct the selection bias of the
least squares estimator in the regression of interest. However, Heckman'’s bias is inconsequential
when the error terms of the selection equation and of the regression of interest are uncorrelated.
In our second step, even if the errors of the lower and upper bound regressions are uncorrelated,
the inconsistency of the least squares estimator will remain when the observability restriction is

binding and is omitted in the second-step regression.
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3.3 Two-step Estimation: The First Step

Our objective is to estimaté_;. To this end, we model the range of the inters = Yyt — Vi,

which according to the IAR(p) model will exhibit the following dynamics

P P
Yo=Y = —|ABe+ D APy + > ARy, ,-] + Asy (37)
j=1 j=1
Under normality assumptiofy and imposing the observability restriction, thé&elience of the two
error termsAg;, follows a truncated normal distribution. Thus, the conditional densitypfs,

~ 1 ¢(Ayr/om + AYL AB)/om)
f(AY|AY: > O,y 1 AB, o) = — 3.8
(Al 2 0.¥ 75 8. o) = G A A o) &9
Based on3.8), we can construct the log-likelihood function of a sampl& afbservationay

1 T
TIL(AY; AB, o) = = Z log f(AyiAy; > 0,y AB, o) (3.9)
t=1

to obtain the maximum likelihood estimatofﬁ ando, as the arg ma&gﬂm[T‘lL(Ay; AB, o))

The ML estimators will be plugged ir8(3) to finally obtain_;.

There are two advantages in modeling the range of the interval. The number of estimated pa-
rameters is reduced from 2¢12p) + 3 in the full ML estimation 8.2) to 1+ 2p+ 1 in (3.9). More
importantly, for the truncated normal regression, there is a unique solution to the maximization
problem so that the ML estimator is the global maximizer of the likelihood function. Consis-
tency and asymptotic normality of the ML estimators and are easily established. We add the
following assumption
Assumption 5. (Mixing Conditions) The interval-valued stochastic proc€gs = {Yi, Yy} is
either (a) ¢-mixing of size-r/(2r — 1), r > 1 or (b) a-mixing of size-r/(r — 1), such that
ElYi|* < A < o0 and BY,|™™ < A < oo for somes > O for all t.

Theorem 1. (Consistency and Asymptotic Normality of the first-step ML Estimatorplet
(AB/om, o7m) = (AB*, o) be al x (2p + 2) parameter vector corresponding to modg@l7). Under
assumptiond — 5, the maximum likelihood estimatér has the following properties,

@) @ML converges to the true valug in probability, i.e.ﬁ*ML LA s,

(b) @‘ML is asymptotically normally distributed, i.e/T (§*ML —65) 5 N(O, V), where the asymptotic

covariance matrix i/ = — pIimT%,[E(@ZL/80*09*’|95)]_1-
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The truncated normal regression model has been extensively studied for cross-sectional data.
Tobin (1958) proposed the maximum likelihood estimator and Amemiya (1973) proved its con-
sistency and asymptotic normality. Orme (1989), Orme and Ruud (2002) proved that the solution
to the likelihood equations is unique and that there is a global maximizer of the log-likelihood
function. The proofs of the asymptotic properties in Amemiya (1973) are directly applicable to
time series data by strengthening the moment conditions. With assurgptiareplace the Kol-
mogorov’s strong law of large numbers and Liapounov’s central limit theorem for non-identically
distributed random variables in Amemiya (1973) with McLeish(1974)’s strong law of large num-
bers (Theorem 2.10) and Wooldridge-White (1988)’s central limit theorem for mixing processes
(Corollary 3.1) to guarantee that Theordrholds. The asymptotic properties of the estimator of
the inverse of the Mill’s ratio follow as a corollary of Theorenbecausel() is a continuous and
differentiable function with respect &.

Corollary 1. (Consistency and Asymptotic Normality of the Inverse of the Mill's Ratio) The esti-
mator of the inverse of the Mill's ratiox = (Ao, -+ , Ar_1) has the following properties
(a) /l(yt,Z\,B:,,L) converges in probability to the truy', AB;), i.e., A(Y, Z\ﬁ*ML) LA AW, ABY);
(b) A is asymptotically normally distributed, i.eNT (K - A) 5 N(O, S), where the asymptotic
covariance matrixSy = J(ABH)V ag: J(AB;)" andV ag: is the asymptotic covariance matrix of
\/T(Z\,B:AL - ABg), a leading principal minor of matri¥/. The t-th row of matrixJ(Agg) is,

ji = AL ABYIAY L ABy) — zi-1AB] -1, and vectorz_q iS (L Vi1, Yut-1:*** » Yitep Yutop)-

3.4 Two-step Estimation: The Second Step

We plug the estimate,_; in the regressions3(5) and (3.6) to obtain the feasible model. We need
to redefine the new error terms in the feasible regressiong asduy;, which have two sources
of variation, one coming from thg estimator, and the other coming from the error term in the
infeasible regression, i.au; = C(Ad1 — A1) + Vie anduy = Cu(dier — A1) + V. AS a result,

the error term of the feasible regression will be heteroscedastic. Writing the feasible regressions in
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matrix form

Y = th +U, Yy= ﬁyu + Uy (3.10)
where

yl = (YI,l, R yl,T)l, yu = (yu,l’ Tt yU,T)l,

Y= (ﬁh Cl)a Yu = (ﬁu, Cu),

u =Ci(A - K) +Vv), Uy=CyA- K) + Vg,
A=, A1), H=(ZNA),

Z 1 VYo Yo - Yiip Yui-p
Z — E — E . . . .

Z1_1 1 Vit Yutr o0 Wit—p YuT-p
The least squares estimators of the parameteasdy, are

¥ =HH)Hy, 7= HH)HYy, (3.11)
The next theorem establishes the asymptotic properties of the two-step estiphatwls,,.
Theorem 2. (Consistency and asymptotic normality of the second step OLS estimator) Under the
following assumptions,

(i) plim;_ . H'H/T =B~ which is nonsingular;

(i) H'J(AB¥)/T converges uniformly in probability to the matrix funct@g*); J'(AB*)I(AB*)/T

is bounded uniformly in probability at least in a neighborhood of true valgg

(iii) E|h_1ivit]? < o0, Eln_1;Vil? < o0, and Bji_1ivi|*> < o foralltandi=1,---,2p+ 2;

(iv) W\t = var(TY2H"v)) LA ¥, and ¥, 1 = var(T Y?H’v,) 5 ¥,, and¥,, P, are finite and

positive definite;
Then, the two-step estimataysandy,
(a) converge to their true values in probability,
(b) with asymptotic normal distributions, i.eNT (¥ — 1) it N(0,BE,B’), and VT (7, — yu) S
N(0, BE,B’), whereB = plim,_,_(H’H/T)™* = plim,__(H’H/T)™%, and

[1]

| = W+ CPQLSQo + Mg + M7, (3.12)

[x1

c
I

= W, +C2Q;S0Qo + My + M/, (3.13)
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with
Qo = plim;_,, H'I(ABy) /T, So = J(ABYV ap; I(ABG)

Mo = plimy_, E(H'Vi(A = AYHC)) /T, My = plim;_ E (H'Vy(A — AYHC,) /T.
In equations .12 and @B.13), the first terms¥, and¥, are the variance-covariance matrices

of the errorsv; andv,,; respectively, ifA were observable. The second te@§S,Qo captures the
uncertainty induced by the estimates/of The last two termsM o andM o, capture the covari-
ances between the error termsandv,, with A. Althoughv;; andv,; are martingale dierence
sequences, they are correlated with fori = 0,1,--- , T —t. This is a further dierence with
Heckman’s two-step estimator. In Heckman’s covariance matrix, the nidiiis zero because
in a cross-sectional setting the ernors uncorrelated with the inverse of the Mill’s ratio. Since
the asymptotic variance-covariance matrices3ii? and @.13 capture the heteroscedasticity in-
duced by the observability restriction together with the time dependence inducad Newey
and West (1994)'s HAC variance-covariance matrix estimator shotiidsto estimat8Z,B and
BE,B consistently. We also estimate the unconditional variang¢esdo? of the respective errors
&y andegy and their correlation cdicientp by implementing a simple method of moments (see

web appendix).

3.5 Two-step Estimation: Implementation Issues

The implementation of the two-step estimator may be subject to multicollinearity, and conse-
guently the parameteng andy, in the second step, equatiort 10, may not be precisely es-
timated or, in extreme cases, they may not be identified at all. There are two reasons for multi-
collinearity. First, the functional form3(3) of the inverse of the Mill's ratiol (:) is nearly lin-

ear over a wide range of its argumexty', AB)/o, so that the estimated regress’{)ﬁs almost
collinear with the regressors th This multicollinearity issues cannot be resolved by just dropping
some of the regressors because the inclusioh isfnecessary to guarantee the consistency of the
estimatorss, andp..

The second reason pertains to those cases in which the observability condition is not binding.
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When the observability condition is not binding, the population valug @f is zero. Within a
sample, we will observe values close to zero and very small variangeTine direct consequence
is thatC, andC, are not identifiable. In the simulation section, we will discuss cases in which this
problem is severe.

For these two reasons, we proposaadifiedsecond step estimator that overcomes the identi-
fication problem ofZ; andC,, and in addition, provides a direct identification of the unconditional

varianceSrl2 anda? of the respective structural errasisande,, and their correlation cdicientp.

3.6 Two-step Estimation: A Modified Two-step Estimator

The first step of the estimation is identical to that explained in section 3.3 , from which we obtain
the estimated andcy,. In the second step, we exploit the relationships an@n@,, o, ando?,
ie.,
Cy+Ci=[02- 0'|2]/0'm and C,-C, =0 (3.14)
If o2, o2 andor, were known, the system of equatiosl4) would have a unique solution, and
Ci andC, will be uniquely identified. By writingr-2 ando? as functions ofS; andC,, i.e. 0%(C,)
ando?(Cy), we propose the following minimum distance estimator, which permits identif@jng
andC,,
(C,Cy) = argminCy + C — [0X(Cy) — 02(C)]/Fmi2,  suchthat C, - C, = G (3.15)
Our first(ctlgg)k is to findr2(C,) ando?(C)). In order to do so, observe that thaconditional
varianceo? andal2 of the error termg,; andeg; can be written as follows
of = var(ey) = varE(erlAs > A AB))) + E(var(edAs > A(Y ™ AB)))
= C?var(l,_y) + E(var(vly'™)). (3.16)
Similarly, o2 = C2var(d;_;) + E(var(v,ly*™1)), and
o2 = var(Ae) = o var(l,_1) + E(var(Avly™), (3.17)
with Av; = vy — Ve = Ay + z_1AB — o-ndi_1 by subtracting 3.5) and 3.6), andApB defined by 8.4).

From @3.17), we have varf;_;) = 1- E[var(Av]y*1)]/o2, so that we need consistent estimators

ACCEPTED MANUSCRIPT
18



Downloaded by [Gloria Gonzalez-Rivera] at 11:36 27 August 2013

ACCEPTED MANUSCRIPT

for the population moment&(var(v|y*1)), E(var(vyly~1)) and E(var(Av|y*-1)) to obtaina?(C,)
ando?(C)) as functions of sample information. The following Propositioguarantees that this is

the case. First, let us call

ZT/t = Ayt + Zt_]_Z,\B — a:m//it_]_, (318)
Ur = Yie — 2-181(C) - Clzt—l, (3.19)
Uut = Yut — Zt—lBu(Cu) - Cu//l\t—l’ (3-20)

wherel\ﬂ and.;_; are the estimates from the first step, #\(€ ) andp,(C,) are the concentrated
OLS estimates g8 in (3.10, i.e.

B(C) = (Z'Z)'Z'(Y\ - CA),  Bu(Cu) = (Z'Z)'Z'(Yy - CuA), (3.21)
Proposition 1. Under assumptions 1 to 5 and fef or a-mixing sequences\and \;; with at least
finite second moments, we have tRgt, ZT/tZ /T LA E(var(Avily*1)), Zthl’Jﬁ /T LA E(varfvly™1)),

T W/T 5 E(varuy™), and thereforeg(C)) = C2(1 - S, AV /TG2) + XL /T S o2

anda3(C.) = C3(1 - X1, AV, /T52) + X1, /T 5 o2

The implementation of the minimum distance estimatoBii9 is described in Figura.

[FIGURE 2]

We proceed as follows:
1. pick any pointC;, C;) on the lineC, = o + Cj;
2. compute the corresponding concentrg@g@,;’) andg,(C;) as in @.21);
3. compute the corresponding residualsuy, andAv; as in B8.19, (3.20, and @3.18 respectively;
4. calculate the interceptrf(C;) — o3(C;))/om to obtain the pointE;, C;*) on the lineC, =
[3(C0) = 7P (C)1/Tm + Ci;
5. assess the distandg;(— C:*)?;
6. go back to 1. Repeat until the distance functi®ri§ is minimized by the minimizerQ, C,).

Given the optimal solutiond, C,), the estimators of the parametgrsf the original model are
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readily available as well as the variance-covariance matrix of the efif@sde, i.e.
B =B(C)=(Z2)*Z’M-CA), Bu=BuC0) = (Z'2)Z'(Ys - CuA)

~ — ~\ ~ -5
0'|2 = 0'|2(Cl)a g =0g(Cu), p = TZ&:EU ;

(3.22)

Theorem 3. (Consistency of Modified Two-step Estimator) The modified two-step esti{@atoy)
and those defined if8.22 converge in probability to the true values of the parameters.

In order to prove Theorer8, which states the consistency of estimaBsandC, in (3.15),
we only need to verify the assumptions stated in Theorem 7.3.2 in Mittelhamimeif. (2000)
that guarantee the consistency of extremum estimatdtsopositionl shows that the restricted
objective function in 8.195 converges in probability to that provided iB.14). In addition, since
the system of equation8.(L4) has a unique solution and the restricted objective funcoby is
a continuous and convex function @ andC,, it is uniquely minimized at the true values Gf

andC,.

4 Simulation

We perform Monte Carlo simulations to assess the finite sample performance of the two proposed
estimation strategies: the two-step and modified two-step estimators; and compare these estimators
with a naive OLS estimator that does not take into account the observability restriction.
The data generating process (DGP) is specified as an IAR(1)
Yie| Bic . Bir Biz|| Vit N &l

Yut Buc Bo1 Ba2||Yut-1 Eut
and with an error term that is bivariate normally distributeg (&, £4t)” ~ N(O, X).

., suchthat yy; >y (4.1)

The interval time seriefjyi, yu,t]}tT=1 is generated sequentially to guarantee that the bounds are
not crossing each other i.g; > y,:. We proceed as follows. Given the interval datiym 1, Yu-1]

at timet — 1, we draw error termsg, = [&;, &y¢] from the bivariate normal density and calculate

3See Newey and MacFadden (1994, pp. 2133-34) for the proof. The four assumptionswge YaX) converges
uniformly in probability to a function of, saymy(6); (b) mp(6) is continuous ird; (c) my(6) is uniquely maximized at
the true valud; and (d) the parameter spa@ds compact.
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[Vit, Yut] for timet. If a cross-over happens (i.§; > Y.:), we draw another pair of error terms

until the observability restrictioy;; < y,: is met. In doing so, we guarantee that the erigrs

are truncated bivariate normally distributed, and that the truncation varies across time because it
depends on the past interval-valued dpta;| as well as on the assumed paramegssin the

IAR(1) DGP.

We have designed eightfterent specifications as follows:

Binding Cases Non-bindinGases
Parameters B-1 B-2 B-3 B-4 NB-1 NB-2 NB-3 NB-4
Bie 0 0 0 0 -2 -2 -2 -2
Buc 0 0 0 0 2 2 2 2
B 0.8 08 01 01 0.8 08 01 01
Bz 0.1 01 0.05 005 01 01 0.05 005
Bo1 0.1 01 0.05 005 01 01 0.05 005
B2z 0.8 08 01 01 0.8 08 01 01
C -1/V2 -14564 -1/V2 -1.4564 -1/V2 -14564 -1/V2 -1.4564
Cu 1/v2 -0.3479 ¥V2 -0.3479 YvV2 -0.3479 V2 -0.3479
o? 1 3 1 3 1 3 1 3
o2 1 1 1 1 1 1 1 1

P 0 0.8 0 08 0 08 0 08
Sample Size 25@000 2502000 2502000 2502000 2502000 2502000 2502000 2502000

Number of Simulatior= 1000

We have simulated a block of four DGPs where the observability restriction is binding and
another block of four DGPs where it is not. Since the observability restriction for the 1IAR(1)
implies thatAe/om > A(yi_1,60%). The right hand side of the inequality will determine whether
the observability restriction is binding or not. We guarantee that the observability restriction is
not binding whem (yi_1, ") = AB; + ABYir-1 + AByYur-1 < 0. Otherwise, the restriction could
be mildly or severely binding depending upon the choices of the parameters of the DGP. In our
simulations, we fix the parameters Ag; andAg; and play with the intercepig; to allow the
restriction to be binding or not. For the four cases, B-1 to Br4;8.c = 0, so that the observability
restriction becomes binding; and for the four cases, NB-1 to NB:4+ Buc = —4, so that the
restriction is not severely binding. Within each block, we simulate two IAR(1) DGPs, one with

high persistence and another with low persistence; and for each one we assumdédvemtdi
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variance-covariance matr for the errors, one with uncorrelated errors and another with highly
correlated errors. For each DGP, we also run small and large sample experimen®50 and
2000) with 1000 replications per DGP. Due to space constraints, we report here our results for only
four cases, B-2 and B-4 in Tableand NB-2 and NB-4 in Tablg; the results for the remaining
cases are in the web appendix. These are our findings for all eight cases:

[TABLES 1-2]
1. When the observability restriction is binding (Cases B-1 to B-4), the mean values of the OLS
estimates are quite far from the true values, as we expected. OLS estimators are not consistent due
to the correlation of the regressors with the errors. When the restriction is not severely binding
(Cases NB-1 to NB-4), the mean values of the OLS estimates are very close to the true values. In
this caseg;_; is very close to zero, so that the endogeneity problem does not arise.
2. When we implement the two-step estimation, the main issue that we face is identification of
the model whether or not the restriction is binding. If the restriction is bindinglbuis almost
linear in the regressors of the model, multicollinearity arises (Cases B-3 and B-4). The problem is
more severe when there is low persistence in the model and the errors are correlated (Case B-4).
Only when2;_; exhibits substantial variation (Cases B-1 and B-2), we do not face a problem with
the identification of the model and the mean values of the two-step estimates are very close to the
true values. If the restriction is not binding, we expect severe multicollinearity. In Cases NB-1 to
NB-4, the RMSE’s ofC, andC, explode regardless of the persistence of the model and the sample
size. When there is low persistence in the model (Cases NB-3 and NB-4), the RMSEES&QEI
Eu’c also explode because the nearly-zero regregsors highly collinear with the constant terms.
3. Modified two-step estimation resolves very nicely the identification problem whether the ob-
servability restriction is binding or not. If it is binding (Cases B-1 to B-4), the estimators are
consistent whether there is low or high persistence and whether the errors are or not correlated.
The modified two-step estimates are very close to the true values and their standard errors are

smaller than those of the two-step estimates, even in those cases where the model is well-identified
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(Cases B-1 and B-2). If the restriction is not binding (Cases NB-1 to NB-4) and thus redundant,
the OLS estimator is consistent anti@ent but the modified two-step estimator does not seem to
be less #icient as the RMSE'’s of the modified two-step estimates are very close to those of the
OLS estimates.

In practice, we do not know priori whether the restriction is binding. In the first step, we
assess the severity of the restriction by testing whethet 0. In the second step, we gather
further information about the value of the restriction because when it is binding, the OLS estimates
should be substantially fierent from the two-step estimates. In addition, the regreAGspshouId
be statistically significant. Since multicollinearitffects the significance of._;, we strongly
recommend running the modified two-step estimator and assessingférentes with the OLS

estimator.

5 Comparison with Existing Approaches

We compare our two-step (TS) and modified two-step (MTS) estimators with those proposed in
the current literature. We implement the approach of Lima Neto and De Carvalho (2008, 2010),
henceforth LNC, and we also estimate a location-scale model from which we construct interval
estimates.

For an interval-valued time seri€%} = {[Yi, Yu]}, we obtain the time series of the centers, i.e.,
Vet = (Vit + Yur)/2, and of the radius, i.ey;y = (Yut — Yit)/2. LNC estimate the following system
Yoo = Bo+BYer1+ +BpYerp+ € (5.1)
Yo = Bo+BiYreatc+BpYrp t&- (5.2)
Their centefrange method (CRM) estimates each equation by least squares and their constrained
centefrange method (CCRM) imposes the restrictgre 0, j = 0,..., p on the equation of the
radius to ensure that; "> 0 and, thereforey,” < Y. Then, the equation of the center is estimated

by least squares and the constrained equation of the radius by adapting Lawson and Hanson’s
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algorithm.

Before we proceed with the comparison among methodologies, it is very important to underline
the implications of the LNC system of centradius equations for the system of loyigyper bound
equations. It is easy to transform the cemtatius vector to the lowgrpper bound vector by
defining the 22 matrixM =[1/2 1/2;-1/2 1/2]suchthaty. vVy«]’ = Myt VYu]'- Hence,

the system§.1) and 6.2) is transformed into a system of lowepper bounds equations as follows,
Yit B5 = Bo N PABE+8)/2 B —B)/2|| Yi-1 N & — €

: (5.3)

Yut Bo+B| =B -B)2 GBF+B)/2| Y| |& + €
which is extremely restrictive because, for each offiltedticient matrices, the diagonal elements

must be identical, equal t@{+ 5)/2, as well as thefé-diagonal elements, equal t6f(-5/)/2. In
the unlikely case that these restrictions hold, LNC and our approach will deliver the same results.
The second set of comparisons is with a location-scale nfodpplied to the time series of
centers. We estimate a GARCH(1,1) model, ig.= uc + oy With 02 = w+ae? | + o |, where
the i.i.d. standardized errdy follows a standard normal (GARCH-N) or Stud¢niSARCH-T)
density withv degrees of freedom. Based on this model, we construetfiprobability intervals,
which will depend on the density assumptionséan.e., [Vic, Yutl, = [%t — 2301, Yot + z%(}t], and
[9> utl, = [%t ~ 15,560 VI — 2), Yot + t,85 \/m] Since the original dathy, Y. are the
observed extreme values of the process at tinvee will stretch the estimated intervgh, Yu,
to cover as much as 99% or 99.5% probability, so thandy,; are far away into the tails of the
distribution.
We simulate data from four DGPs, which are characterized by whether the observability restric-
tion is binding or not, whether there is high or low persistence in the dynamics of the conditional
mean, and whether the errors of the model are drawn from a bivariate normal density or from a

bivariate Student-density with five degrees of freedom. The four DGPs are:

“We are grateful to a referee who suggested the 5-parameter location-scale model as a classical benchmark
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Ba Bou Pu Pz P P of o4 p Notes
DGP1 0 0O -08 01 -01 08 3 1-0.8| B,H,N,T5
DGP2 0 0O -0.1 0.05 -0.05 0.1 3 1-0.8| B,L,N,T5
DGP3| -2 2 -08 01 -01 08 3 1-0.8 | NB,H,N,T5
DGP4| -2 2 -0.1 0.05 -0.05 0.1 3 1-0.8 | NB,L,N,T5

* B: binding observability restriction; NB: non-binding;
H: high persistence; L: low persistence; N: normal errors; T5: Studenbrs

5.1 In-Sample Evaluation Criteria : Loss Functions

For every DGP, we generate 1000 samples and evaluate the performance of each estimation method
according to: (i) Root Mean Squared Error (RMSE) for upper and lower bounds, (ii) Coverage
(CR) and Hiciency Rates (ER) of the estimated intervals (Rodrigues and Salish, 2011), (iii) Mul-
tivariate Loss Functions (MLF) for the vector of lower and upper bounds (Komunjer and Owyang,
2011), and (iv) Mean Distance Error (MDE) between the fitted and actual intervals (Aet@io
2010).

For a sample of siz&, let us cally; = [yi, Y] the fitted values of the corresponding interval
Vi = [Vit» Yur] Obtained by each methodology. These are the definitions of the four criteria:

(i) RMSE: RMS E = /XL, Gk - Y2/ T andRMS E = /X, Gt — Yo/ T

(i) CRand ERCR= £ 311, w(y: N %) /W(y), ER= 2 3 w(y: N 9)/W($), wherey, N ¥ is the

intersection of actual and fitted intervals, ang) is the width of the interval. The coverage rate
(CR) is the average proportion of the actual interval covered by the fitted interval, arfficreney
rate (ER) is the average proportion of the fitted interval covered by the actual interval. Both rates
are between zero and one and a large rate means a better fit. Given an actual interval, a wide fitted
interval implies a large coverage rate but a Id¥icgency rate, on the contrary, a tight fitted interval
implies a low coverage rate but a higtieiency rate. Therefore, we take into account the potential
trade-df between the two rates by calculating an average of the two,CBR+(ER)/2.

(i) MLF: We implement the following multivariate loss functioln,(r, €) = (|| ellp +r’e) |
e ||,[,‘l where]| - ||, is thel,-norm, 7 is two-dimensional parameter vector bounded by the unit balll

B, inR? with |-norm (wherep andq satisfy ¥ p+1/q = 1), ande = (e, &) is the bivariate residual
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interval § — Vi, Yur — Yur). We consider two normsp = 1 andp = 2 and their corresponding
parameter vectors within the unit bais, and 8, respectivelyMLF; = fT
T28)dr, MLF, = fTezsz [qz + &+ (118 + 128,) (€ + 65)1/2] dr.

(iv) MDE: Let DY(%, y;) be a distance measure of ordgretween the fitted and the actual inter-

g al+ el + 78 +

vals, the mean distance error is definedBE({$:}, (y1})) = [Zr; DS vo)/T]¥9. We consider
q=1andq = 2, with a distance measure suchx$. ;) = J5[(%i — Yi)* + Gt = Yu) V2.

In Tables3 and4, we report the values of the four aforementioned evaluation criteria for DGP1
and DGP3 respectively. Results for DGP2 and DGP4 are available in the web appendix.

[TABLES 3-4]
The numbers in boldface correspond to the minimum losses when we consider the functions
RMSE, MLF, and MDE, and to the maximum rates when we consider the weightdeRORtes.
In each table, we provide two scenarios: in the upper panel, the DGP is simulated with multivariate
normal errors so that our methods TS and MTS perform under the correct distributional assump-
tion, and in the lower panel, the DGP is simulated with multivariate Studernrs to assess the
performance of TS and MTS under density misspecification. These are our findings for the four
DGPs considered:

1. Across the four DGPs, TS and MTS exhibit superior performance over the other methods.

2. Across methods, TS and MTS are superior to CCRM and CRM, and these are far better than
the GARCH models. The classical methodology embedded in normal or fat-tail location-scale
models is by far the worst performer across all evaluation functions and it is veficiaet on
delivering an acceptable fitted interval as tiigceency rates (ER) shows.

3. With misspecified Studettterrors, the losses across all methods are larger than those under
correct error specification, which is expected, nevertheless TS and MTS provide the smallest loss.

4. Across DGPs, DGP1 and DGP3, which have high persistence in the conditional mean, have
the smallest losses, and in particular, TS and MTS deliver unmatched performance even in the

cases of misspecified distributional assumptions.
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5. DGP2 and DGP4 have low persistence in the conditional mean. In these two specifications,
the codficients are all very close to zero, thus, in these cases the constraints imposed by CCRM
and CRM are not so restrictive and, as a consequence, the performance of CCRM and CRM is
close to that of TS and MTS, but the performance of the location-scale models is still far behind
the other methods.

6. Only for DGP4 with low persistence in mean and non-binding observability restriction, the
performance of all methods is roughly equivalent, which is expected as all constraints are relaxed.

In summary, when the researcher faces an interval-valued data set, a priori, she does not know
the persistence of the data and whether the observability restriction is or is not binding, thus, it is
advisable to start the estimation of the model by implementing T&drMTS. If there is high
persistence in the conditional mean, even if the observability restriction is non-binding, itfpays o
to implement TS and MTS as the losses are substantially smaller than those from the competing
methodologies. In addition, the implementation of a location-scale model also entails the choice

of distributional assumptions, which is subject to misspecification issues.

5.2 In-Sample Evaluation Criteria: Mean Estimates, Bias, and MSE

We compare the mean estimates of the parameters in the conditional mean delivered by TS and
MTS with those provided by CCRM and CRM. As before, we consider four DGPs with correctly
specified multivariate normal errors and with Studeatrors to assess théfect of density mis-
specification.

For DGP1 and DGP3, we present the simulation results in Tahide the case of multivariate
normal errors and in Tablé for multivariate Student-errors (5 degrees of freedom). Similar
tables for DGP2 and DGP4 can be found in the web appendix. The numbers in boldface are the
best estimates, the lowest bias and the lowest mean-square error.

[TABLES 5-6]

For normal errors, when the restriction is binding and there is high persistence (DGP1), CCRM
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and CRM perform very badly. The mean estimates have a large bias and frequently the wrong sign.
On the contrary, TS and MTS deliver unbiased estimates with the lowest mean-square error. When
the process has low persistence (DGP2), the best estimation method is MTS, which delivers unbi-
ased estimates. TSf$ers from the multicollinearity problem explained above and thus it is not
recommended if our interest is understanding the dynamics of the conditional mean. CCRM and
CRM estimates are not recommended either because of their large bias. In DGP3 and DGP4, the
observability restriction is non-binding but the results are very similar. When the process has high
persistence (DGP3), either TS or MTS deliver unbiased estimates with the lowest mean-square
error, and CCRM and CRM generate highly biased estimates. When the process has low persis-
tence (DGP4), MTS is the best performer because it takes care of the multicollinearity problem
and delivers unbiased estimates.

For Student-errors, when the observability restriction is binding and there is high persistence
(DGP1), the best performer is TS followed by MTS as they provide estimates with the lowest
biases and capture the right dynamics. On the other hand, CCRM and CRM do not capture the
persistence in the conditional mean and their estimates are highly biased. A common problem to
these four methods is that the estimates of the constants are very biased. However, in TS and MTS,
these biases are somehow compensated by the estimates of fii@ertds corresponding to the
regresson;_; so that the overall estimation generates good fitted intervals with substantially lower
losses than those generated by CCRM and CRM as we have seen ir8Tedvler panel). Thus,
the misspecification of the multivariate density does not seerfféotagreatly the performance of
TS and MTS. When the process has low persistence (DGP2), no method seems to deliver overall
unbiased estimates, and the problem of the estimation of the constant is severe. Note that the design
of low persistence with binding observability restriction (DGP2) represents the worst scenario
because, by construction, the intervals are very tight; the specification of the conditional means
deliver very small values around zero, so that the regrekspcarries all the weight to estimate

fitted intervals with the right order. Yet TS delivers the smallest losses. In DGP3 and DGP4, the
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observability restriction is non-binding. When the process has high persistence (DGP3), TS and
MTS are superior performers, they deliver unbiased estimates with the lowest mean-square error.
CCRM and CRM produce highly biased estimates. When the process has low persistence (DGP4),
MTS is the best performer overall.

In summary, evaluating the estimation performance of the four methods, we reach similar con-
clusions as those when we evaluate their goodness of fit. Even under misspecification of the mul-
tivariate density of the errors, if there is high persistence in the conditional mean, whether the
observability restriction is binding or not, TS and MTS are superior estimation techniques. If the
persistence is low and the observability restriction is non-binding, we recommend MTS, even with
a misspecified density. Only when the persistence is low and the observability restriction is bind-
ing, the misspecification of the density may play a role on estimating the right dynamics butyet TS
and MTS are not dominated by the competing methods and tiieytbe advantage of preserving

the natural order of an interval.

6 Empirical lllustration: SP500 Low /High Return Interval

We highlight the most important aspects of our methodology with the interval time series of
the daily lowhigh returns to the SP500 index. The returns are computed with respect to the
closing price of the previous day, that ISy = (Phight — Pcloset-1)/Pcioset-1 @andry = (Piow; —
Peioset-1)/ Peloset-1, WherePhigh: and Py, are the highest and lowest price in the trading tand
Peioset-1 IS the closing price in the previous day 1. Our sample runs from January 1st, 2004 to
April 29th, 2011. We have split the sample into two periods that have véigreint dynamics so

that we can showcase the role of the observability condition in the modeling exercise. The first
period goes from January 1st, 2004 to January 1st, 2007; we call it the 'stable period’ because
is characterized by very low volatility. In contrast, the second period that goes from January 1st,
2007 to April 29th, 2011 is the 'unstable period’ because of the high volatility associated with

the great panic of the 2008 financial crisis. For both periods, we plot the time series/biglow
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returns interval in Figur8aand Figure3h.
[FIGURE 34 [FIGURE 3h]

In the stable period, both low and high returns exhibit low volatilitie$ £ 0.1726 andr? =
0.1609), varying within a range of2%, 2%], whereas in the unstable period, the two time series
vary within a wider range of45%, 5%], and exceptionally, in the last months of 2008, moving
within a range of-10% and 10%, thus producing a much higher volatile environnaehnt(1.6539
ando? = 1.3347). The unstable period is dominated by a tremendous volatility shock, which is not
present in the stable period. The correlation of low and high return§790 in the stable period,
which is larger than the correlation 0f2982 in the unstable period.

Due to space constraints, wé&er here a summary of the estimation results and we report spe-
cific details in several tables posted in the web appendix. We run an unrestrictep) I&§8{em
and select the optimal lags by minimizing the BIC. In the stable period, the optimal number of lags
is 2, and in the unstable period is 5. We implement the first-step of the estimation by modeling
the range of the interval time serias; = ry — ry as in @.7). By maximizing the log-likelihood
function based on a truncated normal denstg), we obtain the estimat@s for the stable and un-
stable periods. We observe that the correlation between the range and lagged lower-bound returns
is negative, while the correlation between the range and lagged upper-bound returns is positive;
however the magnitude of theéfect of the lower-bound returns is dominant, which implies that,
on average, the range will narrow when there is an upward movement in both bounds.

Based on the estimat@s, we produce an estimate of the inverse of Mill’s ratio;, which
characterizes the severity of the observability restriction. We plot the estimated time senies
Figuresdaand Figuretbtogether with a 95% confidence interval.

[FIGURE 44 [FIGURE 44

In the stable period, the values @fare very small, between 0 and 0.070; the mean is 0.027

and the standard deviation 0.014. This indicates ih&t practically zero, thus the observability

restriction is not binding. In contrast, in the unstable periadoscillate between 0 and 0.684
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with mean 0.213 and standard deviation 0.181; these values imply that the relevant portion of the
function A, is not entirely linear in the regressors. In the unstable period, there are a few regions
wherel, is very close to zero; this happens mainly in the highly volatile period of the end of 2008,
when the range of the interval is very large, so that the observability restriction is less binding than
in the rest of the sample.

With the estimatedl,_;, we implement the second step of the estimation. We calculate the
second-step estimator by running the feasible regresstf),(and the modified second-step
minimum distance estimator by solving the problem 3nl§. We also implement a stationary
block bootstrap procedure (details reported in the web appendix) to obtain the standard errors of
the modified second-step estimator because the analytical expression of the standard errors will
be dificult to obtain as we carry three sources of uncertainty,A@ndd, in the first step, the
estimates,, C,) in the modified second step, and the idiosyncratic uncertainty of the errors in
the IAR system. Bootstrap is a common practice to overcome theutiies of the estimation of
asymptotic variances in various contexts, see Efron (1979), Buchinsky (1995), Ledoit, Santa-Clara,
and Wolf (2003), and Goncalves and White (2005), among others. The optimal block size for the
stable period is around 2 and for the unstable period 53. This lafigeeatice in the block size can
be interpreted as the existence of larger persistence in the IAR system of the unstable period than
in the stable period.

For the stable period, the estimatedin the first step already suggest that the observability
restriction is not binding, thus OLS shouldfBce. However, in the estimation tables we also
report the estimates from the two-step and modified two-step estimation procedures to underline
the presence of multicollinearity caused hybeing almost zero. We note that the OLS estimates
and the modified minimum-distance estimates are almost identical, and that there is not loss of
efficiency by implementing the modified estimator. This is what we expect when the restriction is
not binding. Furthermore, the two-step estimator is less reliable, the estimatefamrendifrom

the OLS estimates, even changing signs, and their standard errors are large as a consequence of
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the induced multicollinearity. For the unstable period, we know thit large and dierent from

zero, thus the observability restriction is binding in a substantial part of the sample. As expected,
the modified two-step estimates ardfelient from the OLS estimates, more so in the regression
for the lower bound. We note that the estimates associate&iwilﬂhough with the right signs, are
barely significant in the the two-step estimation because of some mild multicollinearity, which is
corrected in the modified two-step estimation.

The severity of observability restriction is better illustrated in Fig@and5b.

[FIGURE 54| [FIGURE 5h]
The ellipses are contours of the bivariate normal probability density of the errors \igneahit
confidence levels (from 50% to 99%). The contours are drawn according to the estimates pro-
duced by the modified two-step estimation procedure. The 45-degree lines indicate the role of the
observability restrictions for each timgsee Figure 1), so that the area of the density below the
line is truncated. Observe that in the stable period, Figar¢he contours are smaller than those
in the unstable period, Figufsh, because of smaller variances. In the stable period, the lines cor-
responding to the observability restriction are clustered outside the 99% contour level, so that the
truncation is minimal; however for the unstable period, the truncation of the bivariate density is
large, mainly in the direction of the south-east quadrant, indicating the severity of the observability
restriction.

Finally, we compare the performance of th&elient estimation techniques by considering the
same loss functions as in Section 5, i.e. RMSE, CR & ER, MLF, and MDE, which is reported in
Table7.

[TABLE 7]
The upper panel shows the results for the unstable period (2007-2011) when the observability
restriction is binding, and the lower panel for the stable period (2004-2007) when the observability
restriction is non-binding. Overall and across panels, the estimation of a location-scale model,

either with normal or Studertterrors, is not satisfactory, as the RMSE, MLF, and MDE losses are
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the largest among all methods. The location-scale model seems to provide slightly better CR & ER
rates. In the unstable period, when the observability restriction is binding, TS and MTS provide the
smaller losses; and in the stable period, when the observability restriction is non-binding, the losses
of TS and MTS are equivalent to those of CCRM and CRM, as the restrictions become lax. The
overall performance in both periods is consistent with that described for the simulated DGP2 and
DGP4 in Section 5; these two DGPs contemplate low persistence in the conditional mean, which

is what we found in the estimation of the I@vigh returns for the stable and unstable periods.

7 Conclusion

The analysis of interval-valued data has mainly focused on fitting classical regression models to the
lower and upper bounds of the intervals but the natural order of the bounds has not been taken into
account in the estimation of the regression. As a result, it is possible that for some observations the
fitted lower bound could be larger than the fitted upper bound. In our analysis, we have constrained
the regression such that a reversal of the bounds will never happen. The constraint is probabilistic in
nature as the errors of the model come from a truncated bivariate probability density to guarantee
the natural order of the interval. The truncation has several consequences for the estimation of
the model. Even when the regression model is linear, an ML estimator will be non-linear and
difficult to compute. If we were to apply OLS, the estimator would not be consistent because the
truncation makes the error correlated with the regressors. To solve both predicaments, we have
proposed a two-step estimation procedure, easy to implement, that delivers consistent estimators.
It consists of a maximum likelihood estimator in the first step and either least-squares or minimum
distance estimation in the second. The minimum distance estimator is a neat solution when there
is substantial multicollinearity because identifies all parameters regardless of how large or small
the truncation is.

We have shown that our estimators are superior over the existent approaches by examining sev-

eral goodness-of-fit measures and concluded that, even when the observability restriction is non-
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binding, it pays & to implement our estimators because their losses are smaller than those from
competing methods. We have also examined the bias and mean-squared error of our estimators
with those of other methods and our conclusions remain unchanged. Even under misspecification
of the multivariate density of the errors, when there are relevant dynamics in the conditional mean
of the model, our estimators are superior. We have highlighted several empirical aspects of our
methodology with the time series of the daily interval of Jowgh returns to the SP500 index and
showed two instances, minimal and severe truncation, to underscore the value of implementing the
proposed two-step estimator.

WEB APPENDIX
Al. (Section 3. Estimation)

Proof of the conditional expectation of the errors (section 3.2 of the article)

The observability restrictiony,, > yy is equivalent tosy — & > A(Y"1, AB), which linearly
truncates the bivariate distribution of the errors. Now, we show the conditional mean, variance and
covariance of the errors under the linear truncation. For the detailed proofs, please refer to Nath
(1972). To easy the notation, we temporarily usé denoteA(y%, AB), and drop all the time

subscriptg in the following expressions. Under Assumption 4 (normality of errors), we have,
poiou =0t $(A/om)

Mo = Eleley - a2 ) = 2L EErT (A1)
Mo = Eleues—a > A) = Ti° U”:'”“ 1??@‘;) (A.2)
Mo = E(llsu—5 > A) = o2+ ‘T'Z(pz”rzn_ U')zgﬁm - i”ﬁ(/z/ﬁm) (A.3)
M = E(ley—e = A) =02+ ‘Tﬁ(”t;%p “')zgﬁm - fﬁ(/;’/”gm) (A.4)
My = Elaede—a 2 A) = porory + D07 = )@u=pon) A _ ¢A/ow) (A.5)

Note that the conditional meang, andmy; in (A.1) andA.2 correspond tdg;_;(eilyy: = Vit) and

Ei_1(eulyut = Vit) respectively; and the conditional variances and covariaf@® ¢ (A.5) are used
to estimate unconditional variances and correlatiorfizment o2, o2 andp consistently in the

two-step estimation procedure.
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Proofs of Theorem 2, and estimation of unconditional variances and correlatigficoeet
(section 3.4 of the article)

(a) Consistency
We only consider the regression of lower bougglsthe same reasoning applies to the estimators

for the upper bound. From the two-step estimaior
|

7= |6 &f =(FA) Ay

B
(H'H)™H (Hy + w)

Y+ (ﬁ’ﬁ)_lﬁ,U|

in whichu, = C/(A — A) + v;. Note that,

T T—ooo T
CalD=H-H=/® (K — A), defining the row vectar = (0, --- , 0, 1) taking the value of 1 for

T—oo0 T—oo

e . (HH _H’
pI|m(H’H)‘1H’u|:pI|m( ] plim ul

the last element and O otherwise. Note that,
A-R = -JBB)BB - A8
D = /®JAB)(A8 - AB)
u = C|(A—X)+v|
= —CJI(AB)(AB - ABY) +Vi.

Given assumptions (i) and (ii),

1
ZHH = 0,()
ZHIEE) = Oy(1)
ZY@FIME) = Oy1)

and by constructiom, is a martingale dference sequence with respect to informatiortiset, and
conditioning in the observability restriction <y,

E(vit|3i-1)

Efer — E[erlAg > O'mA(yt_l’ AB)N8¢-1)

E(er|Bt-1) —CiA1=0

and thus we hav&(h,_1v;|J:_1) = 0 for all t. Given assumptions (iii) and (iv), and by the central
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limit theorem for martingale dlierence sequence, we have

Ly@w = o))

ﬁ
%H’w % NO,W).
A'Lhen, we prove that
H'H
T = Op(1),
H:I_UL — Op(T_l/z).
That is
1A/A 1 ’ /7
ZHH = =(H+D)H+D)
1 /7
= ?H H
1 1
1 @ HIERE - 08 + (31 & HIEHEF -0
. YAB)I
+u' ® (AB — ABy) M(Aﬁ - ABy)
= Op(1)+ On(T %) + Op(T™)
p 1,
N ?H H,
aLnd
H 1 ~
— = Z(H+D)CA-R)+v]
- v oM B) 35— agy
. I3
Cue (B - AgY M(Aﬁ ~ 0B

e @ - M)’ (Af Al

= Op(T ) +0u(T Y9 +0u(TH +0Op(T™)

= 0T )
5 %H,VI_CI ,J(A'B)(Aﬁ — ABy)

(A.6)

(A.7)
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Hence,

Op(1)0p(T~?)

Yi—n
_ Op(T_l/Z)
Therefore, the two-step estimatar is consistent, i.e., pli;, .y = ¥
(b) Asymptotic Normality

Now we consider the asymptotic distribution of the two-step estimator,

R
i -1

From equationA.6) and @A.7), we have,

’ -1 ’ AR
Vit 5 () G- o2 Vi@ - am) 4 oz

) W
where
HH\™
B = plim
o ()
and

var(%H’w + C.&\/%A)]
HJ(B) =Y (B )H £(Hwi - A)HC
T > T )7 T

1
= TEMHWvH) + CIZE(

H’(A — A)V/HC,
o)

1y e
= = > E(heahi VB) + CEQ'SQ+ My + M
t=1

= ¥+ CPQuSQo + Mg + M7,

1l
[11

where the second equality holds becalisev,; is a martingale dierence sequence.

(c) Estimation of Unconditional Variances and Correlation fGoent 2, o2, p)

In the two-step estimation procedur3 and o, are consistently estimated in the first step.
The first and second moments gf and g, conditioning on the observability restriction, can be
written asimyg, My1, Mpo, Moz, My1, by plugging the estimates = Ay, Z\ﬁ) ando, into (A.1) —

(A.5). Therefore, the parameters o2, p) can be estimated by the simple method of moments as
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{po(t) — [Mao(t)]?)
{Moa(t) — [Mox(t)]%)

{My1(t) — [Myo(t)Mor ()]}
h esiduals of the second step regression,

1y|t j Zﬁlzyut i CI/lt 1

=1
Uit = yut_ﬁuc_ Zﬁ(zqylt j Zﬁzgyut j E:\u’/It—l

1= 1=
Proof of Proposition 1 (section 3.6 of the article)

M* &M* &M*

1 T
=D Uil =

1 1
T T <
14 1
DI
1
1 T
whereu; andu,; are

; MU

U = YIt—ﬁlc

We need to proveA.8) — (A.12) as follows,
T
S AT B Evaravly ).
t=1

W/T > E(varply™),

Mﬁ EM%

ut/ T 5 E(Var(VutWt_l)),

,_,
1l
=

T T
FAC) = CHL- Y AY/TT2)+ Y B/T 5 of.
t=1 t=1

T T
— 2 — p
FoC) = CH1- D AV/TER) + > WyYT - o,

(A.8)

(A.9)

(A.10)

(A.11)

(A.12)

t=1 t=1
Note that we only need to provA @), (A.9), and @.11). Others can be proved similarly.
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(a) Proof of A.8):

(Ay; + Zt—ll\ﬁ - EmZ—l)z

—|I|—\

[AVt + Zt—l(z\ﬁ — AB) + Tl A1 — Ar1) + A a(om — 5'\m)]2

1
T

=~ Hlr —||l—\

DM+ M- 1M+

—S\,

]
D 2B - AB)(AB - ABY'Z 4
t=1

T

—
|

M*H

1 — 1 _
+ ? §1(/lt—1 - /lt—l)2 ? Z 1(0'm - O'm)2
t=1 t=1
2 & — 2 &
+ 7 D %a(BB~ MYAV+ = 3 Tmldes — ha)Av
t=1 t=1
2 < 2 &
+ T Z Ai1(0m — Tm) AV + T Z /. 1(Aﬁ AB) (A1 — A 1)0m
t=1 t=1
2 ¢ _ —
+ = > 2108~ M)A A(om ~ ) + = Z (s — 2D Ae1(0m — T)
t=1 t=1

In the above expression, tfiest term is

T T
% Z V5 % Z var(Avily) > E(var(avly1)). (A.13)
t=1

In (A.13), the first convergence in probability is because of the Law of Large Numbers for mixing
sequence. The second convergence in probability follows because of the ergodic theorem, since
the assumptions on the stationarity and mixing propertig¥pimply its ergodicity. Therefore,

we only need to prove that the rest of the terms in the summation converges to zero in probability.
In the rest of the proof, we will be using the following property extensively AB¢) = (C’ ®

A)vecB).
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For theseconderm,

T T
ved| = 3 218~ AR~ AB) 74| = £ 3 (%1 © z1)vec( (B - AR - AY)
t=1 t=1

20

since

1 T
T Z(Zt—l ® z-1) = Op(1)
t=1
AB-AB50

because of assumption (i) in Theorem 2 and result (a) in Theorem 1.

For thethird term,

|~

T T
- 5 - 1 H ~ ok sk ~ ¥ *\/ 1/
D Th(der = Aa)’ = Taz D BB - AB)BE ~ A8 i
t=1 t=1

wherej,_; is thet-th row of Jacobian matrid(AB*), and therefore,
T

1 . — —k .
vec T Z jiu1(AB = AB)AB — AB™) i

t=1

1 $ H H " NV *\ /
= =D i@ jravec((A8 - A8)(BF - ABYY)
t=1
5o
given that
1 T
T D (i1 ® jia) = Op(1)
t=1
B - A8 50
72252
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because of assumption (ii) in Theorem 2 and result (a) in Theorem 1.
The proofs for the rest terms are omitted here, since similar proof technique applies to the rest of
the summation terms. Their convergence to zero in probability relies on assumptions in Theorem

2 and the results in Theorem 1. Therefore, we praév8)

| Y

T T
; AV = 3 le AV S E(var(Avly ).

=l

(b) Proof of @A.9).
Let g7 denotes| (C)).

Z(ylt z 1B - Cidi1)?
[Zt 18 = B°) + Ci(A1 — ) + V|t]2

T T
N I LI GRS (L
t=1 t=1

| =

z_1(B - ﬁ|c)Vlt

—|||—\ —||}—\ —||H —|

LM* I I+ I
SN
—|I|—\

T T
2,716 = F)(Aa = 2)Ci+ = D Cildis — )W
t=1

t=1

—|||—\

In the above expression, for the first term in the summation, we have

T

T
Y2 2 Y vartuly ) S Eartaly )

t=1 t=1

=

because of the Law of Large Numbers for mixing sequences and the ergodic theof¥h fbine
rest of the terms in the summation converges to zero in probability by similar arguments as those
in the proof of A.8).

(c) Proof of A.11).

Giveno?, (A.8), (A.9), and the continuous mapping theore,1(1) holds.
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A2. (Section 4. Simulation)

Table 1: Simulation Results for Case B-1 and Case B-3

(a) Simulation Results for Cage1

Small Sample Sizel( = 250)

Large Sample Sizd (= 2000)

OLS Two-step Modified Two-step OLS Two-step ModifiedaRstep
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse me&mse
Bic=0 —-0.4957 05061 —-0.0884 Q07240 —-0.0241 Q01797 —-0.4863 04875 -0.0141 02282 —0.0056 00653
Buc=0 04979 05087 00938 06975 00295 01804 04854 04867 00226 02335 00029 00643
B11 =08 06645 01450 07632 01813 Q7792 00684 06793 01222 07950 00587 Q07971 00240
B12=01 0.2204 01316 01215 01795 01065 00662 02191 01206 01036 00583 01015 00237
P21 =01 02191 01317 01208 01747 01052 00700 02191 01207 01059 00596 01009 00241
P22 =08 06637 01468 07607 01770 Q7767 00706 06788 01227 07920 00600 07968 00240
C; =-0.7071 —-0.5986 11124 —-0.6992 00814 -0.6927 03218 —-0.7052 00293
Cy =0.7071 06050 10984 06959 Q0776 06797 03352 Q07080 00278
oZ=1 07918 02207 09811 01231 09844 01240 Q7965 02051 09957 00445 09956 00437
oh=1 0.7891 02232 09763 01206 09792 01200 Q7988 02028 09996 00430 09994 00423
p=0 0.2575 02653 00141 Q0875 Q00067 00884 02498 02509 —0.0009 00334 —-0.0013 00328
(b) Simulation Results for Cad®3
Small Sample SizeT( = 250) Large Sample Sizd (= 2000)
OLS Two-step Modified Two-step OLS Two-step Modifiedastep
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanse
Bic=0 -0.5715 05782 18196 198 —0.0080 02674 —-0.5639 05648 —7145 2069 —0.0004 00851
Buc=0 0.5642 05711 —-1.4060 1478 0.0022 02598 05663 05672 -1007 2825 00013 00843
p11 =01 00764 00744 01339 36156 00843 01197 00840 00300 00920 29502 00986 00410
B12 = 0.05 00663 00745 00550 29242 00589 01221 00651 00295 —-0.1036 33209 00507 00420
P21 = 0.05 00646 00733 00493 29074 00569 01205 00659 00296 —-0.0284 27397 00513 00403
P22 =01 0.0782 00750 00475 26718 00858 01189 00829 00302 00355 36375 00973 00412
C =-1/V2 -3.0891 2300 -0.7011 01127 8826 2576 —-0.7061 00398
Cu=1/V2 13011 1826 0.6987 01146 1284 3510 07080 00400
=1 0.6806 03251 07884 02263 09939 01726 06852 03156 07954 02066 09987 00584
rré =1 06794 03262 07868 02273 09909 01713 06862 03145 07970 02050 10014 00586
p=0 04579 04613 02521 02600 00107 01300 04564 04568 02535 02545 00000 00454
Number of Simulatior1000, ¥ V2 ~ 0.7071.
Table 2: Simulation Results for Case NB-1 and Case NB-3
(a) Simulation Results for Ca$¢B-1
Small Sample Sizel( = 250) Large Sample Sizd (= 2000)
OLS Two-step Modified Two-step OLS Two-step ModifieddRstep
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanse
Bic =-2 —2.0890 04074 —2.1056 04345 —2.0883 04076 —-2.0120 01551 -2.0135 01558 -2.0119 01551
uc = 2 20825 03816 20907 04118 20819 03819 20263 01545 20265 01565 20262 01545
B11 =08 0.7842 00401 07830 00417 07843 00401 Q07978 00139 Q7977 00139 Q7978 00139
B12=01 0.0975 00385 00988 00402 00975 00385 00995 00131 00996 00131 00995 00131
P21 =01 0.0983 00363 00989 00376 00983 00363 01006 00134 01006 00135 01006 00134
P22 =08 0.7850 00390 07844 00410 07850 00390 Q07967 00139 Q7967 00140 Q7967 00139
C=-1/V2 -1615 9243 -0.7026 00553 28987 2100267 -0.7067 00194
Cu=1/V2 -1512 4418 07016 00541 11828 2148670 Q7065 00189
oZ=1 09921 00899 09842 00906 09823 00903 09997 00321 09987 00321 09984 00321
ci=1 0.9906 00885 09830 00893 09807 00891 09994 Q0300 09984 Q0300 09982 00300
p=0 —0.0004 00630 —-0.0001 00632 —0.0066 00642 00002 00224 00002 00224 —0.0006 00225
(b) Simulation Results for Cad¢B-3
Small Sample SizeT( = 250) Large Sample Sizd (= 2000)
OLS Two-step Modified Two-step OLS Two-step ModifieddRstep
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanse
Bic =-2 —-2.0165 01917 -1.7197 542693 —-2.0115 01929 —2.0069 00722 -1.2760 2802 —-2.0021 00724
uc = 2 20246 02021 26687 639572 20196 02033 20060 00688 06512 2194 20011 00691
p11 =01 0.0945 00602 01137 06083 00948 00606 00991 00224 01031 02302 00994 00226
B12 = 0.05 00517 00650 00402 07072 00514 00655 00508 00226 00450 02476 00504 00228
P21 = 0.05 00498 00656 00385 08010 00495 00661 00504 00218 00406 02495 00500 00220
P22 =01 0.0897 00649 00779 06570 00900 00653 00989 00220 01080 Q02774 00992 00222
C =-1/V2 2255 12212 -0.7022 00548 -1694 6526 —-0.7056 00196
Cu=1/V2 —-1858 15901 07038 00555 3141 5409 07064 00199
oZ=1 09843 00884 09839 00902 09817 00902 09911 00321 09972 Q00317 09970 00317
rr%' =1 09866 00881 09865 00901 09841 00898 09921 00320 09983 00319 09980 00319
=0 00063 00598 -0.0014 00614 -0.0074 00626 00082 00243 00011 00236 00003 00236

P
Number of Simulatior 1000
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A3. (Section 5. Comparison with Existing Approaches)

Table 3: Methodology Evaluation for DGP2 (LOW persistence and BINDING observability re-

striction)
DGP2
Multivariate Normal Distrilition
RMSE CR& ER MLF MDE
Lower Upper CR ER CRFER p=1 p=2 q=1 q=2

CCRM 1.0963 0.6885 0.7992 0.6583 0.7288 1.4169 1.6765 0.7869 0.9154
CRM 1.0954 0.6896 0.7989 0.6582 0.7285 1.4171 1.6760 0.7870 0.9153

TS 1.0903 0.6809 0.8025 0.6607 0.7316 1.4062 1.6530 0.7801 0.9090
MTS 1.0906 0.6811 0.8026 0.6606 0.7316 1.4066 1.6539 0.7803 0.9092

GARCH-N (99%)
GARCH-N (99.5%)
GARCH-T (99%)

1.1266 0.7353
1.1580 0.7825
1.1538 0.7756

0.8719 0.6061 0.7390
0.8959 0.5826 0.7392
0.8926 0.5859 0.7393

1.5261 1.8106
1.6093 1.9539
1.5975 1.9340

0.8437 0.9513
0.8848 0.9883
0.8790 0.9831

GARCH-T (99.5%) 1.2220 0.8736 0.9222 0.5497 0.7359 1.7631 2.2588 0.96000623
Multivariate Student's t Distribution{= 5)
RMSE CR& ER MLF MDE
Lower Upper CR ER CRFER p=1 p=2 q=1 q=2
CCRM 1.5667 0.9612 0.8074 0.6299 0.7187 1.8297 3.3843 1.0108 1.2998
CRM 15655 0.9627 0.8069 0.6297 0.7183 1.8303 3.3834 1.0110 1.2997
TS 1.5583 0.9506 0.8118 0.6330 0.7224 1.8133 3.3377 0.9999 1.2909
MTS 1.5718 0.9606 0.8105 0.6326 0.7215 1.8205 3.4105 1.0034  1.3027

GARCH-N (99%)
GARCH-N (99.5%)
GARCH-T (99%)
GARCH-T (99.5%)

1.6448 1.0786
1.6967 1.1556
1.7500 1.2253
1.9388 1.4802

0.8976 0.5454 0.7215
0.9154 0.5205 0.7179
0.9261 0.5029 0.7145
0.9511 0.4515 0.7013

2.1619 3.8773
2.3202 4.2235
2.4576 4.5762
2.9420 5.9745

11771 1.3909
1.2545 1.4516
1.3215 1.5107
1.55787249

restriction)

Table 4: Methodology Evaluation

for DGP4 (LOW persitence and NON-BINDING observability

DGP4
Multivariate Normal Distribution
RMSE R ER MLF MDE
Lower  Upper CR ER CRSER p=1 p=2 q=1 q=2

CCRM 1.5523 0.9149 0.8544 0.7714 0.8129 1.9957 3.2475 1.0887 1.2742
CRM 1.5508 0.9168 0.8543 0.7713 0.8128 1.9959 3.2461 1.0887 1.2739

TS 1.5448 0.9044 0.8559 0.7728 0.8144 1.9819 3.2052 1.0785 1.2658

MTS 1.5452 0.9047 0.8559 0.7728 0.8143 1.9824 3.2068 1.0788 1.2661

GARCH-N (99%)
GARCH:-N (99.5%)
GARCH-T (99%)

1.6669 1.0944
1.6217 1.0242
1.6594 1.0816

0.7208 0.8421 0.7814
0.7591 0.8264 0.7928
0.7276 0.8394 0.7835

2.1908 3.9774
2.1043 3.6798
2.1755 3.9249

1.1824 1.4101
1.1415 1.3563
1.1753 1.4007

GARCH-T (99.5%) 1.6000 0.9879 0.7817 0.8155 0.7986 2.0641 3.5370 1.122173297
Multivariate Student's t Distribution{= 5)
RMSE CR& ER MLF MDE
Lower  Upper CR ER CRFER p=1 p=2 q=1 q=2
CCRM 1.8565 1.0996 0.8552 0.7584 0.8068 2.2450 4.6601 1.2265 1.5258
CRM 1.8548 1.1017 0.8551 0.7583 0.8067 2.2455 4.6582 1.2266 1.5255
TS 1.8475 1.0870 0.8572 0.7603 0.8088 2.2266 4.5992 1.2131 1.5158
MTS 1.8480 1.0873 0.8572 0.7603 0.8087 2.2271 4.6015 1.2134 1.5162

GARCH-N (99%)
GARCH:-N (99.5%)
GARCH-T (99%)
GARCH-T (99.5%)

1.9226 1.2020
1.8892 1.1479
1.8989 1.1546
1.8741 1.1119

0.7640 0.8142 0.7891
0.8003 0.7951 0.7977
0.7951 0.7978 0.7964
0.8508 0.7591 0.8050

2.3202 5.1454
2.2663 4.8911
22774 4.9431
2.2674 4.7536

1.2626 1.6034
1.2377 1.5632
1.2432 15716
1.23985410
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Table 5: Simulation Results of DGP2 and DGP4 with Multivariate Normal Errors

DGP2 (ow persistence and binding O)R.

DGP4 (ow persistence and non-binding O)R.

b11 b1p boL b21 b2 bouy b1y b1p bo D21 b2 bouy
true value -0.1 0.05 0 -0.05 0.1 0 -0.1 0.05 -2 -0.05 0.1 2
CCRM -0.0516 -0.0588 -1.1988 -0.0588 -0.0516 0.8585 -0.0935 -0.0976 -1.8423 -0.0976 -0.0935 2.5035
Mean CRM -0.0577 -0.0527 -1.2114 -0.0527 -0.0577 0.8710 -0.1016 -0.0895 -1.8780 -0.0895 -0.1016 2.5392
TS -0.0776 0.2367 26.5814 -0.0108 0.0674 -19.5935 -0.1671 -0.0905 -58.2921 -0.0550 0.1529 8.2993
MTS -0.1005 0.0517 0.0072 -0.0499 0.0991 -0.0048 -0.1000 0.0527 -2.0082 -0.0505 0.0980 2.0045
CCRM 0.0023 0.0118 1.4372 0.0001 0.0230 0.7370 0.0000 0.0218 0.0249 0.0023 0.0374 0.2536
Bias2 CRM 0.0018 0.0106 1.4675 0.0000 0.0249 0.7587 0.0000 0.0194 0.0149 0.0016 0.0406 0.2907
TS 0.0005 0.0348 706.57 0.0015 0.0011 383.90 0.0045 0.0197 3168.8 0.0000 0.0028 39.681
MTS 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000
CCRM 0.0025 0.0120 1.4379 0.0002 0.0232 0.7374 0.0002 0.0219 0.0261 0.0024 0.0376 0.2545
MSE CRM 0.0021 0.0107 1.4686 0.0002 0.0252 0.7595 0.0004 0.0196 0.0181 0.0017 0.0410 0.2939
TS 11.72 41.81 2.4606 4.641 10.58 4.5605 4.722 10.59 1.7666 0.6072 1.609 2.7%04
MTS 0.0051 0.0118 0.0366 0.0015 0.0034 0.0112 0.0017 0.0044 0.0165 0.0005 0.0015 0.0055
A4. (Section 6. Empirical Illustration:SP500 Low/High Return Interval)
Table 6: Simulation Results of DGP2 and DGP4 with Multivariate Studé&mtors
DGP2 {ow persistence and binding O)R. DGP4 {ow persistence and non-binding O)R.
b1y b1 boL b2y b2 bou b1y b1 boL b2y b2 boy
true value -0.1 0.05 0 -0.05 0.1 0 -0.1 0.05 -2 -0.05 0.1 2
CCRM -0.0613 -0.0685 -1.4316 -0.0685 -0.0613 1.0178 -0.0886 -0.0931 -2.0091 -0.0931 -0.0886 2.6154
Mean CRM -0.0671 -0.0627 -1.4459 -0.0627 -0.0671 1.0322 -0.0962 -0.0855 -2.0441 -0.0855 -0.0962 2.6504
TS -0.1958 -0.2252 188.95 0.1240 0.3712 -4.9869 -0.1519 -0.0599 -22.722 -0.0417 0.1063 2.8518
MTS -0.2389 -0.0594 17.5335 0.0293 0.1663 -9.8989 -0.1031 0.0475 -1.8869 -0.0487 0.1001 1.9402
CCRM 0.0015 0.0140 2.0494 0.0003 0.0260 1.0360 0.0001 0.0205 0.0001 0.0019 0.0356 0.3787
Biag CRM 0.0011 0.0127 2.0906 0.0002 0.0279 1.0653 0.0000 0.0184 0.0019 0.0013 0.0385 0.4230
TS 0.0092 0.0757 3.5%94 0.0303 0.0735 24.8691 0.0027 0.0121 429.39 0.0001 0.0000 0.7256
MTS 0.0193 0.0120 307.43 0.0063 0.0044 97.9887 0.0000 0.0000 0.0128 0.0000 0.0000 0.0036
CCRM 0.0017 0.0142 2.0508 0.0005 0.0263 1.0368 0.0003 0.0206 0.0020 0.0020 0.0358 0.3801
MSE CRM 0.0015 0.0129 2.0925 0.0003 0.0283 1.0667 0.0004 0.0185 0.0058 0.0014 0.0388 0.4267
TS 70.43 197.8 8.0e07 39.10 88.69 6.3e07 4.7210 7.3450 1.5606 0.9674 2.0540 1.805
MTS 0.2874 0.7468 753.22 0.1046 0.2813 256.81 0.0021 0.0061 0.0488 0.0007 0.0019 0.0146
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Table 7: Descriptive Statistics for Stable and Unstable Period

Stable Period Unstableriod

Statistics low high center radius low high center radius
Minimum -19170 -0.0271 -09721 01195 -9.4210 -13010 -4.9190 01463
1st Quartile -0.6570 01600 -0.2466 03092 -1.3330 01769 -0.4698 04671
Median -0.3295 03944 00239 04188 -0.6204 05889 -0.0127 (07106
3rd Quartile —-0.0817 06773 02660 05498 -0.1498 11620 04170 11040
Maximum Q1375 23250 11610 11640 15050 119800 67410 56090
Mean -0.4303 04655 00176 04479 -0.9593 08593 -0.0500 09093
Variance 01726 01609 01317 00351 16539 13347 09687 05256
Correlation G797 —-0.0530 02982 -0.1118

Skewness -1.1166
Kurtosis 38698

11397 -0.0501 08604

45562

28328

35695

-2.6056 31601 -0.0715 27765
132002 213206 91251 137251

Truncated Normal Rgression

regressor cdécient s.e.
(A87)

const -1.7655 01407
M1 0.4315 01116
rut-1 0.0201 01172
MLtz 0.7010 01126
Utz -0.2849 01150

Om 0.3699 00107

Time Span: 2004/1 — 20071/1
Number of Observations56

Table 8: First Step Estimation for Stable Period

In the stationary block bootstrap, the block size follows a Geometric distribution with mean

equal tab. To choose the optimal block sibewe follow the method proposed by Politis and White

(2004) and Patton, Politis and White (2009). The optimal valuerofnimizes theMS E&3) with

o2 =32 . R(s), whereR(s) is the auto-covariance function. This procedure considers only the

bootstrapping for a scalar time series, however with interval time series we need to jointly bootstrap

a 2x 1 vector time serief(yi, Yu)}i_o- We proceed by selecting separately the optimal block sizes

b, andb, for the lower boundyn}tT:0 and the upper boun{(yut}tho series respectively. Then, we use

the averagely +b,)/2 as the unified block size length to bootstrap the vector seqyemnce.)},-
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Table 9: First Step Estimation for Unstable Period

Truncated Normal Rgression
regressor cdécient s.e.
(AB")
const 0.0778 00731
M1 0.3312 00396
rut-1 0.0121 0045
) 0.3364 00412
rut-2 -0.1188 00451
ries 0.2356 00424
rut-3s 0.0112 00448
Mita 0.2978 00426

lut-a -0.1404 00428
I t-5 0.2874 00434
rui-s -0.1819 00404

Om 0.9534 00270

Time Span: 200/4/1 — 2013¥4/29
Number of Observations:009

Table 10: Block Sizes for Stationary Block Bootstrapping

Block Size Stable Period Unstald®eriod

b 1.8055 532275
by 25007 534241
b= (b +by)/2 21531 533258

We report the optimal block sizes for both periods in Telfle
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Table 11: LowetUpper Bound Regression Results of Three Models (Stable Period)

Lower Bound Regression (Dependent varialjg:

OoLS Two-step Modified Tw-step
regressors cdicient s.e. cogicient s.e. cofficient s.e.
const -0.3062 (00509) -0.0729 (01400) —-0.2947 (00499)
Mi-1 0.0586 (00451) 01400 (00568) 00626 (00461)
Fut-1 —-0.0283 (00470) —-0.0295 (00413) —0.0283 (00444)
Mi—2 0.1100 (00453) 02408 (00920) 01165 (00462)
Fut-2 —-0.0840 (00463) -0.1410 (00606) —0.0868 (00472)
s -4.1883 (23541) —-0.2069 (00221)
Degree of Freedom 749 748 749
S.E. of Regression 0143 04139 04143
AdjustedR? 0.5208 05217 05147
F-statistic 164 1381 16Q9
Upper Bound Regression (Dependent variahlg:
OLS Two-step Modified Tw-step
regressors cdgcient s.e. coicient s.e. cofficient s.e.
const 0.3674 (00485) 08233 (01363) 03583 (00486)
Mi-1 —-0.0938 (00430) 00652 (00592) —-0.0970 (00430)
Fut-1 —0.0209 (00448) —-0.0233 (00381) —0.0209 (00436)
Mi_2 -0.1377 (00432) 01179 (00898) —-0.1428 (00468)
Fut-2 0.0163 (00441) —0.0950 (00566) 00185 (00441)
s —-8.1843 (21703) 01630 (00218)
Degree of Freedom 749 748 749
S.E. of Regression .B954 0393 Q3955
AdjustedR? 0.5846 05896 05802
F-statistic 212 1816 2094
ot 0.1708 04156 01730
o’ 0.1555 03934 01568
0 0.6070 05848 05860
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Table 12: LowetUpper Bound Regression Results of Three Models (Unstable Period)

Lower Bound Regression (Dependent varialjg:

OLS Two-step Modified Tw-step
regressors caBcient s.e. coficient s.e. coficient s.e.
const -0.1281 (00649) -0.0951 (01162) 01275 (01583)
Mi—1 0.0434 (00425) 00456 (00568) 00601 (00611)
fut-1 0.0420 (00492) 00435 (Q0467) 00533 (Q0572)
Mi-2 0.1025 (00443) 01055 (00660) 01260 (00545)
rut-2 -0.1075 (00486) —-0.1080 (00633) -0.1109 (00583)
M-z 01346  (00458) 01371  (00529) 01537  (00463)
rut-3 0.0094  (00480) 00102  (00785) 00159  (00894)
Mt—4 01751  (00462) 01784  (00836) 02010  (00969)
fut-a -0.1581  (00461) -0.1595  (00939) -0.1690  (01090)
Mt_s 01202  (00469) 01230  (00582) 01423  (00615)
ruts -0.1100 (00436) -0.1117 (00584) -0.1232 (00594)
A1 —-0.0874 (02263) -0.6775 (01413)
Degree of Freedom 993 992 993
S.E. of Regression 142 1142 1144
AdjustedR? 0.4953 04948 04646
F-statistic 9057 8296 802
Upper Bound Regression (Dependent variablg)
OLS Two-step Modified Tw-step
regressors caBcient s.e. cofiicient s.e. coficient std. err
const 0.1210 (00562) —0.0469 (00896) 00169 (00875)
Mi-1 -0.2563 (00369) -0.2673 (00483) —-0.2631 (00637)
fut-1 0.0622 (00426) 00548 (Q0403) 00576 (00516)
Mt_p -0.1839  (00384) -0.1994  (00522) -01935  (00518)
fut-2 00191  (00422) 00214  (00719) 00205  (00725)
rt_a -0.0866  (00397) —-0.0992  (00405) —-0.0944  (00474)
rut-3 0.0626  (00416) 00583  (00437) 00599  (00453)
Mt-4 -0.0377 (00400) -0.0548 (00537) —-0.0483 (00526)
Tut-4 -0.0393 (00400) -0.0321 (00723) —-0.0349 (00690)
Mi-5 -0.0823 (00407) -0.0968 (00574) -0.0913 (00534)
-5 0.0339 (00378) 00425 (00404) 00392 (00427)
A1 0.4450 (02363) 02759 (00870)
Degree of Freedom 993 992 993
S.E. of Regression .9898 09888 09885
AdjustedR? 0.5294 05304 05175
F-statistic 1037 9549 9888
o2 1.2909 12080 13642
(r% 0.9699 09960 09813
P 0.6780 05752 06208
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Table 1: Simulation Results for Case B-2 and Case B-4

(a) Simulation Results for Cag&2

Small Sample SizeT( = 250) Large Sample Siz& (= 2000)
OLS Two-step Modified Two-step OLS Two-step ModifieddRstep
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanse
Bic=0 -1.0645 10813 -0.1282 12306 —0.0936 03890 -1.0054 10075 -0.0162 03819 -0.0115 01312
Buc=0 —-0.2738 03026 -0.0338 08377 —-0.0476 01658 -0.2448 02487 —-0.0050 02442 -0.0076 00544
B11 =08 0.4648 03531 07542 03869 07643 01540 04852 03173 07948 01247 07963 00539
B12=0.1 04188 03430 01263 04018 01171 01744 04125 03157 01022 01281 01006 00619
P21=01 0.0253 01000 01002 02587 00951 00718 00247 00789 00999 Q0787 00990 00256
0.8602 00980 Q7842 02655 Q7899 00832 08731 00780 Q7976 00800 Q7987 00292
—-1.3899 18628 -1.4373 01344 —-1.4505 05331 —-1.4563 Q0478
—-0.3609 13450 -0.3354 00778 -0.3523 03541 -0.3475 00280
21280 08944 29323 03818 29509 04000 21494 08536 30014 01448 30008 01431
09424 01009 09832 00944 09858 00940 09509 00576 09991 00343 09993 00343
0.8268 00336 08003 00291 07956 00301 08270 00279 08002 00102 07997 00103

(b) Simulation Results for Cad®-4

Small Sample SizeT( = 250) Large Sample Siz& (= 2000)
OLS Two-step Modified Two-step OLS Two-step Modifiedaistep
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanse
Bic=0 -1.1702 11777 —85.30 5807 —-0.0269 05277 -1.1628 11638 233 5441 00035 01729
Buc=0 -0.2769 02948 -5.8502 3420 -0.0073 01732 -0.2782 02805 1025 6127 -0.0010 Q0605
p11=01 0.0498 01378 —-0.0606 83845 00659 02514 00572 00609 02017 82371 00957 00863
P12 = 0.05 00931 01799 03443 126523 00723 03470 00919 00720 00461 99632 00538 01158
P21 =005 00399 00949 -0.1618 64568 00438 01092 00391 00341 00276 70154 00483 00368
B22=0.1 01051 01260 02913 109189 00999 01480 01098 00446 01642 71917 01007 00499
C| = -1.4564 1242 7062 -1.4326 02111 -3180 7340 —-1.4552 00746
Cy =-0.3479 1577 4069 -0.3380 01019 -1328 8371 —-0.3459 00388
o2=3 16612 13476 21295 08977 29675 06387 16664 13349 21328 08711 30002 02209
u—% =1 09213 01150 09438 01060 09955 01090 09224 00830 09484 00605 09981 00393
p=08 0.8607 00631 08274 00367 07991 00367 08595 00598 08270 00284 07990 00137

Number of Simulatior1000
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Table 2: Simulation Results for Case NB-2 and Case NB-4

Simulation Results for CageéB-2

Small Sample Sizel( = 250)

Large Sample Siz& (= 2000)

OLS Two-step Modified Two-step OLS Two-step ModifiedaRstep
Parameters mean rmse mean rmse mean rmse mean rmse mean rmse meanse
Bic =2 -2.0208 09077 -2.0139 10513 -2.0204 09082 -2.0202 03932 -2.0132 04039 -2.0202 03932
uc = 2 20813 05217 21187 06194 20814 05217 20137 02271 20166 02338 20137 02271
B11 =08 0.7869 00632 07873 00707 07869 00632 07972 00258 Q07976 00264 Q07972 00258
B12=0.1 0.0910 00824 00904 00952 00910 00825 01003 00343 00997 00353 01003 00343
B21=0.1 0.0985 00351 01008 00401 00985 00351 01000 00149 01002 00153 01000 00149
B22 =08 0.7869 00486 07836 00572 07869 00486 07980 00200 07978 00206 07980 00200
C| = -14564 394E4 112E6 —-1.4285 00918 —-4719 9246 -1.4530 00299
Cy = -0.3479 —-2.70E4 6.08E5 -0.3312 00623 —-2683 5036 —0.3459 00210
o2=3 29536 02745 29301 02777 29167 02790 29969 00893 29939 00894 29923 00894
rr% =1 09871 00911 Q09790 00920 09818 00914 10009 Q0312 09999 00312 10003 Q0312
p=08 0.7987 00227 Q7987 00227 Q7948 00234 08000 Q0079 08000 Q00079 Q7995 Q0079
Simulation Results for CadeB-4
Small Sample SizeT( = 250) Large Sample Sizd (= 2000)

OLS Two-step Modified Two-step OLS Two-step Modifiedarstep

Parameters mean rmse mean rmse mean rmse mean rmse mean rmse mean
Bic=-2 -2.0219 05431 -1.6596 140955 -2.0210 05437 -1.9995 02019 -1.4023 212427 -1.9987 02021
PBuc =2 20008 03217 20827 75863 20011 03217 20006 01191 24545 167747 20008 01191
B11=01 00938 00996 00919 05700 00939 00997 00989 00363 00998 03399 00990 00363
P12 = 0.05 00542 01686 00474 09405 00541 01688 00491 00622 00414 05580 00491 00623
B21 =0.05 00488 00582 00483 03187 00488 00582 00495 00212 00476 02029 00495 00212
B22=0.1 00978 00997 01015 05140 00978 00998 00995 00367 00922 03195 00995 00367
C| =-14564 -9820 64189 -1.4348 00907 —-2593 78843 —-1.4554 00312
Cy =-0.3479 1606 34474 -0.3325 00633 -1757 58342 -0.3470 00214
o2=3 29703 02742 29494 02771 29356 02779 29993 Q0950 29989 00953 29971 00954
u—% =1 0.9886 00924 09807 00932 09834 00926 09992 00315 09984 00315 09987 00315
p=08 0.7982 00236 07981 00238 07943 00245 08001 00079 08000 00079 07996 00079

Number of Simulatior1000

rmse

Table 3: Methodology Evaluation for DGP1 (HIGH persistence and BINDING observability re-

striction)
DGP1
Multivariate Normal Distrilition
RMSE CR& ER MLF MDE
Lower Upper CR ER CEER p=1 p=2 q=1 q=2
CCRM 1.5851 1.2286 0.7099 0.6086 0.6593 2.2377 4.0244 1.2510 1.4182
CRM 1.5201 1.2973 0.7066 0.6073 0.6569 2.2445 3.9958 1.2505 14131
TS 1.2735 0.7689 0.8244 0.7023  0.7633 1.6280 2.2136 0.8954 1.0519
MTS 1.2738 0.7691 0.8244 0.7022  0.7633 1.6284 2.2148 0.8956 1.0522
GARCH-N (99%) 2.9030 2.6388 0.9877 0.3604 0.6740 4.9289 15.3984 2.6293 2.7741
GARCH-N (99.5%) 3.1914 2.9510 0.9928 0.3343 0.6635 5.5520 18.9028 2.9342 3.0736
GARCH-T (99%) 2.2336 1.8782 0.9543 0.4440 0.6992 3.4777 8.5229 1.9096 2.0636
GARCH-T (99.5%) 2.5063 2.1911 0.9734 0.4064 0.6899 4.0569 11.0902 2.19883540
Multivariate Student’s t Distribution{= 5)
RMSE CR& ER MLF MDE
Lower Upper CR ER CSEER p=1 p=2 q=1 q=2
CCRM 2.1135 1.6705 0.7064 0.5856 0.6460 2.8669 7.2746 1.5954 1.9050
CRM 2.0382 1.7506 0.7055 0.5864 0.6459 2.8739 7.2356 1.5951 1.8999
TS 1.6877 1.0099 0.8323 0.6894  0.7609 1.9925 3.8747 1.0921 1.3908
MTS 1.6890 1.0107 0.8327 0.6894  0.7610 1.9938 3.8815 1.0928 1.3919
GARCH-N (99%) 3.8119 3.4153 0.9819 0.3373 0.6596 6.4432 26.2352 3.4253 3.6191
GARCH-N (99.5%) 4.1732 3.8073 0.9874 0.3131 0.6503 7.2230 31.9582 3.8066 3.9945
GARCH-T (99%) 3.1679 2.6299 0.9598 0.4013 0.6806 4.9167 17.0211 2.6739 2.9115
GARCH-T (99.5%) 3.6105 3.1287 0.9761 0.3609 0.6685 5.8674 22.9462 3.1433783
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Table 4. Methodology Evaluation for DGP3 (HIGH persistence and NON-BINDING observability

restriction)
DGP3
Multivariate Normal Distrilution
RMSE CR& ER MLF MDE
Lower Upper CR ER CEER p=1 p=2 q=1 q=2
CCRM 2.4973 2.0577 0.8655 0.8346 0.8500 3.6409 10.4764 2.0241 2.2882
CRM 2.1549 2.2905 0.8650 0.8336 0.8493 3.5523 9.8958 1.9724 2.2238
TS 1.7255 0.9964 0.9181 0.8945  0.9063 2.1732 3.9711 11772 1.4090
MTS 1.7259 0.9965 0.9181 0.8945  0.9063 2.1737 3.9727 1.1774 1.4092
GARCH-N (99%) 8.3435 8.0010 0.9999 0.4079 0.7039 15.6599 133.6454 8.0080 8.1741
GARCH-N (99.5%) 9.4680 9.1662 1.0000 0.3744 0.6872 18.0331 173.6818 9.1715 9.3184
GARCH-T (99%) 3.1196 2.0920 0.7845 0.8634 0.8239 4.1878 14.1224 2.3392 2.6564
GARCH-T (99.5%) 3.0973 2.0581 0.8430 0.8310 0.8370 4.0564 13.8528 2.26466298
Multivariate Student’s t Distribution{= 5)
RMSE CR& ER MLF MDE
Lower Upper CR ER CEER p=1 p=2 q=1 q=2
CCRM 3.0472 2.5013 0.8463 0.8044 0.8253 4.3590 15.5570 2.4207 2.7878
CRM 2.6563 2.7776 0.8447 0.8028 0.8237 4.2534 14.7856 2.3596 2.7178
TS 2.1303 1.2356 0.9110 0.8781  0.8945 2.5234 6.0691 1.3680 1.7415
MTS 2.1308 1.2359 0.9110 0.8780  0.8945 2.5240 6.0717 1.3683 1.7419
GARCH-N (99%) 8.9350 8.4656 0.9993 0.3992 0.6992 16.4829 151.5336 8.4814 8.7035
GARCH-N (99.5%) 10.0825 9.6664 0.9997 0.3666 0.6831 18.9300 195.1327 9.6775 9.8766
GARCH-T (99%) 3.7183 2.3954 0.8416 0.7932 0.8174 4.7388 19.6039 2.6477 3.1280
GARCH-T (99.5%) 3.8918 2.6454 0.8914 0.7533 0.8223 4.9802 22.2088 2.77(B3278

Table 5: Simulation Results of DGP1 and GDP3 with Multivariate Normal Errors

DGP1 high persistence and binding O)R.

DGP3 high persistence and non-binding O\R.

b1y b1 bo b2y A boy byg byo bo b2y b2 bou

true -0.8 0.1 0 -0.1 0.8 0 -0.8 0.1 -2 -0.1 0.8 2
CCRM -0.0986 -0.0986 -0.1230 -0.0986 -0.0986 2.7143 -0.2168 -0.2168 1.5698 -0.2168 -0.2168 12.3923
Mean CRM -0.1553 -0.0419 -0.2841 -0.0419 -0.1553 2.8754 -0.3703 -0.0634 -0.0909 -0.0634 -0.3703 14.0530
TS -0.7930 0.1081 -0.0348 -0.1017 0.7977 0.0057 -0.8002 0.1014 -2.0135 -0.0999 0.7990 2.0098

MTS -0.7970 0.1046 -0.0112 -0.1017 0.7975 0.0067 -0.7998 0.1018 -2.0184 -0.1001 0.7988 2.0123
CCRM 0.4920 0.0394 0.0151 0.0000 0.8075 7.3676 0.3401 0.1004 12.7436 0.0137 1.0340 107.9996
Bias CRM 0.4156 0.0201 0.0807 0.0034 0.9126 8.2677 0.1847 0.0267 3.6448 0.0013 1.3696 145.2742
TS 0.0000 0.0001 0.0012 0.0000 0.0000 0.0000 0.0000 0.0000 2e-04 0.0000 0.0000 0.0001

MTS 0.0000 0.0000 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 3e-04 0.0000 0.0000 0.0002
CCRM 0.4922 0.0397 0.0163 0.0002 0.8077 7.3736 0.3404 0.1007 12.7738 0.014 1.0340 108.048
MSE CRM 0.4164 0.0202 0.0813 0.0034 0.9134 8.2792 0.1861 0.0267 3.6501 0.0014 1.3710 145.4484
TS 0.0060 0.0061 0.2076 0.0019 0.0021 0.0686 0.0002 0.0005 0.0538 0.0001 0.0002 0.0186

MTS 0.0013 0.0021 0.0295 0.0004 0.0007 0.0091 0.0002 0.0005 0.0510 0.0001 0.0002 0.0174

Table 6: Simulation Results of DGP1 and DGP3 with Multivariate Studé&mtors

DGP1 high persistence and binding O)R.

DGP3 high persistence and non-binding O.R.

b1y b1 bor [ b2 bouy b1y b1 boL o1 b2 boy

true -0.8 0.1 0 -0.1 0.8 0 -0.8 0.1 -2 -0.1 0.8 2
CCRM  -0.0976  -0.0976 -0.1508  -0.0976 -0.0976  3.2462 | -0.2080  -0.2080 1492 02080  -0.2080 12,502
Mean CRM -0.1461  -0.0490  -0.3158  -0.0490  -0.1461 3.4111 | -0.3537  -0.0624  -0.1120  -0.0624  -0.3537  14.1055
TS -0.8889 0.0016 1.1406  -0.0522 0.8529 -0.6148 -0.7947 0.1072 -2.1132 -0.1030 0.7957 2.0657

MTS -0.9284  -0.0329 1.5307 -0.0295 0.8729 -0.8406 | -0.7963 0.1059 -2.0963 -0.1021 0.7965 2.0559
CCRM 0.4934 0.0390 0.0228 0.0000 0.8056  10.5376 0.3504 0.0949 12.192 0.0117 1.0161 110.29
Biag CRM 0.4276 0.0222 0.0997 0.0026 0.8951 11.6359 0.1992 0.0264 3.5645 0.0014 1.3310 146.54
TS 0.0079 0.0097  1.3010 0.0023 0.0028  0.3780 0.0000 0.0001 0.0128 0.0000 0.0000 0.0043

MTS 0.0165 0.0177 2.3431 0.0050 0.0053 0.7067 | 0.0000 0.0000 0.0093 0.0000 0.0000 0.0031
CCRM 0.4937 0.0393 0.0244 0.0002 0.8058 10.5479 0.3508 0.0952 12.225 0.0120 1.0160 110.35
mse  CRM 0.4285 0.0223 0.1008 0.0027 0.8960 11.6540 |  0.2007 0.0264 3.5710 0.0015 1.3325 146.74
TS 0.0134 0.0156  1.7679 0.0042 0.0047  0.5458 0.0003 0.0006 0.0827 0.0001 0.0002 0.0277

MTS 0.0200 0.0220 3.5410 0.0061 0.0066 1.1562 | 0.0002 0.0006 0.0710 0.0001 0.0002 0.0234
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Table 7: Methodology Evaluation for SP500 Daily Liwigh Interval Returns

Unstable Period (20071/1-201¥4/29); BINDING observability r estriction

RMSE CR& ER MLF MDE
Lower Upper CR ER CSRER p=1 p=2 q=1 q=2
CCRM 1.1541 0.9990 0.6811 0.5939 0.6375 1.4506 2.3300 0.7827 1.0794
CRM 1.1541 0.9990 0.6811 0.5939 0.6375 1.4506 2.3300 0.7827 1.0794
TS 1.1356 0.9828 0.6810 0.5974 0.6392 1.4337 2.2555 0.7711 1.0619
MTS 1.1379 0.9831 0.6824 0.5952 0.6388 1.4360 2.2611 0.7726 1.0633
GARCH-N (99%) 1.8625 1.8329 0.9557 0.3630 0.6594 2.9936 6.8285 1.6239 1.8478
GARCH-N (99.5%) 2.0469 2.0246 0.9671 0.3399 0.6535 3.3268 8.2886 1.7960 2.0358
GARCH-T (99%) 2.2210 2.2064 0.9735 0.3272 0.6504 3.5868 9.8010 1.9308 2.2137
GARCH-T (99.5%) 2.6042 2.5989 0.9857 0.2921 0.6389 4.2692 13.5366 2.27486016

Stable Period (20041/1-20071/1); NON-BINDING observability r estriction

RMSE CR& ER MLF MDE
Lower Upper CR ER CRER p=1 p=2 q=1 q=2
CCRM 0.4146 0.3958 0.7177 0.6427 0.6802 0.6396 0.3285 0.3471 0.4053
CRM 0.4146 0.3958 0.7177 0.6427 0.6802 0.6396 0.3285 0.3471 0.4053
TS 0.4123 0.3914 0.7184 0.6466 0.6825 0.6337 0.3232 0.3435 0.4020
MTS 0.4129 0.3942 0.7173 0.6443 0.6808 0.6369 0.3258 0.3452 0.4036
GARCH-N (99%) 0.6368 0.6240 0.9473 0.4410 0.6942 1.1157 0.7949 0.6142 0.6304
GARCH-N (99.5%) 0.7025 0.6908 0.9621 0.4143 0.6882 1.2435 0.9708 0.6818 0.6967
GARCH-T (99%) 0.7415 0.7302 0.9686 0.4002 0.6844 1.3194 1.0830 0.7211 0.7359
GARCH-T (99.5%) 0.8599 0.8499 0.9818 0.3621 0.6720 1.5562 1.4617 0.84@58549
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Figure 3: HighlLow Returns of Daily SP500 Index for Stable and Unstable Periods
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(b) Unstable Period (200%/1-20114/29)
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Figure 4: Estimated Inverse Mill's Ratio for Stable and Unstable Periods
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Figure 5: Observability Restriction for Stable and Unstable Periods
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